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Charge-density-wave satellite intensity in potassium
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The intensity of a charge-density-wave diffraction satellite in potassium is calculated. Velocity dependence of the
exchange and correlation potential, which is responsible for the conduction-electron charge modulation,
significantly affects the deduced value of the charge-density-wave amplitude. The amplitude of the periodic lattice
displacement, which screens the electronic modulation, is reduced to a very small value, 0.03 A, when the real
charge distribution of a positive ion is recognized. A random Q-domain structure can lead to a reduction by a factor
of 24, compared to a single-Q specimen, of the satellite intensity. In such a case it is only 1.4)&10 ' that of a
crystallographic Bragg reflection. At temperatures above liquid helium, satellite intensity may be reduced
further by phason excitations.

I. INTRODUCTION

The alkali metals, and in particular potassium,
display a wide range of anomalous properties"
which a normal electron-gas picture cannot ac-
count for. In order to find a comprehensive theo-
retical interpretation of experimental data it has
been suggested' that the conduction electrons
suffer a charge-density-wave (CDW) instability.
Exchange and correlation potentials play a role
of primary importance in the theory of such an
instability. In this paper we will show that the
nonlocal velocity dependence of exchange and cor-
relation reduces significantly the observability of
a CD% in a diffraction experiment.

The translational invariance of a crystal is
broken by a CDW. In order to maintain micro-
scopic charge neutrality the positive-ion lattice
undergoes a small sinusoidal displacement. This
can be observed directly. Two small diffraction
satellites will appear" .in reciprocal space for
each reciprocal-lattice vector. Detection of these
is the unequivocal signature of a CDW.

An early estimate of the intensity ratio of a CDW
satellite to a Bragg reflection was about 1%.' This
was based on a jellium model with a charge modu-
lation of 17@, which corresponds to the suggested
CDW energy gap of 0.6 eV for potassium. A unique
orientation of the CDW wave vector Q throughout
the sample was assumed.

Atoji and Werner' carried out a neutron scatter-
ing experiment on potassium at low temperature
with a sensitivity of two parts in 10 . They scanned
high-symmetry directions with particular empha-
sis on the [110], which was expected to be the pre-
ferred orientation of the CDW. No satellites were

found.
In a recent'paper' the authors developed a theory

for the preferred orientation of the wave vector Q.
In the alkali metals anisotropy of the elastic stiff-
ness is the determining factor. For potassium
the optimum direction of Q is tilted about 4' away
from a [110]direction. Although small, this tilt
must be allowed for in a search for the satellites.
Furthermore, the possibility of 24 different, but
equivalent, orientations of Q would cut down the
intensity of each satellite to 4x10 4. .

Motivated by the new information regarding the
direction of Q, Werner, Eckert, and Shirane'
conducted a new search by neutron diffraction.
Their experiment was sufficiently sensitive to
detect satellites having an intensity 2 &10 ' that
of an ordinary Bragg reflection. None were found
that could be attributed to a CDW.

The aim of this paper is to present an improved
estimate for the intensity of a CD% peak in pot-
assium. The result, Eq. (22}, is unfortunately
about a factor of 2 smaller than the minimum

detectability of the Werner, Eckert, and Shirane
exper im ent.

The satellite intensity depends on the amplitude
of the charge-density modulation of the electron
gas, ' on the interaction between the electronic
CDW and the lattice, ' and also on the excitation
spectrum' of the system. All of these factors
contribute to the revised estimate.

The structure of the paper is as follows. In
Sec. II the theory of the scattering intensity in a
CDW system' is reviewed with particular empha-
sis on the role of CDW collective excitations. In
Sec. III the ionic lattice distortion is examined.
Section IV is devoted to the theory of the CDW
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fractional amplitude; and a new evaluation of this
quantity is reported. Finally, in Sec. 7 the CDW
satellite intensity is calculated.

II. NEUTRON-SCATTERING ELASTIC INTENSITY

In a neutron experiment the wave-vector- and
frequency-dependent diffracted intensity I& is
proportional to the following dynamic structure
factors:
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The allowed Bragg reflections are those with scat-
tering vector equal to a reciprocal-lattice vector
G. For finite 5R„we can use in (3) the following
formula':

l8 Sin% jflf)f~

where n is an integer and Z„(z) a Bessel function
of the first kind. 5& can be rewritten now as

S-k =2((+5(~) p Q5(k-(0+nQ)) J'„(k 5R,).

The indices i and j label the & atoms of the system,
R, (f) represents the position of the atom i at the
time t, and an equilibrium thermal average is
taken of the right-hand side.

In a CDW state the tendency towards micro-
scopic charge neutrality causes the ionic lattice
to undergo a distortion with respect to the ideal
crystal. The new equilibrium positions of the
ions of a single CDW state are given by

R, =R, +5Rocos(Q ~ Ro+ P), (2)

where R',. are the atomic sites of the original un-
distorted lattice, 5R, is the ground-state ampli-
tude, Q the wave vector, and p the phase of the
distortion. Furthermore, the dynamics of R((t),
the actual ionic positions, are related to the dy-
namics of the amplitude and the phase of the CDW.

