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Time development of the spectral redistribution in disordered systems with a Lorentxian
transfer rate: Theoretical models and a Monte Carlo study
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The tine-dependent spectral redistribution in fluorescence line narrowing in an inhomogeneously broadened
system is investigated by means of simple theoretical models and Monte Carlo calculations. The two-site phonon-
assisted energy transfer rate is assumed to be site-symmetric and a Lorentzian function of energy mismatch. For the
Monte Carlo calculations initial excitations are made at the wing, shoulder, and center of the inhomogeneously
broadened Gaussian band. For the wing excitation it is argued that, because of the above Lorentzian factor, the
intensity in the initial site of excitation decays with a much smaller back-transfer rate than for the center excitation,
simplifying the theoretical treatment. This effect is demonstrated by the Monte Carlo study. A refinement of this
model is developed for a general situation, and its predictions are compared with the Monte Carlo results.

I. INTRODUCTION

%ith the recent development of a fluorescence-
line-narrowing technique there has been growing
interest' 5 in the phenomena of time-dependent
spectral transport in inhomogeneously broadened
systems. Time-resolved studies of the fluores-
cence of an initially narrow spectral line after a
laser excitation provide impor tant information
about the spectral and spatial dynamics of optical
excitations in a disordered system with a random
distribution of the positions and energy levels of
the optically active ions.

In previous studies' 4 the spectral and spatial
transport has been investigated for simple sys-
tems such as LaF3.Pr ' where the elemental two-
site phonon-assisted energy transfer rate is in-
dependent of energy mismatch. In the present
work we study another class of systems where the
transfer rate has a Lorentzian dependence on en-
ergy mismatch. The rate is site-symmetric when
the thermal energy is much larger than the in-
homogeneous broadening. For example, such a
rate is obtained for two- phonon —ass is ted pro-
cesses~ where phonon emission and absorption
occur at the same site. According to the spectral
overlap method, ' the transfer rate is proportional
to the convolution of the emission profile of one
site with the absorption profile of the other.
Therefore for Lorentzian line-shape functions the
rate is a Lorentzian function of energy mismatch
with a width equal to twice the homogeneous width.

Theoretical models for the time evolution of the
spectral profile are developed by ignoring the
radiative decay. The latter can be accounted for
in a trivial way. The "exact" solutions are then
obtained by performing a full Monte Carlo calcula-
tion. The latter takes into account the microscopic
spatial (i.e., topological) correlations of the im-
purity sites. The accuracy of the theoretical

models is assessed by comparing the theoretical
predictions with the Monte Carlo results.

II. GENERAL FORMALISM OF SPECTRAL
TRANSPORT

P(E, t) = gn (t) & (-E —E;), (2 1)

where n, (t) and 5(x).are the probability that an ith
ion with an energy level E, is excited and Dirac's
delta, respectively. The initial spectral profile
P(E, 0) is sharply peaked at a certain energy.

By separating the contributions from sites
initially excited in (2.1), one can transform (2.1)
into a more'illuminating expression for an in-
finitely large system (see the Appendix):

P(E, t) =x(E, t)P(E, o)

+(ID[1 —X(E, t)] /N —(n'(E, t)) IP(E, 0)

+(n'(E, t))g (E), (2.2)

x(E t) =(n'(E, t) IOIN) I(1 —ID' )
—. (2 2)

Here, g(E), Io= JP(E, 0)dE, and N= J—g(E)dE are-
the distribution function of the impurity levels,
total number of ions initially excited, and total-
number of ions in the sample, respectively. The
quantity (no(E, t)) [(n'(E, t) )J represents the
spatially averaged probability that a site with an
energy level E initially excited (not excited) will
be in an excited state at time t. The function
x(E, t) then describes the average decay of the

In this section we set up a general formalism
for the time-dependent spectral transfer in a sys-
tem where the transfer rate has an arbitrary de-
pendence on energy mismatch. The intensity of
fluorescence at energy E and time t is proportional
to the spectral function
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initially excited ions of energy E into the equilib-
rium situation, P(E, ~), The function y(E, t)
decays monotonically from X(E, 0) =1 to y(E, ~)
= 0, and (»»'(E, t)) grows from (»»'(E, 0)) =0 to
(»»'(E, ~)) =I0/N. Note that the expression in (2.2)
reduces to P(E, 0) at t = 0 and to the equilibrium
state P(E, '~) =Iog(E)/N at t=~ as is expected. If
the transfer rate is independent of energy mis-
match, the quantities X(E, t) and (»»'(E, t)) become
independent of energy. Using conservation of in-
tensity, one finds (n') =ID(1 —X)/N in (2.2), and
the second term on the right-hand side vanishes.
This result was obtained earlier. '

