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We use a variational approach to calculate the two-particle spectral function S,(x,p,p,p„E,E,) of a Gaussian-
disordered electron system in the limit of deeply localized states and small energy difference ci) =' El E2 The
solution of the variational equations yields a two-center potential, each center in lowest order being determined

by the square of an instanton function. The twp instantons interact via the constraint that the Hamiltonian has to
have lowest eigenvalues E„E,. As the two centers approach the minimum distance allowed for given u by the
tunnel efFect, we are confronted with a problem of confluent saddle points, which forces us to introduce an
additional constraint. Our method is rigorous in the limit of weak disorder ~E, +E,~~oo, rul~E, +E,

~

= constgl.
We also apply it to the hydrodynamic limit rol(E, +E,j~,(E,+E,

~

large. It is found that these limits cannot be
interchanged. In both limits we evaluated the ac conductivity. The result fr(co)-co'(incr) +' is found in the
hydrodynamic limit.

I. INTRODUCTION

It is corpmonly believed that the electronic states
in the band tail of an amorphous solid are lo-
calized. These states are bound in strong fluctua-
tions of the potential which are so rare that the
probability for the electron to tunnel away is neg-
ligibly small. Whereas perturbative methods can
be used to deal with the extended states in the mid-
dle of the band, the only theoretically consistent
way to investigate the properties of the localized
states would appear to be a variational approach.
This method focuses on the determination of the
most probable potential-yielding states of the de-
sired energy. It has been applied to several
schematic models of the amorphous system: a
model in which the potential has a Gaussian dis-
tribution has been studied by several authors, Hal-
perin and Lax, ' Zittartz and Langer, ' Edwards, '
and Cardy, Houghton and Schafer, ' and Brezin and
Parisi, ' and a model in which repulsive potentials
are distributed at random has been studied recent-
ly by Friedberg and Luttinger. ' The result has
been expressions for the averaged density of states
and the averaged single-particle Green's function
correct in the limit of deeply localized states. To
the best of our knowledge no discussion of two-
particle properties has been given within this ap-
proach.

In this work we will derive the two-particle spec-
tral function and the ac conductivity of the local-
ized states. For fixed one-particle potential V
the one- and two-particle spectral functions p,
and p, are defined as

pt(x, x:,E)=Q P„*(x)5(E,—E)p„(x') (1.1)

1 I
ps(xjlxr!I 17xsfxsli s) pl( yfxll y)ps( 2)ixst 2) 1

where Q, and E„are the eigenfunctions and eigen-
values of the Hamiltonian

S2
H(V) —— V + V(x) .

We will use the Gaussian white-noise model in d-
dimensional space. The potential V(x) is a stoch-
astic variable distributed according to the nor-
malized weight

P[V]=N'exp —— d'x V'(x) (1.4)

and the averaged spectral functions S,. are defined
as

S,. = D V P Vp, , i=1,2.

Linear-response theory connects S, to the aver-
aged conductivity rr(&u, E) at fretluency &c and ener-
gy E

x d xxS, Ox E-—.~ O&+—

(1.6)

which in turn determines the conductivity at tem-
perature 7.'

1 t co
tr((u)= — dEo(cu, E) f E-—-fiE+-

co
' 2

(1.7)
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Here f(E}=[1+exp(E—p)/kTj ' is the Fermi func-
tion and e is the electrical charge.

The variational method in the formulation given
by Houghton and Schafer'. (from now on referred
to as HS) searches for the "saddle-point" poten-
tial V= V„which maximizes the weight P(V),
Kq. (1.4), under the constraint tha. t H has eigen-
values E in the calculation of S„and E, and E,
in the calculation of S,. Once V„ is found, the
theory proceeds as a systematic expansion in pow-
ers of the fluctuations 6V= V —V„. For S, the
saddle point V„ is given by the square of the in-
stanton function well known in other branches
f physics 8-io It has the form of a single deep

and broad well. In evaluating S, we find that
these single-well configurations do not contri-
bute. Rather, V„has the form of two distinct
instantonlike wells which interact via quantum-
mechanical tunneling; this adds considerably to
the difficulties of evaluating the saddle-point con-
tr ibution.

