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Magnetic susceptibility of the periodic Anderson model
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We calculate the thermodynamic potential and the susceptibility of the periodic Anderson model in powers of the
hybridization matrix element between the localized and conduction electrons, The results are presented up to and

including the terms of fourth order in the hybridization matrix element. When the localized level is far below the
Fermi level we find that the magnetic susceptibility can exhibit three distinct tendencies: ferromagnetic,
antiferromagnetic, and Kondo-type. But when the localized level is situated near the Fermi level it is found that the
magnetic susceptibility has terms reflecting a Curie-Weiss law if the shift of the chemical potential is taken

appropriately into account. The relevance of this calculation to mixed-valence compounds is pointed out.

I. INTRODUCTION

The thermodynamic potential and the suscepti-
bility of the periodic Anderson model' are calcu-
lated in powers of the hybridization matrix element
between the localized and conduction electrons.
The periodic Anderson model, a generalization of
the Anderson model for dilute impurities' in
metals, has been the subject of many investiga-
tions' in recent years. It is believed that this
model contains ingredients essential to our under-
standing of mixed-valence compounds. ' It is sur-
prising that in spite of a considerable amount of
interest in this model, a systematic and complete
account of perturbative results for the thermody-
namic quantities does not seem to exist. 4 From a
high-temperature expansion of the thermodynamic
potential in powers of the hybridization matrix
element between the conduction and the localized
electrons, we try to exhibit the differences and
the similarities between the single-impurity and
the periodic Anderson models. The understanding
gained, we hope, may be useful to the development
of a theory of mixed-valence compounds. We would
like to emphasize that this exercise is undertaken
to get some insights into the nature of the mixed-
valence compounds and is in a sense similar to the
calculation due to Scalapino, ' who addressed the
question of the existence of localized magnetic
states for Anderson's single-impurity model.

We focus our attention on the calculation of the
magnetic susceptibility and find that it can exhibit
quite rich and varied behavior. In the case where
the localized level is far, below the Fermi level,
the magnetic susceptibility can exhibit three dis-
tinct tendencies: ferromagnetic, antiferromagnet-
ic, and Kondo-type. Corresponding to the first
two tendencies one finds a susceptibility approxi-
mately consistent with a Curie-Weiss law,
X -(T+ 0) ', where 8 may be positive or negative
depending on the parameters. The two signs of 0

II. THE PERTURBATION EXPANSION

The periodic Anderson model describes a sys-
tem of B; magnetic ions, with localized nonde-
generate "f"orbitals, arranged periodically on a
lattice and embedded in a sea of s-like conduction
electrons. The Hamiltonian is taken to be

H Hp+ Hfs (2.1)

where

H, =Q &i„C-„,C;,+ QE, f„f),

+2 Zf ).f;.f; .f) ., —
4, o

(2.2)

and

are consequences of the oscillatory character of
the Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction between impurities. For different sys-
tern parameters the susceptibility contains a dom-
inant temperature-dependent term of the form
y -(1/T)lnT characteristic of a single Kondo im-
purity. When the localized level is situated near
the Fermi level it is found that the magnetic sus-
ceptibility has terms reflecting only a Curie-
Weiss law, i.e., terms having logarithmic tem-
perature dependence cancel, if the shift of the
chemical potential is taken into account. Although
this fact has been verified up to and including the
fourth-order terms, it is perhaps not too prema-
ture to speculate that large cancellations would
occur in the higher-order terms as well. The ef-
fect due to the shift of the chemical potential
seems to be another novel feature of the periodic
Anderson model. We now turn to the details of the
calculation.
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ko
kp i 2O

(2.3)

1Eo =Ef + 2gV Q I3He~t (2.6)

(2.4)

where V is the total volume of the system. The
energies ek and E, contain the Zeeman energies
(the g factor for conduction and f electrons are
taken to be the same) and are given by

1
CT, o = ET, + 2 gag. ~H

The f electrons described by the operators f; and

f, interact by a strong on-site Coulomb repulsion
U. The hybridization of the localized and the con-
duction electrons can take place at each lattice
site R;, exhibited by the term H&, . We now con-
sider IIf, as the perturbation to calculate the
thermodynamic potential 0,

8
0= —Ting = —7 in Tr e '"p ""' 1+ (-1)" d7', ~ ~ ~ dr„H&, (v, ) ~ ~ H&, (7'„)

1l=l 0 0
(2.6)

where &&y
= exp[ —P(~ —&&)]zj (2.11)

H (~)=e'"o """H e '"o """.fs fs

p, is the chemical potential and X is the total
number of electrons:

