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Local field at an irradiated adatom on jellium "xact microscopic results
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The first microscopic correction to the image theory of the local field at an irradiated adatom has been calculated

in the limit that the adatom is far from a jellium surface. The result of the calculation is the frequency-dependent

position of the effective image plane in terms of the properties of semi-infinite jellium. The image plane position is

found to be a complex number, reflecting the fact that the response of the surface electrons is lossy. Numerical

calculations for r, = 2 jellium suggest that the imaginary component of the image plane position is large enough to
prevent large image enhancement of the local field at an adatom, casting doubt on the idea that such enhancement is

responsible for the recently observed surface-enhanced Raman effect.

I. INTRODUCTION

The recent discovery of very strong surface en-
hancement of the Raman effect' has focused at-
tention on the magnitude of the local field at an
irradiated adatom as a possible source of the en-
hancement. " However, the Raman effect is only
one of several optical-excitation experiments that
probe surface structure. Other important ex-
amples include photoemission, ellipsometry, and
surface reflection spectroscopy. In all these ex-
periments the interpretation of the intensity of
the optical excitation requires a knowledge of. the
electromagnetic field in the surface region.

Until now there has been no micxoscoPi c cal-
cul.ation of the local. field at an adatom. However,
it has recently been shown that a microscopic
treatment of surface dielectric response, 4 includ-
ing the effects of nonlocal. ity,"is essential in ex-
plaining the frequency dependence of the photo-
electric current from clean Al (001) (which, in-
cidental. ly shows a dramatic enhancement at about
80% of the plasma frequency). ' This result strong-
ly indicates the importance of assessing the lim-
itations of classical (Fresnel) models"' in the
evaluation of local-field effects. I present here
the results of a first attempt in this direction, in
which an atom adsorbed on jellium is assumed to
be sufficiently far from the surface that classical
image theory provides an accurate zeroth ap-
proximation to the results. '~' I have determined
the lowest order microscopic corrections to the
classical results and have come to the following
main conclusions, which are amplified and de-
rived in the remainder of this article.

(1) The position of the image plane, b~, de-
pends on u, the frequency of the incident radia-
tion, and is in general a complex quantity.
Im(3 ) 4 0 because the breaking of translation
invariance implied by the existence of a surface
permits a loss process which would otherwise not

be allowed, namely, the "surface photoexcitation"
of electron-hole pairs. Im(5; ) is directly pro-
portional to the cross section for this process.
The fact that Im(&;m ) 0 0 weakens the image en-
hancement of the local field at the adatom and,
specifically, suggests that a theory which corre-
lates surface enhancement of Raman yields with a
small absorptive part of the bulk dielectric con-
stant' may be misleading.

(2) Since, by assumption, the adatom is far
from the jellium surface, the fields induced by
its presence are weak and of long wavelength.
Consequently the dielectric response of the adatom-
jellium system can be separated into the long
wavelength, linear response of the adatom and
that of the semi-infinite jellium. The latter can
be entirely characterized in terms of two response
functions, d~~(tu) and d~(u), which are the surface
analogs (respectively, for electric field compo-
nents parallel and perpendicular to the surface) of
the bulk dielectric constant e(&u). These response
functions have the dimensions of length and can be
thought of as effective surface positions for the
corresponding electric field directions. The same
response functions are found to describe the sur-
face contribution to the ref lectivity of semi-in-
finite jellium and the surface-plasmon dispersion
relation at long wavelengths, "as well as the first
corrections to the static image force" and to the
van der Waal. s force on a physisorbed atom. " The
complex function d~(u) is the centroid of the in-
duced density fluctuation below the plasma fre-
quency u~ and is a generalization of this quantity
above e~, where because of bulk-plasmon photo-
excitation the induced density fluctuation is not
confined to the surface region. '

d~~(u) is the
centroid of the derivative with respect to depth z
of the parallel-parallel (x-x) component of the
jellium conductivity tensor [cf. Eg. (5.1) below].
Calculations of these universal surface positions
for Al-density jellium (i.e. , for electron radius
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r, = 2}, based on the random-phase approximation
(RPA) to the conductivity tensor, are presented
below, together with numerical results for S;,(v}.

The remainder of this article is organized as
follows. In the next section I set up the problem
of the irradiation of an adatom and show how it
simplifies the case where the adatom-surface dis-
tance is long compared to microscopic distances.
In Sec. III I review the solution of the classical
adatom irradiation problem, and in Sec. IV I show
how to generalize to the microscopic case.
Finally, in Sec. V I present numerical calcula-
tions of & (&u) and discuss their implications with
respect to experiments which probe surface
structure via optical excitation.

II. IRRADIATION OF AN ADATOM FORMULATION
OF THE PROBLEM

Assume that an adatom is centered at (0, 0, -Z„),
far outside a two-dimensionally translation-in-

variant substrate, whose surface is in the neigh-
borhood of z =0. When the system is irradiated
with long-wavelength light, the fields induced by
the presence of the adatom are characterized by
the distance scale Z„. Thus if Z„&&x„, the adatom
radius, a multipol. e expansion of the adatom re-
sponse, is very rapidly convergent. In leading
order, the local field induces an adatom dipole
moment p. Its value is determined self-consis-
tently in that the local field is the sum of the in-
cident field plus the reflected wave from the sur-
faceand in addition, the field of its image, wh'ich
is of O(Z„') plus corrections of O(Z„'). In what
follows, I determine the form of the O(Z„') cor-
rection terms and neglect contributions to the
local fields of O(Z„') and smaller. For this rea-
son the induced quadrupole and higher multipole
moments induced on the adatom are strictly neg-
ligible, "and the actual adatom may be replaced
by a "point polarizable adatom. " Thus the scat-
tering equation for the electromagnetic vector
potential A„(r) can be written in the form"

.-R„~ i i qlx'-r '
I

A„(r) =A ' e"' +(q'I+VV} ~ p. + —„d'r'&Pr" -,-(r(r', r"; &0) A (r")
iqf r —K„[ au &