The evaluation of the two-particle spectral func-
tion is complicated by two additional problems,
neither of which occurs in the calculation of the
density of states. The first problem concerns the
identification and treatment of the col.lective modes
of the problem. These modes describe those
variations of V(x} which cannot. be treated by ex-
panding around V, , but must be taken into ac-
count rigorously in the variational equations. A

simple example of such a mode is the position
a of the center of mass of the potential. Since the
ensemble is translationally invariant, the center
a can be anywhere in d-dimensional space, and
therefore for large (a —a') the difference V„(x —& )
—.V„(x—a} is not a small perturbation about
V„(x —a). There is now a standard procedure"
for dealing with such "trivial" collective modes
which correspond to broken exact symmetries of
the system. In our problem we find two additional
nontrivial collective modes. The first can be
parametrized by the distance L between the cen-
ters of the two wells which can vary from a mini-
mum distance Lo to infinity. The minimum dis-
tance L, is determined by the requirement that
tunneling between two identical wells separated
by the distance L, gives the required energy split-
ting E, -E, ='co. The second nontrivial mode is
associated with the fact that for fixed direction
of I we have two saddle points, characterized by
either the right-hand or the left-hand well being
the deeper one. As L approaches L, the two saddle
points merge, which introduces another collective
mode.

A second problem is connected to the existence
of two energy scales in the conductivity problem,
E= ~(E, +E2) and co=E2 E,. In the dens—ity of

states only a single energy occurs, consequently
the theory can be formulated in terms of a single
dimensionless parameter

2m ''4
(E( «~4&-'

7

where the energy E is measured from the mobility
edge. " Expanding around the saddle point we
find an asymptotic series valid in the limit y-0.
In the calculation of S, we have the additional di-
mensionless parameter

td = (d/2E
& (1.9)

a) 2mE -'-~'~'~
x'p E ——,y (1.10a)

In the hydrodynamic limit we recover the result
of Mott, Anderson, and Halperin":

ne' 2mE ' '~ " c't
o((o, E) = p'(E, y)S, , (o' 1—

w)

(1.10b)

Here 8„=2»"~'/I'(d/2) is the surface of the d-di-
mensional unit sphere and c is a constant; p(E, y)
is the density of states at energy E. We see from
Eq. (1.10) that the limits lim&u -0 and limy -0 can-
not be interchanged.

Owing to the problems mentioned above the de-
tails of the derivation of our results is rather in-
volved. We therefore present here only an outline
of our method stressing the principle aspects.
(An account of the details of the calculation is in
preparation and will be available in preprint
form. ) However, the basic physical ideas and the

which is also taken to be small. However, the re-
sults depend upon whether we consider the limit
of weak disorder lime -0, limy-0, ai/y» 1,
or the hydrodynamic limit limy-0, lime -0,
~/y«1. A priori the variational method applies
to the limit of weak disorder. In the hydrodynamic
limit we have to investigate the co dependence of
the higher-order terms in y, which is a complicat-
ed and lengthy task.

The central result of this paper is the expansion
for the two-particle spectral function S, given in
Eq. (3.39). This result is rigorous in the limit
of weak disorder. We believe it to be correct
also in the hydrodynamic l.imit. The expression
can be evaluated in several limits of interest,
which gives a qualitative picture of the behavior
of the averaged two-particle spectral function.
One of the most interesting results is the expres-
sion for the conductivity which, in the limit of
weak disorder, reads

o'((o, E) = y'p E+—,y
~

ne'
2 ' j
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consequences of our general results are discussed
in detail. The organization of this article is as
follows. In Sec.. II we give a qualitative discus-
sion of the spectral function S,. This discussion,
which is a slightly modified version of the argu-
ment of Mott, Anderson, and Halperin, " introduces
some of the essential physical ideas. We then
show that an attempt to put this argument on a
rigorous basis meets with a problem of confluent
saddle points which forces us to introduce an
additional collective variable. In Sec. III, we give
an outline of our method and we present our result
for S, which together with the conductivity is eval-
uated and discussed in Sec. IV.

V(x)= v,(x-a, )+ V,(x-a,). (2. 1)

'The distance L is assumed to be large compared
with the diameter D of a well. The lowest eigen-
function Q, (x) of a. single-well V,(x) for ~x ~

»D
decays exponentially,

@,(x) —exp(- p, i x [ ), p, '= 2m i
E i/ii'. (2.2

Diagonalizing the Hamiltonian with the two-center
potential (2. 1) in the space spanned by the two
wa, ve functions @,(x —a,.), i = 1,2, we find that
the tunnel effect causes a splitting m(L} of the
energy levels which in lowest order is determined
by the amplitude of the wave function of one well
at the center of the other one:

II. QUALITATIVE CONSIDERATIONS

We begin by recalling an argument" which gives
a qualitative picture of the potentials which con-
tribute to S, in the limit of small y and a7. (It will
be found that this argument applies in the hydro-
dynamic limit. ) It is obvious from the definition
of S„Eqs. (1.2) and (1.5), that only those poten-
tials which have eigenstates at energies E,. =E
+(-I)'&o/2, i=1,2, can contribute. To construct
such potentials we start from two identical wells
which are a distance L = ~a, —a, ~ apart,

g, (x) = cos8,&,(x —a, ) + sin8, y, (x —a,),
E,=E —-,'(u(L),

P,(x) = -sin8, &,(x —a,}+ cos8,&0(x -a,),

E, =E+ ~v(L),

(2.4)

where for the symmetric potential considered here
we have 8,= ,n. —Thepotential V(x) contributes to
o(~,E}provided &u(L) =&a. We have

I.=L,,- p 'In(r/(u). (2. 5)

For L& I., the splitting ~(L) is less than ~. We
can correct for this by adjusting the depths of the
wells making one well more and the other one less
attractive so that the single wells allow lowest
eigenstates of energies E ~ ~6. This changes the
probability P(v} and the wave function Q, only by
a term of order 6 (co, which is negligibl. e. The
splitting of the eigenstates increases to &u= [&'
+ &u'(L)]'~' and the angle 8, changes considerably;
sin28, behaves roughly as

sin280= m(L)/ar-exp(-g ~L L, ~) . - (2. 6)

We see that this equation allows for two solutions
1 ( 3

80 —47T + c, -&w - Ho ( &n, which correspond to
either the a, -centered or the a, -centered well
being the deeper one. For L &L0 the splitting
m(L} is greater than e, and there is no small
change of the potentials which can bring the ener-
gies back to their correct position.

We now assume that for small y and ~ the maxi-
mum contribution to S, is given by two-center po-
tentials. The probability of finding a potential with
an eigenstate in the interval E,E+dE centered in
the volume element d~a is the same as that of find-
ing the eigenstate itself, p(E, y)dEd~a. The prob-
ability of finding the two-center potential is taken
to be the product of the probabilities of finding
the one-center potentials, i.e. , p, (E,y)dEd5d a,d'a, .
Therefore S, satisfies

Qp(L) c exp(-p, L) .
The wave functions and energies are given by

(2. 3) S,dEd~ = p' d'a, d'a, ,*, ,*, E45 . 2. 7

With 85/8&@ ~~ = 1/cos28, we find

S2 +»+»E —2;+2,+2, E+—=p' E, y d a,d a, ,* +» +, *, ~2, +', 8 a, —a, —I, cos28, , 2. 8

where the Q,. also depend on a,. and 8„Eq. (2. 4),
and e(x) is the e function. Now it is easily check-
ed that in the integral Eq. (l.6), which determines
&(v, E), the leading contribution to the product
of the wave functions is of the form

Q,'Q, = —.' sin'8. [l P.(-a,)y, (x —a, ) ~'

0 ag (} & a2 +

(2 9)
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V= V, +g'/ 5V. (2, 12)

In the qualitative argument these fluctuations were
taken into account by equating the probability to
find adequate one-center potentials with the den-
sity of states. The potential V has to have the
correct eigenvalues E,. To leading order this con-
straint can be evaluated by solving the Schrodinger
equation, Eq. (2. 11}, in the space spanned by the
eigenfunctions Q, , i=1,2 of H(V, ,), or equivalent-
ly the space spanned by Q,(x —a,.). Compare Eq.
(2.4). We find

g' "(&1 I «I 1&+ &2 I
6 V

I 2&) = O(g(5V)'), (2. 13a)

g'"(&1
I «I » —&2 I

6V
I 2&)= ~(cos28 —cos28, )

+ O(g(5V) }, (2. 13b)

g' ~'&I
I
5 V

I
2&= ~~(sin28 —sin28, ) + O(g(6 V)'),

(2. 13c)

where Ii& stands for the wave function Q, (x —a, ).
The angle 8 determines the approximate eigen-
functions Q,. of H(V} according to

I Q&& =cos811&+»n8 I 2)

I @2&=-sine li&+ cos8 I2& ~

(2. i4)

The interactions over x and (a, + a, )/2 are trivial
and we find

~
2

o'(~ E)=- ~ p'(& y) —'M 2

cos280(L, (u }
me' L"' (1„p'(E,y)s, (o' ' 1+ol=

(2. 10)
By virtue of Eq. (2. 5) the result (1.10b) follows.
We note that the integral in Eq. (2. 10) is domin-
ated by small L values [Lo ~ L &L,+ p 'In(L, p, )].

A variational procedure can be used to put this
argument on a more rigorous basis. This Meth-
od identifies the potential constructed above with
the saddle-point potential V= V„which optimizes
P(V) under the constraints that H(V) yields the
correct eigenvalues,

H(V) I4, &=H, 14,&, E, =E +(- I)'&/ 2,

(2.11)

and the additional constraint that the two centers
of V, are a distance L apart. It turns out that
we indeed can find a solution to this problem.
The 4,. are given approximately by Eq. (2.4), with

8, specified by Eq. (2. 6), and so far the qualita-
tive considerations are correct.