When only a small fraction of ions are excited
(i.e., Io/N«I), the second term on the right-hand
side in (2.2) can be neglected, yielding

P(E t) =X(E t)P(E 0) +(»» (E t))g'(E) ~ (2.4)

d»»»(t)/dt = Q W»& [»»»(t) —»»»(t)],

where the transfer rate is given by

W»» = W»» =R~.»»)f (E»»)

(2.5)

(2.6a)

For a single-site excitation the initial conditions
read n»(0) = 6», 0. Here 6 is Kronecker's delta and
0 denotes the initial site. A Lorentzian depen-
dence on energy mismatch Ej& will be assumed
for f (E»»):

y2f (E;») =
(E E )I + g ~ (2.6b)

Here y is a constant. In (2.6a) the function R(»»»)
depends only on the spatial separation rj& between
sites i and j. For an electrostatic multipole inter-
action, R is given by

The term proportional to P(E, 0) in (2.4) represents
the decay of the initial line and the last term the
recovery of the equilibrium background.

The time-dependent spectral profile is deter-
mined by the quantities )((E, t) and (»»'(E, t)). These
quantities are calculated from the master equation'
(W, »

-=0)

is a generalization of the idea developed in pre-
vious works4 for simple systems where the trans-
fer rate is independent of energy mismatch. For
simplicity we assume a single-site excitation.

A. Decay without back transfer: wing excitation

For a simple lowest-order approximation for
y(E, t), we regard the initial site (to be designated
as the 0th site) as a donor and the rest of the ions
as acceytors and ignore back transfer from the
acceptors to the donor. This picture is expected
to be especially relevant for the case of the wing
excitation. In this situation the excitation in the
initial site prefers to jump to a (spatially) neigh-
boring ion, because the rate decays more rapidly
with range than with energy separation. The
neighbor ion, however, is likely to have an energy
level near the center of the band because of the
large density of states there. Once the excitation
makes a transition from the initial site at the wing
to the neighboring ion near the center of the band,
the probability that it will come back to the initial
site is much smaller for the case of a wing ex-
citation than for a center excitation for the fol-
lowing reason. The new excited ion (with energy
near the center of the band) is likely to be sur-
rounded by ions with energy levels near the center
of the band (the initial ion is not necessarily the
nearest neighbor to the new site) and the back-
transfer rate from the new site (now assumed to
be near the center of the band) to the wing is re-
duced according to the Lorentzian weighting factor
in (2.6b) compared with the transfer rate to its
other neighbors which are likely to be near the
center of the band. However, for an initial center
excitation, the Lorentzian factor does not have
such a discriminatory effect against back transfer
to the initial site. Note that this effect does not
obtain when the transfer rate is independent of
energy mismatch.

Dropping Io/N in (2.3) and ignoring the first term
on the right-hand side of (2.5), one finds

R(r,») bi.
I "j~

(2.6c) )t(Z, t) = (exp(- g )pe t))
NO-1

where & is a rate constant and the length a is
defined by c =pa . Here c and p are the concen-
tration and density of the optical ions. For a sim-
ple cubic lattice a becomes the lattice constant.
In (2.6c) n=6, 8, and 10, respectively, for dipole-
dipole, dipole-quadrupole, and quadrupole-quad-
rupole interactions.

III. THEORETICAL MODELS

In this section we present theoretical models for
X(E, t) and (»»'(E, t)). The approach adopted here

f 1 —c[1-(exp( —Wo»t))s ], (3.1a)

where E =ED, ( )z, denotes an averaging on the
energy distribution of E,-, and No is the total num-
ber of lattice sites in the sample. At a low con-
centration (i.e. , c «1), (3.1a) reduces to

N -1
( Xtp)=e lx-pe. (1-(exp(- ei )), )) .

I'

Oj zj

(3.1b)

Employing a continuum approximation and using
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where I'(x) is a gamma function and

f (E) =([f(E—Eg)l' &z, .
Evaluation of (n'(E)) is not easy even for this
simple model. As will be discussed later, the
(Iuantity y(E, t) can readily be extracted out from
the data for the wing excitation and this provides
a sufficient amount of information.

(3 3)

B. Direct transfer model

The model discussed above is not adequate for
the case of a laser excitation near the center of
the band. The effect of back transfer to the initial
site of excitation has to be considered. In the fol-
lowing, we study a simple soluble model which ac-
commodates such an effect at least for a short
time. In this model, we allow energy transfer
(including back transfer) between the donor (i.e. ,
the initial site) and the acceptors (i.e. , other ions),
and ignore the secondary transitions among the
latter in the time interval during which this ap-

(2.6a) and (2.6c), one finds

y(E, t) =exp — f, (E)I' 1-.— (f)t) ~, (3.2)
4wc 3

proximation is valid. -

The transport equation of this model is given by

dFEA = ~ Wp,-n,. — W)pnp,
5

c&l~' = g]pep —
Wp,.n,-.