[ r —r'[ (2.1)

where q —= &o/c, 4&0' is the vector potential of the incident wave of wave vector q, o (r, r', &v) is the nonlocal
conductivity tensor of the jellium, and p is the induced dipole moment of the "point adatom, "which resides
at R„=- (0, 0, -Z„). The value of p is the product of the adatom polarizability X(&u) and the local electric
field at R„. Thus one has the self-consistency relation

iq IR -r '
l

P =(q(((v)(A 'e' '"x+(q 7+v+ v„( — d r'd'y", ir(r', r"; v) A, (r")), (2.2)

which together with Eq. (2.1) completely specifies the problem to be solved.
The key simplifying feature of the point adatom approximation is that the scattering equation (2.1) im-

plies that A„(r) can be written as

A (r) =A ' (r)+A„(r), (2.3)

where the clean-surface vector potential A&„"(r}is the solution of Eq. (2.1) with p = 0, and the radiating ada-
tom vector potential A~(r) solves (2.1) with A'0' =0. In the first of Ref. 4, I have described in detail the
reduction of the equation for A"(r) to a tractable form in the long-wavelength equation within the RPA
approximation to o(r, r;&o). Here, therefore, I focus on the radiating adatom part of the problem, finding
that for large Z„, A&~(r) can be expressed directly in terms of A&'&(r).

The first step in solving for A„' (r) is to take advantage of the assumed two-dimensional translation in-
variance of the jellium solid by Fourier transforming inx andy. Thus one obtains, with q„—= (q„,q,),

A'"' (z) = D- „~ —. e o~ '"z' + — dz'dz" e u~ ' ' 'o- (z', z"~)A'-"' (z")
Q iz QP

(2.4)

where A; (z', z"; &o) are, respectively, the q(, th Fourier components of A&„"l(r) and o(x —x', y —y', z, z', ur},&5

where
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(q« ~2)1/2 ~2 ) q2

«($2 —q2 )1+ q2 ( q«

(2.5)

and where

0 ~=/ 1+ sg()+9 2Q))+@ (2.6)

In Eq. (2.6) II is a unit vector in the plus z direc-
tion (into the jellium).

There are two eases in which one can proceed
to solve Eq. (2.4) without the immediate necessity
of numerical computation, the classical case
specified by and

-QJ.- «O'J. (2.8)

dielectric function, and the large Z~ limit for a
general conductivity tensor. In the next section I
review the solution of the classical problem [first
published in 190V (Ref. 16)]. The method I adopt
serves as a prototype for the solution of the as-
ymptotic (large Z„}microscopic case which is
given in Sec. IV.

The results of the lengthy derivations in those
sections can, be neatly summarized here, noting
that for z& -Z~ the clean-surface vector poten-
tial satisfies Eq. (2.4) with the replacements

;, (z, z'; ~)Q 1[ ((u) —1]6(z —z')e(z), A(o)
iq

(2.9)

(2.V)

where e(a&) is the bulk infinite-wavelength jellium
Well outside the surface region, A «' „(z) is of

the form'

P

A '
( ) =Aio~ "~'+e "~ A R-' -0))(0))'A } (R-' +R )+flA ' 'R-«

Qll " Q
)I

«Col
Q() «~ QII «& (2.10)

in which the reflected wave is governed by the re-
flection amplitudes R-' „and R- „, respectively,

Qtt «GO

for s- and p-polarized light. (Their values are
given in the Appendix. ) The induced field compo-
nent of A„(,~(z) can thus be obtained from the re-(x)

fiection term of Eq. (2.10) by making the inverse
substitution of Eq. (2.9) for the A 0 components
and the inverse of Eq. (2.8) for the normal wave
vectors. [For the interior normal wave vector
q~, one substitutes ie where a is the interior

I

normal attenuation coefficient obtained from
Sneii s law, cf. Eq. (3.3).] This relation between
the "clean" and "adatom" vector potentials makes
it clear why the same d~(v) and d)((a&) functions
enter the local field and surface reflectance prob-
lems' (cf. also the last of Ref. 10}. Of course it
must be Proven that the repla, cements of Eqs.
(2.8) and (2.9) can be inverted in Eq. (2.10) to
obtain the enhancement of the adatom local field,
and this proof is the subject of Secs. III and IV.

III. ADATOM LOCAL FIELD IN THE CLASSICAL LIMIT—REVIEW

In the classical limit, where op()(z, z'; v) is specified by Eq. (2.V), Eq. (2.4) assumes the greatly simpli-
fied form

g( .) (g) P- . ~-4 ) ~ s ) 4z g. () ) ~.~ 'Ig(A) (g ))Q~ iq 4v

(3.2)

This equation is solved with the ansatz,
Ai"' (z&0) =8- e

f(d
il

' Q)( «CO

Substituting Eq. (3.2) into (3.1) and carrying out
the indicated integration and differentiation one
easily finds the following results;

and

4)( -4 4 'Pll )())()((II ((())'P)
2(f Q~ + o( EQ~ + o)

(3.4)

which is Snell's law for evanescent waves,

(3.3)
-a~&~ 9'jjPz-~@~qji 'Pji

e'Qz + &
(3.5)
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Here
~li

and p-=(p]],p,). To obtain A- „(«0), one sub-
stitutes Eqs. (3.2)-(3.5) back into Eq. (3.1) and

carries out the quadrature and differentiations.
Then one completes the calculation by solving the
self-consistency condition for p which, using
Eqs. (2.1)-(2.3), (2.6), (3.1), and (3.2) assumes
the form

(&) 2

)»;".=»»»((»&)»(».&.(-q„)+ ", [»)*(+(»»)»+»»q )(»»)»+"q )];, , (q + )).
ll

(3.6)

(3.7}(i q((-&&a) ~ 8, „=0,
which Eqs. (3.4) and (3.5) are easily seen to sat-
isfy. Substituting Eq. (3.7) into Eq. (3.6) and
making use of the cylindrical. symmetry of the
problem to evaluate the integral on the azimuth
of qii, one obtains

In this equation the parallel wave vector of the
incident field has been renamed q ii0 to avoid con-
fusion with the dummy vector qii, and the q ii' and
~ dependence of p has been made explicit.