We now consider the fluctuations around the
saddle point,

Equations (2. 13) determine the projection of 5V
onto the space spanned by the functions Q', (x —a, ),
i=1,2, Q, (x —a, )Q, (x —a, ) in terms of the com-
ponent 5V~ orthogonal to this space and of the angle g.

We now focus on the special variation

6V=b, V, +b,V, ,

where the functions

V,(x) =X,'[y', (x -a, ) —y', (x —a,)],
V, (x) =A, '[y, (x -a,)y, (x -a,}]

(2. 16)

(2. 16)

are normalized and orthogonal to each other.
Equations (2. 13b) and (2. 13c) show that the eigen-
value constraints trace out an ellipse in (b„b,)
space,

[(cos28 —cos28,) + O(g(b,.b&}'}],

(2. iS)

b,=,&, [(sin28 —sin28, ) + O(g(b&b&)'}] .

(2.16)

Whereas the normalization N, is of order one and

nearly independent of L =—la, -a, I, the normaliza-
tion X, vanishes exponentially as L -~ and reaches
N, -v/E as L -L,. Thus the half-axis a, diver-
ges as I, -~. In the space spanned by 1/L and

b, =(m/g' '&,) cos28, b, = (tu/2g'~'N, ) sin28 the con-
straints are represented by the surface plotted in

Fig. 1. As we noted after Eq. (2. 6) for fixed
L & L, there are two saddle points corresponding
to 80=v/4+a; as a function of L the saddle points
follow the curve indicated in Fig. 1. Now con-
sider L»L, fixed. Those potentials which can
contribute significantly to S, are found within unit
distance of the saddle points; for L»L, these re-
gions do not overlap [Fig. 2(a}]and we clearly
have to add the (identical) contributions of both
saddle points. If, however, L approaches L, the

~l I

FIG. 1. Surface of the contributing potentials. Thin
lines represent curves with L, = const. The thick line rep-
resents the path of the saddle points as function of L.
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L»L
III. OUTLINE OF THE CALCULATION:

GENERAL RESULTS

To simplify the notation we extract all dimen-
sions in powers of an inverse length p, :

P, = i2,z/ff'-i' '. (3. 1)

The dimensionless width y and dimensionless fre-
quency [d have been introduced in Eqs. (1.8) and
(1.9), respectively. To exhibit the role of y as
a coupling constant we rescale the potential

n
bp it

V(x}= - u,"'g' "](](gx)

The probability distribution of ](](z) reads

a[(] nr,
' exp (-=f rr z]'(z')l,

(3.2)

(3.3)

and the Schrodinger equation takes the form

r[q] ~ 4,.)= ~,. t 4,.), (s. 4)

where
FIG. 2. Planes L =const from the previous figure. The

unit circles around the saddle points are shown. In (a)
we have L»Lp whereas in (b) L is close to I p.

and

r[yl=-v.'+i -yq( )

x,. = i+ (z, /z) [=(-I)'~,

(s. 5)

(s. 6)

two saddle points approach each other and the con-
tributing regions overlap [Fig. 2(b)]. Adding the
contributions of each saddle point clearly leads to
an incorrect estimate of the integral in the import-
ant region L-Lp This problem of confluent sad-
dle points cannot be avoided without introducing
a new collective variable which essentially fixes
the angle 8 and hence the point on the surface of
Fig. 1. In our final result, Eq. (3.39), this ef-
fect is recovered; it can be seen that for L -L,
the 8 fluctuations are quartic rather than quadratic
as in the usual fluctuation integral for L»Lp.

We use C,. to distinguish the wave functions for
arbitrary potentials from those for the saddle-
point potentials Q,. = C,.(g„). The 4,. are normal-
ized and real and are related to the wave functions
of the original problem by the rescaling

e,.(x) = p.'"C,.(px) .
The spectral function S, is expressed as

S2(x» x» z —z(d lx»x2~ z + 2[d}

S2(]uxy y px], px2, ilx~, (g), (3. 8)

where

f~[&l e~ — d'zt'(z) lg 4.(zi) ~,(z, )&(g+ ~) e„(z,)4., (z, )~(]„-~) .
VP

(3.9)

Here the normalization N„of P[(] has been ad-
sorbed into D[P].