(3.4a)

(3.4b)

n,.(s) = W«no (s)/(s + W«) (i c 0) (3.5a)

(3.5b)

The expression in (3.5a) can be rewritten with
(3.5b) as (ie0)

w
n, (s)=. ) dxe *'

s+ Wp)

S + Wpg & g ~
S'+

Wpg

(3 6)

Employing low concentration and continuum ap-
proximations and setting E =E&, one finds

Introducing the Laplace transform n, (s)=fe "n;(t)dt,
one has

(nx(E, s))-=(n, (s)) = jt
dxe-"' dp Q (p, E) exp[ —xsQ (p, E)]

3N p p

4ncx exp —
~

dP' 1 —exp —xs P', E,.
g. g

(3.7)

where

Q.(&, E) = [I +»-'&"/f (E, E)1 '. -(3.8)

Sax
G (x) = cosasin&(tane)~~

3 p

The expression in (3.7) is simplified on inte-
grating by parts in x, yielding

(~ (&, s))= xI x —x(x ')) (x ())
[f(E —E)] '~

with

X(Eo, s) = -
I dx e-"exp[ - (sb-')' f„(E())G.(x)]

I I"

(3.10)

x exp(- x cos~6) d8. (3.11)

(n'(E, t)) = — P(E„O)[f(E E)] 3&~1

x [ 1 —
y,(EO, t)]/f (Eo) dEO .

(3.12a)

For n=6, the function y(E, t) is given by4

Performing the inverse Laplace transform for
(3.9) and integrating over the initial spectral func-
tion

2
" ~ „"sins [cf„(E)G„(x)gbt ]2

)I
p p s 8' (3.13)
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For a sharp initial profile &(&„0)=l,5(&, —&;„.),
(3.12a) reduces to

&&'(&, ~)& = [f(&ini —&)1" [1—X(&~i ~ t)V&«( ~ ) ~

(3.12b)

dna = —5"bing+ 8'ogno,dt

dn~

d
' ——W, ono+ Wq)eg (i 00, 1),

(3.14)

where W, =P~W,.» (i =0, 1) is the total transition
rate from site i and n,.(0) = 5, 0. The solutions for
(3.14) read

C. Pair-decay model

It is expected that the direct transfer model
developed in Sec. IG B leads to a very slow long-
time decay for X(t) because the excitation is forced
to return to the initial ion after a jump to a new
site. Applying the same kind of argument em-
ployed earlier to justify the decay without back
transfer at the wings, we can neglect back trans-
fer from ions far from the initial site spatially
and energetically. For simplicity we allow back
transfer only from the first-neighbor ion (to be
designated by the subscript 1). The excitation is
allowed to diffuse further into the background ions
from the first neighbor but without back transfer.

The transport equation is given by

dno
Wono+ S'owndt

cube with a desired initial energy level. We then
randomly choose a distribution of energy levels
from the function g(E) and evaluate (3.15). The
procedure is repeated and the ensemble average
is carried out for the spectral function. For a
transfer rate decaying rapidly with range this
method is expected to yield a reasonably accurate
result with even a smaller sample size. Note that
this method is very simple compared to the full
Monte Carlo calculation. to be discussed in the next
section and costs less computing time than evalu-
ating certain analytic expressions such as (3.13).

IV. MONTE CARLO CALCULATIONS AND
DISCUSSIONS

In this section we present the "exact" solutions
for the spectral function obtained by a direct nu-
merical evaluation of (2.5) and compare them with
the predictions of the theoretical models developed
in Sec. III. The system has been prepared ac-
cording to the description given at the end of Sec.
IIIC for a 1% sample with 220 impurity sites. The
distribution function g(E) for the inhomogeneous
broadening of the levels is given by the histogram
exhibited in Fig. 1. The latter is an approximation
for the Gaussian function shown therein by squares.
The inhomogeneous band is divided into 49 bins and
the energy levels are given integer values 1 ~ E
~ 49. The width y in (2.6b) is assumed to be unity.
The master equation (2.5) is solved according to
the prescription detailed in Ref. 4. A periodic
boundary condition is employed to reduce the size

( )
, g W„ W

~

W„ + W

k 2D

n, (f)= "' g +exp — " 'ag) f, (3.15)
le

ooo g(EI = exp(-
no t' (E-zej'~

oo 0
Qo

I —exp — " 'aD t

cr = 9.24

$a
0

where D = [ W), + —,
'

(Wo —W, ) 2j ' ~ ~.