(c)
A.(o) (-Zz)

Il

is the clean-surface vector potential at the adatom
site. Its value is given in the Appendix.

The simplest way to evaluate the right-hand side
of Eq. (3.6) is to make use of the transverseness
condition

(g) ((

)(((d)E -(o) „(-Z~)
1 —)((~)I(](~}

(3.12)

and

I

and

-2qz+(1 1) /e()&2 1)l/2 ()&2 e)1/2l
l. ( ) I

()&2 1)1/2 I
()&2 1)1/2 + ()&2 e)1/2

(3.11)

In Eqs. (3.10) and (3.11), q]], Ql, and &]& have been
replaced by q~, q&~2 —1, and qv'» —&, respec-
tively [cf. Eqs. (2.5) and (3.3)], and Im()&2 —1)'/'

and Im()&' —e) ' are presumed to be less than or
equal to zero in accordance with an outgoing-wave
boundary condition as z- .

Equation (3.8) can now be solved, yielding

p;„'.~=)(( )[;„,~(- ~)+pq(" ~I(](o))

+&&p,'-(o)
~

I, (&d}], (3.8)

(q)

1 —)((&o)I.(&o)
(3.13)

where

(3.9)

CO »2qZ (&2-y)~2/
3 A

I]((&ll) =—q A. d)].
( 2 )1/2

0

()&2 1)l/2 ()&2 e)1/2

()&2 1)l/2 + ()&2 e)1/2

P.2 1)'"
e()&2 1)1/2+ (g2 e)1/2

(3.10)

~ll ~(c)
E;(o),„(-Z„)=-f&IA;(o), „(-Z„)

is the electric field at the adatom site in the
absence of the adatom, and I„(&2])and I~((d) are
the integra ls"'

These equations show that the local fields parallel
and normal to the surface are the fields which
solve the clean-surface reflection problem, en-
ha»nce, respectively, by the factors
[1—)((&o)I(](&o)] ' and [1—)((&o)I2 (&o)] '. To com-
plete the consideration of the classical local-
field problem, therefore, one must ask when
these enhancement factors are significant.

Equations (3.10) and (3.11) show that any con-
tributions to the enhancement of the local fields
which are larger than O((I2} (and for h&o F30 eV,
&Io s3 x 10 'A 2) must come either from the range
of integration A& ~& , where A is arbitrarily
large, or from singularities of the integrand.
Thus one finds the asymptotic (q-0} formulas

Il (o)) =2I„(&o)=
2 +0e((d) —1 1 &I

E (g) +1 4ZA ZA

3

„,[e '"~'"] "Ei(2&Iz„ia+li '"+2())
(a+1)2 &Iz„ i e+ li"'

—8'**''& '*2&(-22Z (»'+ 11 '*]) (3.14)
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where at an irradiated adatom, which is addressed in the
next section.

(3.15)

In Eq. (3.14), the first term is identical to the
result of classical image theory and comes from
the region of integration X& A. The second term
comes from the surface-plasmon singularity at
& = [@/(c+ I)]' ' and is an approximate result for
frequencies such that e(~)+ 1= -q'Z'„. It is only
in this range of &u's that (cf. Ref. 7) the surface-
plasmon term is large, and indeed is of the same
order there, O(q 'Z„'), as the image term. (Note,
however, that E+ 1= -q'Z'„cannot be satisfied
unless 1m' is small. ) The square-root singular-
ities at A2 =1, &, being integrabl. e, do not con-
tribute to the asymptotic results of Eq. (3.14).
One thus concludes that outside a narrow range
of m's near the surface-plasma frequency, the
image approximation provides a completely
adequate description of the solution to the class-
ical problem of the local field at an adatom. "'

The local-field enhancements given by the class-
ical dielectric theory have been investigated nu-
merically in Ref. 3 using realistic values of e(&o)."
There is no reason to repeat that work here. Two
facts concerning the classical model should be
kept in mind in evaluating the significance of the
numerical resul. ts:

(1) The enhancement factors only become large
when X(&u)I~(&u) and )f(v)I~~ (v) become comparable
to 1. Since y(u&) is typically chara, cterized by an
atomic volume, '0 the enhancement of the local
fields only occurs if Z& is comparable to an
atomic diameter, which violates the spirit of the
point-polarizable adatom model (to say nothing
of the infinitely sharp interface approximation),
or if e(&u)+1 is small, i.e., very near the sur-
face-plasma frequency.

(2) Above the 5~+-plasma frequency, which
satisfies e (a&) =0, where e (&u) is the longitudinal
dieleetrie constant, the classical model is ill-
defined without the addition of a supplementary
boundary condition that determines the strength
of bulk-pla smon photoexeitation. "
Both these caveats indicate the importance of de-
veloping a microscopic picture of the local field

IV. LOCAL FIELD FOR AN ADATOM ON A GENERAL
JELLIUM SURFACE —CORRECTIONS

TO IMAGE THEORY

In this section I solve the general equation (2.4)
for the fields produced by a radiating dipol. e p
in the asymptotic case that it is at a large dis-
tance Zz from a two-dimensionally translation-

(s)invariant surface. Once A- „ is known for this
case, the value of the electric field at an irradi-
ated adatom at (0, 0, -Z„) can be obtained trivially,
as was seen for the classical problem in See. III.

It was pointed out in Sec. II that the final formula
~(A)for Az~~ can be guessed from the perception that

for z& -Z„, Eq. (2.4) is the same as the equation
describing the vector potential for reflection at
a elean surface with q~ replaced by i e. The
reader who is not interested in the proof that this
replacement is valid is encouraged to skip from
here to Eqs. (4.54) and (4.55) which embody this
result and are the generalizations of the classical
equations (3.10) and (3.11).