Following HS we express the eigenvalue con-
straints as

(3.11)

(3.12)

Det[r[q] —(-I)'~]=O, i= 1,2. (s. io)
To handle the problem of confluent saddle points
we define the functions 4„and 4, and the angle
8[/] by the requirements

C, =cos8[g)4„+sin8[g]4, ,

4, = -sin 8[/]C „+cos8[g]4, ,

d'x C„'(x)C', (x) =min.

Introducing a variable 8 with the range -r/4(8( sv/4 symmetric with respect to r/4 we then
impose the constraint

(s. is)
This choice is suggested by the qualitative dis-
cussion of the preceding section. The condition
Eq. (3.12) quarantees that the functions @„and
4, have minimal overlap; they are therefore cen-
tered about separate centers. 'They play the role
of the functions ~i)= Q, (x —a,.) occurring in Eqs.
(2. 14) and the angle 8 introduced there is the
analog of 8[]I]].

In constructing a constraint which fixes the dis-
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tance L we note that the L mode is nearly a zero-
frequency mode. A change of L only changes the
saddle-point contribution by a term of order +
«1. Therefore for the L constraint we may use
a form suitable for zero-frequency modes, "

0 = &;(&,[&)) .f=d' z &( &) &(z, &) . (3.14)

The L-dependent set of functions (i)4(z, L) will be
specified below.

With these constraints the variation of f ('(x)
gives

(s. 15)

where the p,./y are Lagrange multipliers. We can
introduce a linear combination of the constraints
Eqs. (3.10) and (3.13) such that the normalized
functions (i), , i =1,2, 3 are simply expressed in
terms of Q =C [P„], n=x or l:

q, =Ii (y„'+y', ),

43 A3'0, 4'(

(3.16a)

(3.16b)

(3. 16c)

(3.17)

Equations (3.15) to (3.17) constitute a self-con-
sistency problem. To solve this problem we in-
troduce instanton functions X„, centered at +L/2;

Equations (3.16b) and (3.16c) are not exact; in
this outline of our method we have omitted terms
of order (d which originate from 58/5P. Further
in the actual calculation we found it useful to or-
thogonalize the (j), We note that the functions P,
and (, correspond to the functions V, and V, intro-
duced in Eqs. (2. 16).

The functions Q, and therefore the functions (())„

and Q, are to be determined from the Schrodinger
equation

1'[(i)„]I y,.&=(-1)'&u I @;&, i=1,2.

;,=,,( )=J ' (x,)'(,& (3.22)

for i =j= 1 or i = 1, .j= 3, etc. Using the frame-
work of degenerate-state perturbation theory we
can construct the full solution as a power series
in these parameters. To define the problem fully
we have to specify the function (j),. Again by anal-
ogy with. the treatment of zero-frequency modes
we choose

(3.23)

I„(L())= (ui02 & (s.24)

and only values L ~ L, make an essential contri-
bution which shows that I»L ~BIO,. %e will find
that p, is of order y and therefore our perturba-
tive solution of the saddle-point equation can be
consistently ordered in powers of the two small
parameters of the problem y and (d.

From the constraints p, is determined as

p, = (d[sin28 —I„(L)/(bio, ]/i)I3&fl M
If&, (3.25)

where

(s.26)

iif=l+2 Z x.4.[4.(-v'+1 —sx')4 ] 'Q„x . .

(3.27)

The operator Q projects onto the space orthogonal
to I x, & and I 6x~/ sz,.&, i = 1, . . . ,d. The saddle-
point value of the exponent f (j)' is found to be

Ne have calculated the first-order solution ex-
plicitly. Imposing the constraints we find that
p, vanishes at first order, whereas p, is of order
co and p, —p', is proportional to p, . Therefore the
expansion is in powers of ~, R3, and the overlap.
The overlap integrals are roughly of order (d. The
distance L, is defined by

where X(z) satisfies the instanton equation

o = [-&'+1—x'(z)lx(z) = 1"[x'/y] I x&.

(3.18)

(3.19) where

JL +R3 M (3.as)

In zeroth order we choose J(L)=[[1+5(L)] I + [1 —5(L)] " }Igo

(s.ao)

p =R =p

(3.21a)

(s. 21b)

It is easily checked that this ansatz solves the
self-consistency problem up to terms of order
co, p, —p', , and the overlap measured by integrals

and

—2I„(L)+ 4I„(L)I„(L)/I„
—4&x„x(l G, I x,'x„&, (3.29)

(3.so)

(3.31)5'(L) =~'- [I„(L)/I„]'.
Since the matrix element &fIMlf) is of order one,
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Eq. (3.28) shows that p, is of order y. Note the
close relationship with the previous qualitative
discussion. The parameter 5(L), in very much
the same role, has been introduced before and
I»(L)/~I» may be formally identified as sin28,
[compare Eq. (2.6)]. The first contribution to
Z(L} just reproduces the contribution of two non-
interacting instanton wells of readjusted depths
[1+5(L)]X'(0). The remaining parts of J(L) are
due to tunneling; Eq. (3.23} contains an additional
contribution from the 0 constraint.