It is difficult to perform the statistical averaging
for (3.15) analytically in obtaining the time-de-
pendent spectral function. Therefore a Monte
Garlo method will be employed for this purpose.
We have chosen 220 random sites in a simple
cubic lattice so as to model a I'fp concentration.
Each impurity site is represented by three random
coordinates. To minimize the size effect, the site
to be excited initially is chosen at the center of the

o
Ql

o
Cl

0
oo

LJooo
0

I

0 5

I

15

I

20

I

25

ENERGY BINS tEj

FIG. 1. Histogram representation for the Gaussian
function g(E). The inhomogeneous band is divided into
49 bins (E=1,2, ... , 49). Only the left half of the sym-
metric distribution function including the central bin
(E=25) is shown. The arrows indicate the three posi-
tions of the initial laser line.
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effect. Namely, if the x component (for example)
of the vector connecting two impurity sites is
larger than half the cube dimension (I ), then L
is subtracted from the former. An ensemble
average is carried out over 400 computer runs.
The laser excitation is made at the center (E=25),
shoulder (E=14), and wing (E=3), respectively.

The time development of the spectral functions
obtained by the full Monte Carlo calculation is
shown in Fig. 2. Note that the time scale for the
wing excitation is 10 times larger than that for the
shoulder and center excitations. The progress of
the spectral profile is faster closer to the center
of the band, reflecting the Lorentzian dependence
of the transfer rate on the energy mismatch and
the Gaussian form of the density of states. As has
been pointed out following (2.4), the time-dependent
spectral profile consists of a contribution repre-
senting the decay of the initial line and that repre-
senting the recovery of the background. According
to (2.4), the latter is proportional to the product of
the density of states at energy E and the transition
probability from the initial line to &. This effect .

is clearly seen in Fig. 2. For the center excitation
the original sharp line spreads out gradually.
However, for the wing excitation the gradual
spreading of the initial line does not occur because
of the lack of density of states at the tails. Instead,
the background begins to emerge pronouncedly
near the center where the density of states is
large, as is seen for t= 5000 in Fig. 2. Owing to
the Lorentzian form of the rate, the peak appears
somewhat to the left of the center. For the
shoulder excitation the spectral profile shows a
gradual spreading of the line toward the center and
at the same time a separate hump near the latter.
A similar behavior was seen in the cwork of Hol-
stein, Lyo, and Orbach~ based on the Motegi-
Shionoya equation, '~' and by Huber and Ching
(HC). ~ This behavior is in contrast to the situation
where the transfer rate is independent of energy
mismatch. In this case the full background
emerges undistorted while the initial line decays
concomitantly. 3

Experimentally the separation of the spectral
profile into the residual initial intensity and that
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FIG. 2. Time development of the spectral emission line-shape functions. The time is given in units of b for center
(- —) and shoulder (-—) excitations and 10b for the wing (. . . ) excitation. The quantity b corresponds to the transfer
time between two impurities separated by a lattice constant. . The area under each curve is conserved and equals unity.
The line shape for t =500000 corresponds nearly to the normalized density of states in Fig. 1. Note the change of ver-
tical scales for successive figures.
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1.0 I I I I I I I I I I I I I I

It I NG EXC I TAT I ON

arising from the redistribution of the initial line is
not easy. However, for a sharp initial ljne the
former can be separated out by subtracting the
smooth background from the spectral function.
This procedure is particularly simple at the wings
where the latter is negligibly small. The theoreti-
cal models for X(E, t) are compared with the
"exact" solution for the wing excitation in Fig. 3.
The simple model which ignores back transfer to
the initial site gives an impressive agreement with
the exact solution, as has been predicted earlier
in Sec. IIIA. The intensity drops to about half
within a time bt=104. This corresponds to the
transfer time bebveen two sites with equal ener-
gies separated by an average distance at 1%% con-
centration. The situabon is less satisfactory for
the shoulder excitation (see Fig. 4). Note a nearly
complete agreement between the result of the pair
model and the exact solution in Fig. 3. The theo-
retical models are less successful for the center
excitabon as is evidenced in Fig. 5. However, the
pair model can provide a basis for the interpreta-
tion of the early-time data. We emphasize here
that y(&, t) develops faster with time for & closer
to the center of the band. This is a.strong indica-
tion of a transfer rate that falls with increasing
energy mismatch. For a transfer rate independent
of the latter, )((t) will be independent of energy.
The theoretical predictions of the spectral function
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FIG. 4. The theoretical result for X{8,t) is compared
with the Monte Carlo calculation for the shoulder exci-
tation (8= 14).

are compared with the Monte Carlo results in Figs.
6-8.