The reason that Eq. (2.4) simplifies in the large
Z~ regime is that in this case the inhomogeneous
term vanishes unless Q~ &Z„' (assuming z to be
in or near the jeliium solid). Thus everywhere
but in the exp(-Q~Z„) term in Eq. (2.4) (for
z+Z„& 0), one is in the long-wavelength or small-
Q~ limit. " Unfortunately however, one cannot
simply expand Eq. (2.4) in powers of Q~, because
the z' integral on the right-hand side (RHS) di-
verges at Q~ =0. In order to take advantage of
the smallness of Q~, it is therefore necessary
to reduce the z' integral to an integral over a
compact domain by learning and taking advantage
of the asymptotic behavior of Az~~' (z) as z- ~.(x)

The lower limit of the z' integral is not a problem
because o';(z', z"; ~) falls exponentially to zero
as z' (or z")--~.

In order to reduce Eq. (2.4) to an equation on
what is effectively a compact domain, it is con-
venient to define a cutoff depth z =Z which is
large compared to the jellium surface thickness
(a few A), but small compared to Z„and thus
to Q~'. For example, Z mightbe -30 A, with
Z„a few hundred A. For z ~ Z, Eq. (2.4) may
be rewritten exactly as

A- „(z~Z)=D- „* -- —. e ~ ' ~ + —e & C- „(Z)
(W) - 2m p -g lg+Z I i , (+)

Q gq (y

z
+ — dz' dz" e c&' ' ~a- (z' z" cu) A- „(z")

47
(4.1)

where
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(+) g &» (x)C- (Z)= dz' dz" e oi'(x- (z' z" (d) ~ A" (z").(((l (4.2)

Since o," (z', z"; &o) falls rapidly to zero as (
z' —z"[-~, Eq. (4.1) is formally an integral equation on an

ll ~( )effectively compact domain. However, one still needs to learn how to determine the constant C;l, „(Z) in
the long-wavelength limit.

To this end, consider Eq. (2.4) for z =Z', i.e., for z infinitesimally greater than Z. In this case, carry-
ing out the differentiations implied by D;)) „and defining

u;, (y) -=[q'I+(iq„+uy)(iq„+iiy)], (4.3)

one finds that

(&) + 2m -p z p a z z 2N q z- ()A- „(Z') = —e @~ 3- „(-Q~) —. e»+ —C- „(Z) + e ~ &- „(Q~) ~ C- „(Z)
Q 2(l' ' iq &() Q (d 2(l'"

4gi gj (x)y
u dz"o-(Z z" v).A- (z")

CO ~)l (4.4)

where

~(-) (x)C- (Z)—= dz' dz" eo~'~- (z' z" (()) ~ A- (z")
Q)) 2 4) Q))

m EO «(20
(4.5)

and where the vector index j is summed over x, y, and z. There is of course no physical significance to
the depth z =Z. Consequently the + may be dropped in A; „(Z') in Eq. (4.4), and using this equation
to substitute for the C2 „(Z}term in Eq. (4.1), one finds the (still exact) equation,

A'-"'„(z&Z)=D- „—' —. e o ""~ + —' dz' dz" e ~" "y(; (z', z";(d) ~ A;,~(z")~

(A) 4I i gi (&)i
+e ' e A"„, (2(+e e'e;, (e, e";le(e(", (e"))

» -,gz- t'p -~zu- „(-Q,)l —. e o ~+ —C; „(Z)
Q 2(l "

l, iq (()
(4.6)

Despite its formidable aura, Eq. (4.6) represents a considerable simplification of Eq. (2.4) in that the
(~)

only values of z' which appear are less than or equal to Z. It remains to determine the form of A," „(z Z}
so that the z" integrals in Eq. (4.6) can be performed and the RHS can be expanded in powers of Q~.

This program requires that one investigate Eq. (2.4) in the region z&Z, where it assumes the form

«(e() 2w -q 2 p -o z 2 «(
(z&Z) =D- „~—e & —. e»+ —C- „(Z) I

4)) Q~ iq

+ — dzle o~ ' * I -dzr~~- (lze-z"I (d) A- „(z') .)~~ g~ (~) (x)
(d z

(4."(I)

Here it has been assumed that Z is sufficiently far
inside the jeliium so that in the last term of (4.V),

o2(((z', z"; co) can be replaced by its bulk, transla-
tion, and rotation-invariant form,

(a)o- ()z —z (
~ ~)= d2pe-"II'

X g ( 8) ([p2 + (Z
I Z ll)2]l/2 ~)

o ()r-r'[ &()) = &x "([r-r'[ co)1

(Pr"& ' ((r-r") (d)

1 +1+1
4vi r" r'i—

(4 9)

where p-=(x, y) and"
(4.8) -(a)

2(( (I z'-z "I;(()) is sufficiently short ranged
so that
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-(&), „g. (&)
cr; (o.; co) —= dz' e "o; (I z'I; co) (4.10)

than Eq. (4.11), specifically

smusolds, (4.12)

for which the RHS of Eq. (4.10) is divergent if
a 40. Thus one must make a more careful ansatz

is a well-defined quantity, then Eq. (4.7) can be
trivially solved with the ansatz

(x) ~ (A)
A-, „( Z)=A," „(Z) (4.11)

II
'

and the remainder of the calculation is straight-
forward. However, the exact asymptotic behavior
of V,", (Iz'I-; e) is unknown, and in the RPA-(a)
where it can be determined4 it is of the Friedel
oscillation form

(4.13)

where one hopes to show that the "remainder
term" R ~ „(z) is small in some asymptotic
sense.