(2.7)
z~ -=1+exp[ —P (~ &

—P )] + exp[- P (Z& —
&& )1,

(2.12)

X=+ C-' C-„.+g f,'.f,. . (2.8)
Pl IZ f (2.13)

We have set i& = i&z = 1, and hence P = 1/'I is the
inverse temperature. It is easy to see that the
nonzero terms in Z are of even order in IIf, and
can be expressed as

z=z& &+z& &+z& &+- (2.9)

where Z "is the partition function for unhybridized
conduction and f electrons. To fourth order in the
perturbation we have

g(2& g(4& 1 (g(2& 2

0 T lnZ —T &p&
—T &p&

—
i &p&2 IIZ

(2.10)

The calculation of Q"' is straightforward but ted-
ious; by generalizing the diagrammatic techniques
of Keiter and Kimball'we can greatly reduce the
work. These rather obvious generalizations of the
techniques of Keiter and Kimball will not be de-
tailed, but only the final results will be given here.
Furthermore, we shall, for the sake of simplicity
and clarity, present the results for the case when
U i.s infinite. In reality this is probably all that
one needs, since in mixed-valence compounds
U - 5-10 eV. All other parameters in the Hamil-
tonian are quite small compared to U. We now in-
troduce the following notations:

+f o and n, are the oc cup ation prob abili tie s of the
f level; since the unperturbed Hamiltonian is lat-
tice translationally invariant, we shall drop the
site index of these occupation probabilities. This
convention should not be misleading, since the
averages required in the calculation of the pertur-
bation series of the thermodynamic potential are
all calculated with respect to the unperturbed
Hamiltonian.

The Fermi distribution function f-„, for the
conduction band is

Q(P&=T gin (1-f-„,) —Tglnzz. (2.16)

The second-order term is

&& -y-„.)n, .
)-Eo

(2.16)
The fourth-order term can be written as a sum

of two distinct parts. The first, 0',", is due to
the interaction of the conduction electrons with a
single f orbital at site R, . This term is what one
obtains from treating the system as a collection of
noninteracting impurities. More explicitly,

(2.14)

The zeroth-order thermodynamic potential is
simply
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g (4)
1 j, k, k

P (1-fT„)(1 fk-», )nf, P 1

(»i -2, )(R» -Z ) 2 Ri -Z, )

(1 fk-a)f k"&O,g (1 -fk, )f k .~f.
(2 (Ek(2 —fk» (2)(f k»(2 —E )(2(2(2» (Ek 22

—E(2 —6'k 2 (2+»E ()22(Ek (2
—E(2)

i~k, k'
f».R. —(2 f .)II,-. )-j fi, .R. —( (f;)R) (2.17)

The last term in Eg. (2.17) comes from —, (Z '/8' ')' in E(I. (2.10).
The second contribution, Q'2'", arises from the interaction between two localized f orbitals at two dif-

ferent sites R, and R~ mediated by the conduction electron. When localized moments exist, 0'24) is the
contribution due to the HKKY interaction. For 0,' we have

g (4)'

j &g k, k', a

'(I-k'I'(R -R I fl fk' . Rl 2 . "."R.
)V' ( k, —,)(-„...—,)

, (1 -fk.)(1 -fk .)
(Rl —Z )(Rk —Z ) (2 Rl —@ Rk

(1 —f-„,)f-k, ,/ n, n„

(1 f k)(f2k»s()sf 1 1 .

(»-„, -Z, )(R», -Z, ) R-„, 2(R-„,—-Z, , )
(2.18)

It is convenient to write the right-hand side of E(I. (2.18) as a sum of two terms:

g (4)' g (4) g (4)
2 2 3 (2.19)

where

4

&~ko — aj
2

f».R. -(2 f».)R..)-
2 T, ; ~) ~

V' (ek(2 E(2)- (2. 20)

g (4)

k ~k', a

g(k-k') ~ (R ~ -Rf&
'V2

P 1
I

nonf, (1-fk+f', -fk, n,' —2f k, n, nf,
2 ek(2 -E~ j (ek, -Es)(a kq Ea )' -(ek(2 —E(2) (6k(2 —f- k)»0

(2.21)

So far we have treated p. as an independent variable. The average number of electrons N, a function of
p, and T, is determined by the equation

(2.22)
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In order to calculate the magnetic susceptibility for a fixed number of electrons N, we begin by expanding
p. in powers of the hybridization matrix element v,

p, =p, '+p, ' +p. +... (2.23)

the superscripts in Eg. (2.23) refer to the powers of v. If we now require that

BIL(o& (~(o& )N=—
8 p.