We now consider the fluctuations around the
saddle point. Since the functional integral is in-
variant under rotations and translations, it is
obvious that if ]j)„(z,L, 8) is a saddle point then

(j)»(z —a, L, 8) is also a saddle point for any a,

2(f +3

((z)= (j),(z a, L,—8) + g b,. ]I,
"& + 5$, , (3.32}

where (&g, is orthogonal to all P,."&. In the func-
tional integral we then eliminate the variables
b„b„b, in favor of A.„A.„6, and we eliminate
b4, . . . , b2~+3 in favor of a and L. We find

I
L I

= IL I. The treatment of the broken trans
lational and rotational symmetries is standard. "
We introduce normalized vectors g, , i= 5, . . . , 2d
+ 3 proportional to the derivatives of g, with res-
pect to the d —1 angles fixing I / IL I and the d, com-
ponents of a,. The zero-order functions (I&,."&, i
= 1, . . . , 2d+ 3 form an orthogonal set and we ex-
pand any potential ]j) as

3' /4
S,(t„. . . , t;tt)= tt

' "f d fttd L dt) O(tte ]oct ' '
]
net ' —")

-n /4 &a, L

xe, (t,)e,(t,)e,(t,)e,(t,)exp( fe'), -(3.33)

where g is given by Eq. (3.32) with b»b»b2 as
determined from the X, , 0 constraints and with

b,. = 0, i = 4, . . . , 2d + 3. The fluctuations as-
sociated with the coefficients b4, . . . , b2~ „are
taken into account by integrating a and L over all
space. In Eq. (3.33) the factor &(4 "/" is due to
the normalization of the 2d+ 3 integrals over the
eliminated variables b„. . . , b2g 3 and the factor
2 corrects for the symmetry under the operation
L - -L, 8 - (&&/2) —8.

The functional determinants and the dependence
of I&„I&„ l&2 on 8, 5(I), have to be determined with the
help of degenerate-state perturbation theory. We
find

Det ' ' =2y '(d I &„&[1+0(ur, y)], (3.34)
)9Asg y

6 04 3

0 t »4' 'b2~+3 -2gIg ~+O„—
Ba, L ]

I

where

(3.37)

and G, c( =r, l has been defined in Eq. (3.30).
The operator occurring in the matrix element on
the right-hand side of Eq. (3.36) closely resembles
the operator which occurs in the corresponding
matrix element in the calculation of the density of
states [compare HS Eqs. (3.29) and (3.25)]. In-
deed the integral over (](t), can be reduced to a pro-
duct of those fluctuation integrals occurring in the
density of states, the only complication arising
from the fact that the space of functions 6(1), differs
slightly from the corresponding space in the den-
sity-of-states calculation. Introducing the (dimen-
sionless) density of states p(5) of energy (1+5)E,

p-(6) (I + 6)(t(/4&(2-4& -(1 d e2&/-t(-11 I -1/2f)(/2
02 04 4

+ O(e, r)), (s.s6)

—&5q, I(1-2x„G„x„—2x, G, x, ) I 6q„)

x Det '/'(1 —2X,QX, )

xexp —1+6' '~" I
y2

we find the following expression for 82:

(s. 36)

s2(z„z„z„z„(d)= dna d'L p(()(L))p(-6(L)) exp ——, 2 ""-f22 —2&x„x,'IG, Ix„x',)+ o((d')
2 I, I,

02

where

&( ~ d8$(z„. . . , z„L,8, a)exp z'(L, (d) sin28 —-"-
-if /4 COI02

&([1 + O(y, (o)], (3.39)
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z(L, ~) =—
N...[(fIId

I 1/ '"+0(~, y)]
3

(s.40)

2 4

Q(z„. . . , z4;L, 8, a ) =I» [cos8}f„(z,. —a) + sin&y, (z,. —a)].„,[-sin8g(z/ —a) +cos8y, (z,. —a)].
jej, /&3

(s.41)

I

This is our general result. We have indicated the
order to which the accuracy has been checked ex-
plicitly.