To this end
f

define a distance U sufficiently
large that &,"(( (U; ~) has fallen virtually to zero,
and assume that Eq. (4.13) holds true for z ~Z
—U. This assumption implicitly requires that
s =Z-U lie deeper in the solid than the selvedge
region and is the first real restriction on the val-
ue of Z. Now I substitute Eq. (4.13) into (4.17),
and de+ning R," „(z)by

OQ

i. 8

(~)
x [e(z"-z'+U}R; „(z"}~e(z'—U-z")A; „(z")], (4.14)

find that

T- ""*'=D- —e' ' —e ~ +-C- (Z))p z i
~(l" Q~ & iq +II '

(d ~-iX (4.15}

Here

(~) -
" „(g)

(o.; U; &u) = du e "o; (u; ~),
~ U

(4.16)

and the tacit assumption is that for small o.,
-(~)
o~ (n- smail; U; m)= constant in U. (4.17)

If this asymPtotic relation is not true, one can
got recover the classica/ limit, because the non-
locality of the conductivity tensor is effectively
long ranged.

Note that the definition (4.14) does imply that
R

Q ( (
(z ) is sma 1l since th e in h om ogen eou s te rm

(the last on the RHS) is of O(V;, (U; ~)). Thus(~)

one proceeds to solve Eq. (4.15) by equating the
coefficients of exp(-c(z) and exp(-Q~z) separately
to zero to determine the dominant terms in

A;, (z&Z). One finds that

—o (n; U; co)(q() —o". ) '

x (2 q(( ucg)(l q(( un() p

one thus finds that either

(4.20)

(-Q~) ~ —. e ~ &+ —C- „(Z)p g g i (-)
iq +II '

i e~& -(&)o'- (n; U; &u) ~ T- =0~Q~-o III e&

(4.19)

Equation (4.18) determines the propagation vec-
tor o. while Eq. (4.19) determines the amplitude

To solve Eq. (4.18) one dots (iq((-uo. ) into both
sides. Noting that according to Eq. (4.9),

(a) (z)o- (o( U (u) =o'- (o. U (o)l

and

(4.18)
(4.21)

A

(s q(( —ae} ~ T; „=0,
which says that T; „ is the amplitude of a trans-
verse wave, or
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(L) 4gi(n;U;e)—= 1+ [a; (n;U;&o)

(2)
+@~ (n; U; &)]=0, (4.22)

QJ — 'n=q
~)

47ri & ' (n; Uy (d)/&0 y

which, identifying

(n; U~ (0) = I+, 41I"Lo' (nl U; &d)/(0

(4.23)

(4.24)

as the transverse dielectric constant, '4 one rec-
ognizes to be Snell's law for evanescent waves
[cf. Eq. (3.3}]. In the latter case identifying
e (n; U; v) as the longitudinal dielectric con-
stant, "one sees that Eq. (4.22} is the equation
for the bulk-plasmon dispersion relation. It has
solutions above the plasma frequency for real
propagation vectors, i.e., for"

n = -ak&z&(&) . (4.25)

Collecting these results, one sees that for z ~Z
one has generally not Eq. (4.13) but

(x)A- (z ~Z) =T-
q)I ~

+ I.- e" '-"+R- (z)
(I,)

~ll "
I)

'

(4.26)

where n and kt l are given by Eqs. (4.28) and

(4.22), respectively, R; (z) is the small func-
tion given by Eq. (4.14), and T~ „and L," „are
constant vectors to be determined. T; „satis-
fies Eq. (4.21) and L," „, which vanishes below

(4', the plasma frequency, satisf ie s the longi-
tudinal condition

(q)~+uk ) L~ (4.27}

Because of the longitudinal term, Eq. (4.19) gen-
eralizes. to

QgZ y

and the wave is longitudinal. " En the former case,
substituting Eq. (4.21) back into Eq. (4.19) one
obtains

(4.30)

The ratio of T; „and L;„,„is a surface proper-
ty" and thus cannot be determined by solving the
bulk equation (4.28). Therefore I define the ratio

;~(L)Z zr; „=—L; „e /T;)I' II
'

[which can be determined by solving Eq. (4.6)
for the fields in the surface region]. Using Eq.
(4.81), Eq. (4.30) can be solved to obtain

4me o~ p,",„(.Z)
T-

II' &Q~+ n+q)(A

(4.31)

(4.32)

w'here

ty&&)Z/y(I )
A =z f'~ ~8 f ~

[Notice that Eq. (4.32} is the generalization of the
classical result, Eq. (3.5}.]

Taking the parallel component of Eq. (4.28}, I~ IIproceed similarly to determine T;I, „. Use of
Eqs. (4.21) and (4.27) leads to the result

(4.33)

~)) ~l) 4gg„+E -)),„=

x (P I (Z )

& -1- eA
+z qP" „g

EQ + tX+?I~A )

(4.34}

Equations (4.32) and (4.34) are now substituted in-.
to Eq. (4.6), recognizing that according to Eq.
(4.26),

P; „(Z}-=X)- „(-Q,) ~ —. e ' "+-C;,~(Z)),
zq (d )I'

(4.29)

and where ct (n; U; &u) has been abbreviated as e.
I now solve Eq. (4.28) for Tp~~ in preparation

for the simplification of the fundamental integral
equation (4.6). Taking the z component of (4.28)
and using Eqs. (4.21), (4.23}, (4.24), and (4.27),
I find

Q~S
P; „(Z)= — [(eQ~+ a)T, „+(iq~~/k )L~ „].