(o)

we obtain

( f BII & o&( (o&
) l BoIL &o&

(p
(o&

) &&
-1

B (& il B (&

(2.24)

(2.a5)

~~o"'(~"') 8'o"'o "') 8'o"'o "'& ( a o"'o, "'&)-
B~(o& + p'

B (o& o + o(p
B «&s I B (o&o ~ (2.28)

The susceptibility is now given by HI. THE LOCAI MOMENT REGIME

(o) + X(2) + ~(4) +. . .

where

t'B.II (o &

X"'=-I( B~. )

(o& + X
f

(2&

(2.27)

(2.28)

(2.29)

(o)
= 2po+ ~

(2 gPs)'V ' T (3.l)

If the energy of the Localized f orbital is far be-
low the Fermi level, i.e., D» -Ez» T» po v',
then the f orbital is always occupied at low tem-
peratures. We can then obtain

(2) y 2=pn v'
(-'gp )'V ' ' E' TIE I) ' (3.2)

(&
i ( X

i

(&
H,„t j E ~P )

(2.30)

where n, is the density N;/V. The second-order
correction due to the chemical potential given by
the second term in Eq. (2.29) is negligible, since
in the local-moment regime it is easy to show that
BX

"&/B p,
to& -0. In order to see this, note that

All the partial derivatives appearing in Eqs.
(2.28)-(2.30) are to be evaluated at H,„, = 0 and

~ (o)

In what follows we shall choose p,
"' as the ori-

gin of the energy scale unless it is stated other-
wise. In order to carry out the integrations ex-
plicitly, we use a constant density of states for the
conduction electrons. Summations of the form
(I/V) go ( v„~'g(&„) will be replaced by
Pov' J» && 8'(o&), where P, is the conduction-elec-
tron density of states per unit volume at the Fer-
mi energy p. = p, "=O. The bandwidth D is as-
sumed to be much larger than ( Ef I and also lar-
ger than the temperature. Various interesting
cases for the magnetic susceptibility are now dis-
cussed in the following sections.

Dope I'8 &

k~&) k~~)

+ to no(], -n, )

(Bp(e) )
Bg j „(o&

(3.3)

For a flat density of states [Bp(&)/Be.] vanishes,
and for a general density of states this term is in-
dependent of temperature and of no further con-
cern. In deriving Eq. (3.3) we have also dropped
all exponentially small temperature-dependent
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terms. Thus (s')((0)/a p, "")-0, and hence the
fourth-order susceptibility is

8 ( e2n"'&
(n")+n") + Q") )+—i—

BQ & p I, OH, „t j

(3.4)

where it is understood that II,„, should be set to
zero and p, should be set to p. "'after the deriva-
tives are calculated.

The single-site contribution to the fourth-order
susceptibility is given by

Q3g (4) 1

~ ~'cos(2k~ R)=-&;(po(')' 2T.E. )c (I, Il)3 t (3 ~ 9)
R

ef(k-k') ' 8
k, k' (3.10)

where the prime. on the summation implies that
R = 0 has to be excluded. On the other hand, if
4~a& ~, only the electronic states with wave vec-
tors less than 2)(/a will contribute; thus

[s3fl (4) 1
2 2 1 2 2If ext )Hex( 0 (4 g p)) I )

(2 1' 3=(P'"') 'ITE,' '" DjE (

'TE'

+ , +—, ln f
~

. (3.5)~E I

At low temperatures the Kondo term ln(T'/
D(E& ( ) dominates. This is in agreement with the
results obtained previously. ' The contribution
due to 0'2" can be expressed as

s'a(4) ) 1 ( n3

and in this case for constant density of states

(g2g (4) )I

2 1 2 2&elf„t j)),„,=0 (4g p)) 1')

2 I= -n, (p,v')', .In —. (3.11)

The contribution due to the chemical potential is
given by

s3fl(3) (p(o) ) p
(3)

II ext &,„,=0 I,4g
(0) 2 1 2

4 4

(3.6)

In Eq. (3.5) we have kept only the leading-order
term consistent with the inequality D»

I E& ~
»T.