A. Static CD%

We assume for the moment that both phase and
amplitude degrees of freedom are frozen. In this
case the dynamic structure factor reduces to a
simple form:

2
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where for convenience P has been set equal to
zero. In the limit of zero amplitude the usual
result for the undistorted lattice is readily re-
covered:

Sg ~ =2wN5((d) Z 5(k- G).
G

Notice that the new relevant feature of the diffrac-
tion pattern is that satellite spots appear at k =G
+ng. As the amplitude 5R, of the distortion is ex-
pected to be small compared to the lattice spacing,
and because the limiting behavior of Bessel func-
tions is J„(x)=(-,'x)"/n! for small x, each Bragg
reflection will be surrounded by a sequence of
weak satellite spots. Although in principle all the
satellites are present, usually only the set with
n = 1 has sufficient intensity to be easily observed.
Even though the magnitude of Q may be known'
from the diameter of the Fermi surface, these
first-order satellites may be hard to find if the
direction of Q is unknown.

B. Dynamic excitations

For an incommensurate CDW, in the absence of
any source of pinning, the phase P is free to as-
sume all possible values. This infinite degeneracy
of the ground state results in the existence of a
new branch of acoustic, collective modes called
phasons. ' These modes are associated with space
and time variations of the variable P of Eq. (2).
Together with phase modulation the CDW may also
experience amplitude modulation. Amplitude and
phase modes occupy only a small portion of the
wave-vector space associated with vibrational ex-
citations of the system. The remaining degrees
of freedom are the normal phonons. In the follow-
ing discussion we will disregard these as they re-
duce the intensity of all diffraction peaks accord-
ing to the ordinary Debye-%'aller factor.

The inclusion of amplitude modes and phasons
CDW

in the theory" gives for a&

+ OO
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where the ellipsis represents inelastic terms,
which contain the contribution associated with
emission and absorption of phasons and ampli-

l

tude modes. The factors containing so& and I
&

are the amplitude and the phason temperature fac-
tors. ' "" They are the analogue of the Debye-
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Wailer factor for an ordinary Bragg reflection.
ze„and m@ are proportional to the mean-square
fluctuation of the amplitude I5RI and the phase P
of the CDW.

We notice here that the normal Bragg reflection
(n =0) are unaffected by phase and amplitude fluc-
tuations. Furthermore the latter do not alter the
intensity of the first satellite spots (n =+1}.

ionit; form factor takes account of the finite size.
For potassium pQ is easily estimated from avail-
able values of the x-ray form factor, p„(p),"for
a single K' ion. We have found

p o = 19 —ps (Q) —2.92 . (10)

This result will be employed with Eqs. (6}and (9)
when the satellite intensity is estimated in See. V.

C. Domain structure

In a recent paper' the authors have derived the
preferred orientation of the wave vector Q of a
CDW in alkali metals. Since Q is not along a sym-
metry axis or in a symmetry plane, all 24 cubical-
ly equivalent axes will be equally favored. In the
absence of uniaxial stress, which could split this
24-fold degeneracy, a single-crystal sample will,
in general, be divided into Q domains'~ having
Q's aligned without preference along all allowed
directions. This will reduce the intensity of a
specific satellite spot by a factor of 24 compared
to the intensity it would have if the sample were
single Q.

However, a compensating advantage is that each
crystallographic Bragg reflection will be surround-
ded by 48 CDW satellites. One need not scan along
all 24 axes to be sure of finding a satellite.

III. LATTICE DISTORTION

The electronic charge of a CDW can be written
as3

p(r) = -en(1+p cosy ~ r), (8)

where n is the average electron density, and p is
the fractional amplitude of the modulation. Such
an electronic state can be energetically more
favorable than the usual undistorted homogeneous
state provided the underlying positive background
is sufficiently deformable to allow microscopic
cancellation of the charge modulation. Otherwise
a positive electrostatic energy would domir ate
the energy. '

An analysis' of this phenomenon was carried
out. It was found that for the alkali metals the
screening of the CDW is about 99.9/~. The theo-
retical amplitude I5R, I of the periodic lattice dis-
tortion is W.03 A. A particularly relevant quan-
tity is 5R, ~ Q. Equations (3.6), (3.16), and (3.17)
of Ref. 7 lead to

(9)

where p is the CDW fractional amplitude defined
above. po is the Q component of the ionic charge
distribution. "' Since the wavelength of the CDW
is small (=4 A in potassium), an assumption of
pointlike ions is unjustified. Incorporation of the

IV. CD% FRACTIONAL AMPLITUDE IN POTASSIUM

An a Priori theory of the CDW fractional ampli-
tude P could only come from an exact solution of
the electronic many-body problem, which is not
at hand. So we will. rely on a semiempirical cal-
culation to obtain an estimate of this important
parameter. "4

Consider an.electron gas embedded in a neutral-
izing, perfectly deformable jelly and modulated by
a single-CDW ground state of wave vector Q.
Each electron is acted upon by a periodic potential
which self-consistently sustains the charge modu-
lation. Since any electrostatic (Hartree) field is
assumed to be exactly cancelled by an equal modu-
lation of the positive background, "this periodic
potential originates from exchange and correlation
effects. '

The periodic potential is proportional to cosQ r,
so each one-electron state k is mixed with k+Q.
This causes the charge modulation, and produces
a gap 6 (in the single-particle spectrum) on planes
perpendicular to Q through the points +Q/2. Fur-
thermore, when 6, is small compared to the Fermi
energy eF, the periodic potential ean be treated
as a perturbation. The free-electron plane waves,
which we take as our basis functions, become
amplitude modulated. The fractional amplitude P
of the CDW is just the Fermi-sea average of this
modulation.