1 L-+�z'~' ]

.4m', ~&, (~)&A~, „(Z)+u dz'cr~ (Z, g'; &u)A ~ „(g')

in which

(4.28} where S;„„(z}is the sum of small terms defined
by"
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I g) I (w) ~

;I „( )=R;II „( )+ dz'; (z, z';co)[e(z'-z+U)R; „(z')+e(z —U-z')A; „(z')]e(z-Z).
II

Thus Eq. (4.6) takes a form in which the long-wavelength limit can be investigated explicitly, viz. ,

(4.36)

4m', ~4, (A) yA; „(z)+u dz'o;„(z, z'; (u)A; „(z')

II I il
-(A)=D- „. e o~" &'+

I dz'e &' ' &- „(-Q~ sgn(z-z')) dz"&- (z', z"; w) A" „(z")
ll

' ' 0!I"

Q (s-2Z) QJ. —lX ~ II 2Q, ~ —1- o.A' . - eQ~ —o. -q~~A

Q~ Q~+~ Il' Q +~ EQ +Qr+q A II' ' eQ +Cg+g

+e' '-"S- „(Z). (4.37)
t,

To carry out the long-wavelength expansion, one recalls that the smallness of Z~' implies that Q&, n,
and [q„( are all small compared to microscopic distances. Henceforth these will be referred to a.s "the
small. wave numbers. " It is also useful to assume that co is far enough from co~ that @~A, eA, and

) q~~ ( A are all much less than 1."
Now consider the RHS of Eq (4.37. ) for z in the surface region. The first term is zeroth order in the

small wave numbers. The second (integral) term is first order times the order of A,- „(z). Finally,(x)

referring to the definition of p~ (Z), Eq. (4.29), one has that the third term is again ~zeroth order in the
smaH wave numbers.

Temporarily neglecting the "small" S~ „(Z) term, one thus finds that for z in the surface region,

A~,
~

„(z) is zeroth order in the small wave numbers. Dropping, all'o higher order terms and noting that by
rotational symmetry about the surface normal o'; (z, z', &o) and o'; (z, z'; a&) are first order in q, and q„
respectively, Eq. (4.37) reduces to the form (for z in the surface region)

2' Q~ —n ~ il 2Q~ ~ ~ 1
+ — ~ —p;, „(Z)+ (e —1)iq~, +(eQ~ —o.)u &, -.,.(Z) .

Q, Q. +~ '~~ '" Q. +~ eQ+ 0

The important feature of Eq. (4.38) is that its RHS is indejendent of z. Thus in this zeroth-order approx--(~) ii (~)~
imation, A;, „(z) is constant in z, and A.;,„(z) is trivially related to the z component of the clean-
surface vector potential. , which, when normalized to a unit magnitude transverse wave inside the je1.-
lium, satisfies~

OO

A„(z}+ dz'c;, „(z,z'; u))A„(z') = e.
~II

(4.39)

The numerical results given in the next section are accordingly based on the numerical solutions of Eq.
(4.39) given in the first of Ref. 4 for an RPA model conductivity tensor, and require little new computa-

tional1

effort.
Before proceeding, it is important to esiablish the order of S,",„(Z}in the small wave numbers.0,

(A)According to Eq. (4.14}, Rz~~ (z) is zeroth oi der, L.e., the same as A&g (z). For z&Z Eq. (4.14) yields,
upon carrying out the differentiations implied by 0;

00

S; „(z)= dz'e ~' ' '&; „(-Q sgn(z -z'))

dz "0'" z', z"; (u R~ „z"6 z" —z'+U +A~ „z"6 z' —U —z"
e CO

Now one lets s-Z'. Retaining only the lowest-order terms in the small wave numbers, one has

(4.40)
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00 ' 00

S;,„(Z') = "
J dz &;, „(Q,) « "o, ,(z', z";(o) [R;,„(z"}e(z"-z II)

(x)
+A; 0 „(z")e(z'—U-z")]. (4.41)

Since D
zll (Qd ) is second order, the fact that the integrals converge on the RHS of Eq. (4.41) implies that

( ) ( ef. 28) is first order and thus can be dropped in the Eeroth-order equation (4.38), for the vector
potential. in the surface region.

Thus one obtains the exact Eeroth-order results for z in the surface region
tt(x) 27f Q zA

()II 0, (z) c s ['I Pll qll ( qll Pll ) Qd qllpd]

Qd. 2Qi
+ — ' p;, ,(Z)+ —

q
~'t(~~P; -,. (d)),

0ll Qd + (X eQd + lx Il
(4.42)

&.- -0.-(z) = &-(z) [~lit. -iQ. (qll pll)l +
iq eQd +n 'll ' j (4.43)

where dt (z) is the solution to Eq. (4.39). All that
remains is to evaluate P," 0 (Z) via Eqs. (4.29),
(4.5), (4.42), and (4.43), and then to use the lat-
ter two equations to determine the local field at
R„=—(0, 0, -Z„).

Consider first the evaluation of P, , „(Z}. In
the long-wavelength limit tQe definition, Eq.
(4.29) can be rewritten as

!
C„(Z)=A;, (c —1)[Z -dll(ar

where"

(4.46)

OO

(4.47)
(z) z

At the same time, the fact thatApll () (z} is plo-
po'rtional to A„(z) leads to the con'elusion that

where, cf. Eq. (4.5),

(4.44}

4ss
C'„(Z) =- dz' dz "v;,(z', z"; (o)

m oo ~ 00 ll

(~)~
xA.;,„(z").

II

(4.45)

Since in Eq. (4.45} only z" 's in the surface region
contribute, C„(Z) can be evaluated immediately by
means of Eqs. (4.42) and (4.43). The fact that
~(~) ll

A;„0„(z) is independent of z implies that

C'.(Z) =,—. [el(P. -iQi(qll pl()]

q z (&-1)[Z-d~((o)]+A
&Qd + o.

(4.48)

(4.49)

Now one is ready to evaluate the local field at
(0, 0, -Z„}. Using the exact equation, (4.37}, and
retaining the lowest t0 orders in the small wave
numbers, one has

to lowest order in the small wave numbers, where

2
d, (~) = d- dz(a -d (z)]-d ).