Since our methods is, in principle, an expansion
in powers of y followed by an evaluation of the
coefficients of this expansion for 9«1, the result
certainly gives the leading behavior in the limit
of weak disorder: lime -0, limy-0. The hydro-
dynamic limit limy-0, limn -0 poses a more dif-
ficult problem since, a priori, divergent higher-
order terms of the form y"~ ", k + 0 can occur.
That such terms do not exist can be proven to all
orders in y. Essentially, they are eliminated by
the use of the degenerate-state perturbation theo-
ry. However, we have not been able to exclude
the existence of terms of the form y"

~
Inn& ~~, k & 0.

Such terms might occur since the matrix elements
I»(Lo), I»(Lo), etc. differ by powers of I-, ~

in&a ~.

Indeed, evaluating these overlap integrals for
large values of L we find

oo-I (L )-e &oL
"~&/'

13 0 0

~11(LD) 113{LO)LO

(S.42a)

(S.42b)

If such logarithmic factors do occur we believe
that a modification of the 8 constraint and hence
||1,would eliminate them. We therefore suggest
that the result (3.39}gives also the correct hy-
drodynamic limit.

IV. EVALUATION

If we can evaluate the 8 integral in our result
(3.39}in the saddle-point approximation, we re-
cover the result (2. 8) of the qualitative argument
except for corrections of order m to the saddle-

s=0~ d& 3

I'„/'(L, ) -I»(Lo)L~» where s. = (3 —d)/4, d &3

L~o= lnLo

{3.42c)

A careful analysis of the formalism shows that
factors of lnco can only occur in connection with
the function g, [Eq. (S.16c)]. For this function
the estimates are very complicated, since the
normalization N3 itself vanishes as L -~. In
leading order p, -}f„y, and hence

(s.4s)

point contribution J(L}. To show the influence
of the non-Gaussian 8 fluctuations we analyze the
integrals

3/4
8 (L)= ~ d8(sin28)"

-r /4

&&exp -z' sin28—

(4. 1)
These integrals. with m=0, 2 occur in the expres-
sions for S,(O, R,R, O;ar) and S,(O, O, R,R;a&).

. From the definition (3.40} together with the re-
sults (3.43) and (3.24) we find z as

~ L ~
C(g-~)/~)-s

p -1 -1+-g
o/

0)
(4. 2)

We formally define an angle 8, via the identity

(L) ( L (I-d) /2

sin280= —" — = e~o ~~ (4. 3}

The saddle-point approximation holds as long as
(i) z- ~ and (ii) the two saddle points 8= —,n + 8,

,'z ~
are w—ell separated. It gives

[sin28o{I.)1
cos28, (L}

(4 4}

where 8(L —Lo) denotes the e function.
We first discuss the limit of small disorder

and the hydrodynamic limit for d& 3. In these
cases z(L} is large compared to one for all L
~ Lo. The saddle-point approximation breaks
down only if

~ 8, ——,'z~ s y / . The confluence of the
saddle points just smooths the singularity of the
approximation (4.4) and only effects 8„(I.) for
~L —Lo~ 6 y'(', i.e., for a region small compared
to one. For ds 3, z(Lo) vanishes in the hydro-
dynamic limit. It reaches values z(L, }~ y

~

only for L, ~ L,,-I.0+slnL0 Thus the saddle-
point approximation is modified in a region
large compared to one. The typical shape of
8, and 8, as functions of L is given in Fig. 3.
We recall that the unit of length is given by the
range of the instanton function.

To conclude our analysis we need to evaluate
integrals of the form

~tm& dL ~L y~ 8
~=0 n=-0

(4. 6)
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dominant L dependence.

p(r-, y'(=exp(- —.a "r.* '() + O(x"-', r. '. )1),y'

where n is a constant. In estimating K„"',
L-ig+j -fi

dI I "exp 2L —e L2Q

y2

(4. 9}

FIG. 3. Plot of the functions 8p and 02 for L, p=10, gLp)
= 1. This case is intermediate between the limit of small
disorder and the hydrodynamic limit. The broken curves
give the saddle-point approximation.

g+1 n

(2&K„- 21 T
(d P2

(4. 11)

correct up to factors of order lny. Similarly we
find

(4. 10)

we note that the integrand takes its maximum
value for L, - -lny —(d —2) ln liny I + O(lnln Ilny!),
which gives the rough estimate

P(~(L)) p(-~(L))
P(~) 0(-('d) K "'-L' ~S '0 —const x L~ .0 0 (4. 12)

(4. 8)

x exp ——, I„(L)I„(L)—2I„(L)
1 4

y I02
~aa

—4(x„x,'IG, I x', x„&

In the hydrodynamic limit F[L,y'] tends to one.
For nz=2 we find

We now consider the spatial dependence of
S,(z„.. . , z; (d). If

I a, —z,. I
«LJ2 for all pairs

i,j then the leading contribution is of the form

S'(z) r. . . , z, ; (o) = rIo2'S, p((u)p(-u))L'o 'Ko"'