A. Local theory

The simplest choice for the exchange and cor-
relation potential is:

V (r) = -A cosQ; r,

where 4 is independent of k. The perturbed wave
functions are to first order, "

eiL y ~ Q ~-Q
2{8+ 2h)

(12)

~=En-Ea~Q ~ (13)

We average I@-„I' over the occupied states of the
Fermi sphere to obtain the charge modulation am-
plitude defined by Eq. (8) (Ref. 3):

where the denominators are defined in terms of the
free-electron energies, E, =h' )P/2m.
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(14}

V. RESULTS

p~ = 0.17. (15)

B. Nonlocal theory

As already pointed out by one of the authors, '~

in a nonuniform electron gas the periodic part
of the exchange operator connecting the electronic
states k and k+Q, is extremely nonlocal; i.e. , it
has, for fixed Q, a dramatic dependence upon k.
When correlation effects are accounted for,"this
dependence is reduced but still remains pro-
nounced. A correct theory of the exchange and
correlation periodic potential for a CDW must
allow for this nonlocality. A straightforward gen-
eralization of the exchange and correlation poten-
tial V"'(r) which allows for this is,

Vco~r) = — [&'(k)e'~' + a (k)e '~'] . (16)

&'(k) is a function of the electronic state. These
functions have been calculated by Duff and Over-
hauser" using the "plasmon*' model. "

For the case
~ Q I= 2k„, their results can be

summarized as follows: b, (k) is a smooth function
of k; furthermore if A(k) is equal to L at k =-Q
then d(0) = 0.56, b,(Q) = 0.366. Furthermore
A(k) is practically independent of the component of
k perpendicular to Q. ,

A simple, smooth function with these properties
ls

1 t'k, 1 '
b. '(k) =S 1+0.55 —'+— —0.03' —'+—

& (k) = & (-k), (17)

where k, is measured along Q. Then the perturbed
wave functions are given as before by Eq. (12),
but now ~ is dependent on k. A numerical calcula-
tion gives for the nonlocal value of P, using again
a spherical Fermi surface,

where u = (Q(/2k~.
The typical values for potassium are A/4ez -—0.0'7

and ~Q~/kz -—I+a/4e~= 1.07." In this ease Eq.
(14) gives'

In a neutron-diffraction experiment on a CDW
system a quantity of interest is the intensity ratio
of a satellite spot to a normal Bragg reflection.
With the use of Eq. (7) we obtain the following re-
sult:

Io,„o 1 ( „(5R0 ' (G+ uQ))
l~

~,(5(R,))
xexp[-2n')@&+2 Q ~ (Q (

—I)w„]. (20)

IG 1 p
I G(110) 24 2PQ

(21)

where P is the fractional modulation given by (19).
The factor D has been taken to be 24 on account of
the degeneracy of equivalent Q-domain orienta-
tions. ' If we disregard the phason temperature
factor as seems justified in a 4 K experiment and
use the values (10) and (19}to obtain Io, we find

Z) is the Q-domain degeneracy (unity for a single-
domain sample).

The most intense satellite spots have g =el.
The scattering vectors are then 4+/. For small
CDW amplitude we can use in (20) the limiting
behavior of the Bessel functions, i.e. , J,(x) = x/2
and Z, (x)=1. It follows that a satellite's intensity
is proportional to ~5+/~'. This suggests that
satellites of large reciprocal-lattice vectors, 5,
will be easier to observe. The problem, however,
is to find a small satellite in a thermal diffuse
background, which also increases in intensity as
the square of the scattering vector. For potassium
the CDW satellites are expected to be very close
(in k space) to reciprocal-lattice vectors. The
requirements on angular resolution to separate
them become severe if satellites of large G+Q
are selected for study. The optimum satellite to
search for will depend on experimental resolution
and available flux.

For purposes of illustration we shaH evaluate
Eq. (20) for the CDW satellite at k =Q for potas-
sium. Equations (9}and (20) imply:

p„~=0.10. I Q 1.4X 10 I G(110) (22)

p„=0.11 . (19)

In order to take into account the effect of Fermi-
surface distortion caused by the CDW we have re-
peated the calculation with the distorted Fermi
surface given by Bishop and Overhauser, "where it
is assumed that the Fermi surface touches the
gap plane in a single point. ' The fractional modu-
lation is increased slightly by this improvement.
Our final value is

We believe that any future experimental search for
CDW satellites in potassium should have a sen-
sitivity consistent with this result.
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