Finally, me compare the present result with the
prediction of the HC model. 5 They assume that the
effect of back transfer is accounted for approxi-
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FIG. 3. The theoretical results for g{E,t) are coxn-
pared with the Monte Carlo calculation for the wing ex-
citation (E= 3).

bt

FIG. 5. The results of various theoretical models for
XI,t) are compared with the Monte Carlo calculation
for the center excitation (E = 25).
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FIG. 6. Comparison of the theoretical result for the
spectral function with the Monte Carlo result for the
wing excitation.
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FIG. 8. Comparison of the theoretical result for the
spectral function with the Monte Carlo result for the
center excitation.

exp(- W„t) —exp(- W„t) cosh(W«t) (4.1)

0.5
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bt =10

I

u 0. 3

I—

0.2

MONTE CARLO
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0.1

in (3.la). ~hen the transfer rate is independent of
energy mismatch, it was shown that the assumption
in (4.1) is equivalent to the pair-decay model.
Noting that (4.1) corresponds to replacing'3 c

& and t-2t in (3.1a), one finds from (3.2)

X«(E, t) =X" (4.2)

where y is given in (3.2).
The predictions of (4.2) are displayed in Figs.

3—5. For the wing excitation, X«(E, t) gives a
poor agreement with the exact result. Its predic-
tion is even poorer than the no-back-transfer
model. However, it improves significantly with
E closer to the center and gives an impressive
fit for the center excitation. It is expected that

the HC model will yield a similar degree of fitting
for the spectral functions shown in Figs. 6-8.
Namely, it will give poorer and better agreement,
respectively, for the wing and center excitations
than for the pair-decay model.

V. CONCLUSION

The time-dependent spectral redistribution in
fluorescence line narrowing is studied in an in-
homogeneously broadened system. The two-site
transfer rate is assumed to be site-symmetric
and a Lorentzian function of energy mismatch.
The spectral intensity is separated into the resi-
dual initial line intensity and the background inten-
sity arising from energy transf er. For the wing
excitation it is argued that the intensity in the
initial site decays to a lowest-order approxima-
tion nearly without back transfer. For a, center
excitation as well as for the case when the rate
is independent of energy mismatch, back transfer
is much more important. This effect is demon-
strated by the Monte Carlo solution. An improve-
ment of the theoretical model is made by allowing
back transfer from the first neighbor of the initial
site. Also, an exactly soluble model is examined.
We have performed Monte Carlo calculations for
initial excitations at the center and shoulder as
well as the wing of the inhomogeneously broadened
Gaussian band and compared the results with those
of the theoretical models.

20

ENERGY

40 50
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APPENDIX

In this appendix we give a brief derivation of
(2.2). It is convenient to rewrite (2.1) as

P(E, t) =P((E, t) + P2(E, t),
where

Pt(E, t) = nq (t)6(E- E( ),
0

(A1)

(A2a)

DP00789. The author wishes to thank Professor
D. L. Huber and Dr. D. Emin for valuable com-
ments on the manuscript.

The quantity n& (t) depends on the energy level E& .
0

This explicit dependence will be denoted by n, (t)
0

-=n~ (E, , t). The first term in (A3) can then be
~o ~o'

rewritten as

Q ~
ng (E, t) —~ ~5(E —Eq ). (A4)

The sum on i0 in (A4) is over an infinitely large
number of sites resonant at E. Therefore the
the quantity in the large parentheses in (A4) can
be replaced by its spatial average (n'(E, t) — 10/Ã0&.
Observing that

Pt(Z, t) = g' z, (t)t(Z —Z, ) . (A2b) P(E, O) =Q 5(E —E, ), (A5)

In (A2a) the subscript i0 indicates those sites ex-
cited initially [i.e. , n, (0) =1]. The prime in

0
(A2b) means summing over only those sites that
are not excited initially. The expression for
Pt(E, t) is then recast into an identity

Pt(E, t) =
~

nq (t) —~ 1)5(E —Eq )

one identifies (A4) with the first term in (2.2).
Similarly, the second term of (A3) yields

' [1-( '(E, t)&]P(E, o) (A6)
0 0

Also, the quantity P2(E, t) in (A2b) reduces to

Pt(Z, t) (z (Zt))=g''il(Z, —Z, )

=&s'(E, t)& [a(E) —P(E, 0)] (AV)

n~ t 5E —E~
0

(A3)
The last two terms in (2.2) then follow from (A6)
and (AV).
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