4
q ~ ~

X d a XZ,. —a

Z„("= i + O(I. , y'") (4. 7) (4. 13a,)

independent of n. For I=0 and L -~ the total in-
tegrand in E(I. (4. 5) tends to one. Extracting this
asymptotic behavior and expressing it in terms
of the volume 0 of the systemwe find

(0) y g &
Lp const, d ~ 3''" d'

-s lnL, + in& + const, d ~ 3 .
(4. 8)

In the limit of small disorder the variation of
I"[L,y'] is crucial. According to E(ls. (3.42) and
(3.38) the contribution -4I»I»/(y'I») gives the

(4. 13b)

Next we assume that the z& are close together
pairwise, and consider first the case z, =z„
a, =g, =z, +R, R»L, /2. The leading contribu-
tion to 82 has the form

which decays rapidly for lz,. —z.
I
»1. We note

that in the hydrodynamic limit this expression di-
verges as [ln(const/v)]~ ' because of the factor
L~p '. We also give here the single instanton con-
tribution for (d =0 (compare HS Sec. IV).

4

S'=r!(rp)p(0)l„,' f d a X(a,. —a).
j=l

p (a„a„x,+ rr, a, + rr'ra) =p(ra'tp( ra)r fr)'a f —x'(„r',r)xr'(rr —'a -r)p(r)(p„(r) ,'p (r)(—(4. 14)

s"-p'[e, (R) ——,'e, (R)]. (4. iS)

As A -~ the integrand tends to one, thereby re-
producing the contribution of two decoupled instan-
tons. In the hydrodynamic limit the increase
from 8 —0 to S —p' occurs near L —L,. For
!R LJI » 1, S" behaves as-

I

4(b). The integral of S,(0, 0, R, R, ~)/'x[p((d)p(-(d)]
yields the volume of the system reduced by the
volume 0, which one well excludes for the occur-
rence of the other one. In the qualitative argu-
ment of Sec. II we estimated Q, -(I/d)S, L~. Our
calculation yields

In the limit of small disorder the increase occurs
near A -L,. A schematic representation of the
function S,(0, 0,R, R;(d) is given in Figs. 4(a) and or

Q, = 0 —L+ 'SP (4. i8)
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S,(O, R,R, O; ur) according to Eq. (1.6). We find

7T
2

~(~,&)=- ~'~lzl u' 'f*d ))R's('0,)),)),o;~, )
2d

77g (d'p' 'p((d)p( —(u)S L'"K"' (4. 19)

In the hydrodynamic limit this gives

o((d, E)= (o'p' 'p(&u)p(-(u) (ln

(4. 2O)

S& /p
in agreement with the results of the qualitative
considerations of Ref. 12 and of Sec. II. In the
limit of weak disorder we find

(,E)= ( '/d)~'p" 'p( )p( )1.'.-S, (4.21)

I

Lo

Lo, d»
1

Q, =—S„x
I(LO+slnL, )", d «3

(4. 1Va)

for the hydrodynamic limit and

FIG. 4. Schematic plots of the functions S2(0, O, R,R; )
and S2(0, R, R, 0, co) in the hydrodynamic limit ((a)] and in
the limit of small disorder f@)]. For R «Lp/2 both func-
tions coincide. In (a) the broken curve holds for d &3,
whereas the full curve represents d ~3.

correct up to factors of order lny. In this case
the leading frequency dependence is due to p((d).

To summarize, our analysis has shown that the
simple picture of Mott, Anderson, and Halperin"
correctly describes the main features of the two-
particle spectral function. Deviations from this
picture occur near the minimal distance L, and
are due to two effects. First, in this region there
are strong fluctuations of the angle which deter-
mines the superposition of the single-well wave
functions. These fluctuations smooth the sharp
singularity which, in the simplified picture, oc-
curs at L —L,. Second, the interaction of the two
wells in the saddle-point contribution itself leads
to deviations from the simple superposition ap-
proximation. These deviations are important only
in the limit of small disorder; they essentially
shift the cutoff distance from L, to a larger value

0, =const x L', (4.17b)

in the limit of small disorder. In all cases the
correlations increase the excluded volume.

The function S,(O, R, R, O, ~) can be discussed
in a simiiar way. For R»LJ2 the leading con-
tribution is of the form

S'"(O,R,R, O; (o) = -2f,,'p((o)p(-(o)

da d L Ly'82L X a

x y'(R —a L) . —

(4. iS)

A schematic plot is given in Figs. 4(a) and 4(b).
The integral over all R vanishes identically.

The conductivity can be calculated from
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