We have mentioned earlier that, in the local-
moment regime, the part of the susceptibility
arising from 0'3" is intimately related to the
BKKY interaction. We can now rewrite 0 3 as

where we have used the fact that p, "=(n, /2) (v'/
~EI (). This contribution due to the chemical po-
tential can be combined with the second-order
term, Eq. (3.2), if we replace )Ez~ in (3.12) by
p. '"+ ((E~ [. Finally,

@&4& n2 I e&~&-k &
' ~Rg-Ry&

n„(p,v')' n, D
(3.13)

ny2o J Rg -R~

For the free-electron density of states, in the
limit ( k~ A, ) [»1,

()3)3 (~P' )( cos(2k„R(, )
U PO E2 ( ()'3 It )3 t

g) g
(3.8)

where the notation has the obvious connotations.
Therefore, in the limit A~a-~ (a is lattice
spacing), we have

This result for the susceptibility can be related
to the phase diagram of the ground state of a lat-
tice of magnetic impurities exchange coupled to
the conduction electrons (Kondo lattice) obtained
by Lacroix and Cyrot. ' At a low enough tempera-
ture, and for large ( Ez [ or small p, v3/(E~ (, the
last term in Eq. (3.13) is much larger than the
Kondo term, and the perturbation series-has the
form n, [(1/T) (6+/T3)j. The sign .of 8 is positive,
corresponding to a ferromagnetic Curie tempera-
ture, if n, /n, =2p, D/3) «1. But for large values
of n, /n(, the term 21n D/2E& [ becomes dominant
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p'" -p, v'ln(D/T) (4.3)
———bcc

fcc in the limit n, /T» p, . Thus,

2n p v' g&"(—')l
—,
' g'p, ~ V 3T' 2v'

-02-

and hence there are no logarithmic terms in X"'.
The cancellation occurs in the fourth-order term
as well, and for X"' we have

FIG. &. Curie constant 8 as a function of Q =k~/~.
'(a)~I[ y(o)( }]—g'p, 'V T 2p' ) 3 (4.4)

and 0 is negative; this corresponds to a antiferro-
magnetic Neel temperature.

For values of A~a~ 1 we must use Eq. (3.9) or,
more accurately, Eq. (3.7). We have numerically
evaluated Eq. (3.7) for free-electron density of
states and for several values of Q = kz a/~ to de-
termine 6; the results for IE& I /y. ~=0.91 are
shown in Fig. 1, where we plot 8 as a function Q.
This exercise serves to emphasize the important
role of the band and the lattice structures in de-
termining the sign of 8. We would like to em-
phasize that the ferro- and antiferromagnetic re-
gions alternate as a function of the band filling
n, /n, in marked contrast to the diagram obtained
by Lacroix and Cyrot. '

2 n=2 +- —IL .—gp. t/" 3
(4.1)

Without the chemical potential correction, the
first term on the right-hand side of Eq. (2.29) is
given by

pe (2)

4 g Pg~ ~+ext g =p

-' I
I

D "'(-')
(4.2)3Z' '

I y 2~ '

where +"' is a polygamma function. ' In deriving
Eq. (4.2) we have made use of the inequality D
»T»IE&I, which will be used all throughout this
section. The first term in Eq. (4.2) was obtained
previously by Hewson, 4 but the second term is
different from his. Equation (2.23) can easily be
shown to be

IV. THE "MIXED-VALENCE" REGIME

When the f level is very close to the Fermi en-
ergy, i.e., IE& I «T, the occupation probability of
the f level is less than unity. We now obtain

In obtaining Eq. (4.4) we have noticed that in the
limit T» IEfI the terms A~~~ and Q~~ contribute
practically nothing to the susceptibility; the entire
contribution comes from Q,". Finally,

2 2p PO 3T 3T2 po& )I~ 2v2

This is the same as what one would obtain in the
single-impurity Anderson model in which n, is
the density of uncorrelated impurities. We should
however be cautious of the fact that f.his holds
only if T» p't'~ = p,v'1n(D/T). Thus, the perturba-
tive method used in this paper must not be used to
explain the low-temperature behavior of the
mixed-valence compounds.

V. CONCLUSION

In this paper we have presented the results of a
perturbation expansion of the periodic Anderson
model. Although our main concern has been the
susceptibility of this model, it would be straight-
forward to calculate the specific heat from the
expressions for the thermodynamic potential
given in the paper.

This work was undertaken to get some insight
into the nature of the mixed-valence compounds.
If the periodic Anderson model is appropriate to
the description of the mixed-valence compounds,
then the susceptibility of such compounds should
exhibit a rather rich and varied behavior. We
must emphasize that the results of the perturba-
tion theory should not be used to explain the I~-
temperature behavior of the mixed-valence com-
pounds. We do however believe that a systematic
perturbation theory as contained in this paper is
a relevant step to our understanding of the per-
iodic Anderson model.
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