+ e-Qd zg(1 2Q Z) Qd. p (Z) pd (Z) Qd E —1 2E Qd A

Pd (Z)
&Qd —Q 2&(f ((Qd A

&Q, + o. (eQ, + o.)'
(4.50)

The superscript loc, for "local,"means simply that the direct radiation term, the first on the RHS of

(4.37} (which diverges at z =-Z~), has been subtracted out. To obtain the local field in real space one now

performs the necessary q~~ integral, i.e.,
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( A) roc
(4.51)

Substituting Eels. (4.44), (4.46), (4.42), and (4.48) into E(l. (4.50), dropping the small S;,„(Z}term, and
taking advantage of cylindrical symmetry via the identities

r dq II=qii =—0
2g

(4.52)

J
drr,

9ll (All Pll ) 2 q(IPII (4.53)

one obtains the results

(g) )~d d( ~ 2 X &.exp [-2qZ~(/1 —1) ]
q (I) (P ) A) q Pd ) (

2 )1/2[ (
2 1)1/2 (

2 )1/2]

2qy ~ y2 ]

&d(d (~) dll(~)1(r ()(~ ~)(~ ()'*)
e(/„2 1)1/2 + (g2 e)1/2 (4.54)

and

iqA'"~' (p=0, z =-Z„)=q'pll )( Ada. exp[-2qZ„(X' —1)'+]

(g2 1)1/2 (g2 e)1/2 g2 2(g2 1)1/2

(g2 1)1/2+ (g2 —.e)1 2 2 6(/(2 —1)12+ ()L2 )1e2 (/I2 1)12

q(e 1)(/(2 1)1/2[e(f (~){y2 1)1/2+Gy ((0)($2 6)1/2]/I2

[e($2 1)12 y (/(2 e)' 2]2

(4.55)

Not surprisingly, the O{q') terms in Eels. (4.54)
and (4.55) are identical. to those found in the clas-
sical model, cf. E(ls. (3.10) and (3.11). The O(q'd)
terms are new and incorporate the effects of the
structure of the surface in the functions dd (/d)) and

dll(~). The analytic structure of the integrands for
the new terms is essentially the same as that for
the classical terms, leading, as b{efore, to sing-
ular behavior near the surface-plasma frequency.
Away from this frequency range the leading con-
tributions to E(ls. (4.54) and (4.55) come from the
region of large A., andiqAp ' (p=0, -Z„) takes
the form

d rd (ra)+d„(ra))
ZA 6+1

(4.56)

or, more suggestively,

zqA„" '"'(p =0, -Z~) = — (2 p(I+pdzz)4 a+1

ed~ ((1)}+ dll ((()}

f+1 (4.58)

for frequencies not too close to the surface-plas-
mon resonance. Equation (4.58) constitutes the
main new result of this work. In the next section
its significance is explored in the light of numer-
ical calculations based on the BPA model of the
jellium conductivity tensor.

IncidentaHy, note that Eq. (4.58) does not com-
plete the calculation of the local field because p
must still be determined via the self-consistency

dd, (ra) + dr, (ra))
' '

ZA+
(4.57)

This result shows that the adatom-induced local
field is given by image theory, provided that the
image plane lies at
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relation, Eq. (2.2). However, using Eq. (2.3) and
the clean-surface fieMs appropriate to the jellium
problem (Appendix) the evaluation of p is as trivial
as in the classical case and the results are formal-
ly identical to those in Eqs. (3.12) and (3.13), with
I((((d)) and Id ((d) replaced by their generalized ver-
sions in Eqs. (4.55}and (4.54).

dn
"

dn
dj) = dz z — dz—.

d8 0o dz (5.3)

The interpretation of d~((d)} is easiest for &u«d~,
where A~ =0. In this regime, again integrating
by parts [this time in Eq. (4.49}]and letting
Z-~, one finds

V. IMAGE PLANE IN ADATOM IRRADIATION—
NUMERICAL RESULTS AND DISCUSSION

f d
dd (z) CA (z)

dg
(5.4)

00 d OO

Ck z — Ck'(T,"",(z, z'; ru)

c() ((0) =

~«OO ~ «00

(5.1)

e

Since the conductivity tensor is short ranged and
rapidly heals to its bulk form inside the jel.lium,

In the last section I showed that, for &+1 not
too close to zero, the parallel and normal com-
ponents of the local field at an irradiated adatom
are enhanced by the image factor

1
e -1 )(((u) 1a-
c+ 1 n [Z„+ fe (u)}]'

where n = 8(4} for the paralleL (normal) field com-
ponent, g((d)) is the adatom polarizability in free
space, and S ((d)) is the frequency-dependent
image plane position which [cf. Eq. (4.58)] depends
on the microscopic structure of the surface via
the depth parameters d(((a&) and d~((d). Here I
discuss the signif icance of these depthparameters
and present numerical results for the position of the
image plane as a function of photon energy. I
discuss the implications of these results regard-
the possibility of large enhancement of the local
field and point out the direction for future research
in this area.

First consider the meaning of d(((&u). Integrating
Eq. (4.47) by parts and then letting Z- ~, one
finds that

using the facts' that A„(z-~) = 1 and A„(z- -~)
Next one uses Poisson's equation, which in

the long-wavel, ength l.imit is4

dA„(z) 4v
dz (5.5)

where 6n„(z) is the fluctuating charge induced at
the jeLLium surface. Substituting (5.5) into Eq.
(5.4) thus implies that

d (tz)=f dzzez (z) f dzez, (z),
«00 «0O

(5.6)

or in words, that dd (u) is the centroid of the in-
duced charge-density profile. This result im-
mediately explains why dd {e)is a more compli-
cated quantity above ~p. There, because of the
photoexcitation of bulk plasmons, A„(z) has the
large z form

2„(z)= 1+r;, „e" (5.7}

cf. Eqs. (4.26) and (4.31). Consequently there are
induced density fluctuations at all depths inside
the jellium, and the integrals in Eq. (5.6) are un-
defined. Equation (4.49) remains a perfectly
satisfactory definition of d~(e), which, using Eq.
(5.V}, can easily be shown to be Z independent for
large Z. It should be thought of as a generaliza-
tion of Eq. (5.6) in which the plasmon contribution
is subtracted out.

I turn now to the result that, to lowest order in
the microscopic theory, image theory holds with
the image plane at

Km =[add (e}+d((((d)]/(&+1). (5.8)
JZ «0O The first interesting feature of this result is that

since e((d- 0) =-~ for jeLlium,
is a function which is sharply peaked in the surface
region, and d(((e) measures the surface position
as its centroid. Within the RPA it is easy to
show' that

zzz ( 0tzf)dzzez, (z)
«OO f dz 5n„,(z) .

«00

(5.9)

4vi ",„, (, )
4wn(z, )e'

ll

dZ O'q ~0 8, 8'; (0
mu (5.2)

where n(z) is the jellium charge-density profile.
Thus in this approximation, d(((co) is frequency
independent and real, and is given by

This static limit is in accord with the result of
Lang and Kohn. "

The second important feature of Eq. (5.8)
is that for finite frequency, there is no rea-
son why p. should be a real quantity. Since
6n„(z) is lossy, d~((d)) is generally complex
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and so is b;m. This fact implies that the maximum
value of an image enhancement factor such as
jcf. Eq. (4.57)]

e —1 y((u)
e+ I 4(Z„+h )'

even if Ime =Imp(&u) = 0, is limited to -—,'Z„/
Im(b b, ). Model calculations described below show
that this maximum enhancement is small compared
to what one would need to explain the factor of
-10' enhancement of the Baman effect for pyridine
on Ag." Thus even if one violates the assumption
that Z„must be asymptotically large [at least a
few times the nonlocality range of o', (z, z'; e) ac-
cording to Sec. IV] 1'or the image model to be
valid, this model still does not predict a very
large loca1.-field enhancement at an adatom.

The BPA model used to evaluate b~ has been
described in great detail in the first of Ref. 4
(see also the Appendix). The calculations, report-
ed here are based on the use of the I.ang-Kohn
self-consistent potential barrier for y, = 2.
Similar results should obtain for other values of

The origin of the z axis was chosen so that
d~~ equaled zero and values of d~(v) were obtained
via the general equation (4.49) by a simple nu-
merical integration. Because of the large Friedel
oscillations and large dielectric mismatch at the
surface at lower frequencies (e = 1 —u&~2/m' in the
RPA), values of d~(&u) were difficult to calculate
to better than -15/0 around S&u-8 eV. But for 10
eV and above, the numerical. stability of the inte-
gral equation for A„(z) is greatly improved (S&o~

016.'I eV for r, =2) and the value of d~(ar) could
easily be obtained with two-place accuracy.

Calculated values of h~ (&u) are given in Fig. 1.
Using an "optical theorem" which follows from
Eq. (4.89) it can easily be shown" that if there is
no bulk power absorption, i.e., if & is real, as it
is in the HPA, then eimd (&u) is directly propor-
tional to the power loss due to surface photoex-
citation of electron-hole pairs. Thus & Imd~((u)
is a positive quantity and Imb& has the sign of
&+1, negative below the surface-plasma frequen-
cy and positive above. Near and above co~ (16.7
eV for r, =2), Im(b ) becomes quite small be-
cause the surface photoeffect becomes weak as
the variation of the electromagnetic field across
the surface region becomes small. ' Near the
surface-pLasma frequency (11.8 eV for r, =2), as
in the c1assica1. local-field problem of Sec. III,
one may not drop the pole contributions to Eqs.
(4.54) and (4.55) and thereby derive the image
result of Eq. (4.57). Thus, the anomaly seen in
Fig. 1 near a+1 =0 is an indication of the break-
down of the concept of an image plane for ~ near
the surface-plasma resonance. Below 11.8 eV is
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FIG. 1. The position of the image plane relative to
the centroid of dn/dz as a function of frequency, for r&
=2 jellium (a) Hep&m(cu) and (b) Im~im(~) ~

the region of interest for the surface-enhanced
Baman effect as well as other optical experiments.
Imb&m (&u) is not small, approximately several
tenths of an A. or more. Thus the maximum
effect is -Z„/(a few A). Since Z„ is of O(A)
in the Baman experiments where enhance-
ment is seen, this result suggests that image ef-
fects are not likely the cause of it. In this regard,
however, one must make an important qualifica-
tion. In the present paper, I have only calculated
the local field at -Z„asymptotically, i.e., for

~ Z„~ large It is not. at all obvious that the asymp-
totic results are valid for Z„-a few A. However,
if one assumes the validity of the image approxi-
mation as in Refs. 2 and 3 then one must grant
the validity of a calculation of the first correction
to it. And to this extent the negative result ob-
tained here is a significant one.

The direction of future research into local-
field effects in irradiation of an adatom is ob-
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vious. One must look into the problem when Z„
is not l.arge. Here there wil. l. be two cornpl. icating
effects. First, the atom and surface wave func-
tions will overlap, so the response of the clean
surface and of the atom will. not be separable.
Second, the point dipole approximation will no
longer be relevant. On the other hand, the wide
use of optical probes of surfaces assures the
value of studying this complicated problem.
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where

=- (q -qi))

In Eg. (Al) the reflection amplitudes for s- and
p-polarized light are given, respectxvel. y, by

vi-a:R;, „= ';[I+2fq, d~~((u)]
gi+V~

and

(n) eq~ —q~ 2&qi(e —I)

APPENDIX: FIELDS FOR A CLEAN 3ELLIUM
SURFACE

For light incident on a clear jellium surface
the field in the vacuum region (z &0) is given by'

A"' „=A"('~ e'"'
~tl " with

x[qg'dg(~) —eq'pd ((o)]),

(A4)

q' = (q +q'(& —I))"', (A5)

) (P) {s)
-qo(qadi A ')(Ita . +&a . )

ll I[
'

(u)+ua'"'It - ]

and where d~~ (&u) and d~(~) are given by Eqs.
(4.4'l) and (4.49). The same equations apply in
the case of a classical dielectric interface at
z =0, if d, ~ (~) and d~(&o) are set equal to zero.
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