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Dielectric susceptibilities are reported for KTa& „Nb„03 and K& ~Na~Ta03 mixed-crystal fer-

roelectrics with a Curie temperature T& close to absolute zero. According to the temperature

range, the two following formulas are fitted to the experimental data: ~ =A + B/[
2 T&

&& coth(2 T&/T) —To] for T &
2 T& and ~=A +BT for T. T& ~

2
T&. This latter

1 1 1

condition defines the quantum limit of a ferroelectric. Both formulas are obtained as lim-

iting cases of a renormalized harmonic approximation of a model involving nonlinear polariza-

bility of the oxygen shell. The constants A, 8, T&,, and To are explained in terms of model

parameters. The leading term of the divergence of the susceptibility at the quantum limit coin-

cides with the one obtained by the renormalization-group approach. Although renormalized

harmonic approximation in general is bound to fail close to T&, it gives valid results for the iso-

lated (Gaussian) fixed point T~ =0.

I. INTRODUCTION

The competition between long-range ordering
forces and fluctuations in dipolar systems determines
the range of stability of the polar phase. In the ma-

jority of cases, the stability limit falls in a region of
classical (Boltzmann) fluctuations; only two examples
(KTa03and SrTi03) are known with a stability limit

in a region of predominantly quantum-statistical fluc-
tuations. As a consequence, the temperature be-
comes an ineffective parameter for the phase diagram
and the susceptibility. For such systems, we use the
term "quantum ferroelectrics" and we intend to in-

clude the case in which polar order is marginally
stable against quantum fluctuations (quantum limit)
as well as the case where polar order is suppressed by

quantum fluctuations (incipient ferroelectrics). For
the quantum limit there are specific predictions by
Schneider et al, and by Oppermann and Thomas' for
the leading exponent y of the susceptibility

/=2

which is in contrast to the Curie-gneiss exponent y =1.
On the other hand, there is a long-standing expres-

sion by Barrett, 2

e = A + 8/[ ,
'

T, coth( —,
' Ti/T) —T—o]

which has already been fitted to the dielectric suscep-

tibility of KTa03, ' ' and SrTi03.
We note, however, that Eq. (2) is in contradiction

to Eq. (1) at the quantum limit, and that each of the
approaches leading to the corresponding equation
can, at most, have its limited nonoverlapping range
of validity.

It is the purpose of the present work to determine
these ranges of validity both from an experimental
point of view and from an assessment of the micro-
scopic models from which they derive. To this end,
we present, in an experimental section, the first sys-
tematic data set of dielectric constants taken in the
immediate neighborhood of the quantum limit, a
condition which is met by mixed-crystal ferroelec-
trics9 ' and possibly by stoichiometric crystals under
hydrostatic pressure. " Fits of Eqs. (1) and (2) to
these data allow a visual perception of the ranges of
validity.

A further section is devoted to theoretical con-
siderations. Under certain conditions, the susceptibil-
ity can be expressed in terms of Eq. (2) At low tem-
peratures this approach fails, and a single-exponent
law is recovered.

The ranges of validity of the respective models are
reviewed in a final section. Model (1) leading to Eq.
(1) is based on the critical equivalence class of Ham-
iltonians in three dimensions at T~ =0. It is expect-
ed to account for the data taken on crystals trans-
forming below a certain limiting temperature Tt and
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FIG. l. Log-log diagrams of the temperature dependence in the paraelectric phase of the dielectric susceptibility for
KTa I z N bz03 crystals with x near the quantum -limit value x, : (a) x & x„(b) x =x„and (c) x & x, . The solid lines represent

1
the fits of 8/(e —A) = (

2 Ti) coth(TI/2T) —To to our experimental data. In case (b), a fitted power law 8/(~ —A) = T& with

y = 2 is also shown.

in a temperature range extending from Tc into the
paraelectric phase. Model (2) leading to Eq. (2)
takes into account specific harmonic and anharmonic
interactions between nearest- and next-nearest-
neighbor constituents of perovskite oxides. "" It will

be pointed out that under the specific condition
T& =0, and only then, is the Hamiltonian of model
(2) of the same critical equivalence class as that of
model (l).

II. EXPERIMENT

KTa~ „Nb„03 (potassium-tantalate niobate) and

K~ «Na«Ta03 (potassium-sodium tantalate) mixed
crystals were grown by slow cooling of the melt.
Crystal growth, composition inhomogeneities, and
ferroelectric phase diagrams were described earlier. ~ "

The transition temperatures were determined by
measuring the elastic properties. In pure KTaO3, no
ferroelectric phase transition is observed, but in
mixed crystals, ferroelectricity occurs for concentra-
tions larger than critical values x, or y„respectively.
These critical values defining the quantum limit were
found to be x, = 0.008 and y, = 0.12, respectively. In
addition, crystals were gro~n with x or y differing
from x, or y, by about 20%'to obtain information im-
mediately below and immediately above the quantum
limit.

The dielectric constant of these crystals was mea-
sured at 1 kHz on a GE 1616 capacitance bridge.
The frequency independence of the data was checked
at room temperature. The resulting susceptibilities
are plotted as a function of temperature in Figs. 1 and
2 for KTai „Nb„03 and Ki ~Na~Ta03, respective-
ly, all on log-log scale. The different plots are denot-
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FIG. 2. Log-log diagrams of the temperature dependence in the paraelectric phase of the dielectric susceptibility for
pa03}crystals with x near the quantum-limit value v, .' (a) y & v„(b) v =y„and (c) y )y, . The solid lines represent

the fits of 8/(~ —A) (—Ti) coth(Ti/2T) —To to our experimental data. In case (b), a fitted power law 8/(e —A) = T~ with
I

y =2 is also shown.
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ed by (a), (b), and (c) according to whether the vari-
ables x and y are subcritical, critical, or above critical.
The following are identified: a high-temperature re-
gime (T & 80 K) where the Curie-Weiss law with

y = I is valid, '4 a temperature range (80 & T & 35 K)
for which a fit with Eq. (2} appears appropriate, and,
when x = x, or y =y, [case (b}] another range
(35 & T & 15 K) with y —2. In the lowest tempera-
ture range ( T & 15 K in the quantum-limit case and
T & 35 K otherwise), there is a flattening of the
dielectric susceptibility near values 10 4. Such sus-
ceptibility limits are commonly encountered in fer-
roelectrics' and reduce the accessible range of critical
behavior. In cases (a) and (c), flattening is directly
adjacent to the medium temperature range. We have
not attempted to fit Eq. (2) to the flat part of e ' be-
cause we found the limiting value to be sample
dependent.

The parameters used to fit the high- and medium-
temperature behaviors of e ' are summarized in

Table I. The low-temperature regime of the data set
for the quantum limit [case (b)] could be fitted with

a pure "power law" [Eq. (I)]. This fit is definitely
better than an extension of Eq. (2) to low tempera-
tures as indicated by the standard deviations also en-
tered in Table I, although the difference is sufficient-
ly small to escape a superficial inspection on a log-log
plot. The exponent determined by the least-squares

fit (also in Table I) is close to y = 2, the value
predicted' on the basis of renormalization-group ar-
guments.

Thus, we present the first experimental evidence for
this peculiar temperature dependence of the dielectric
susceptibility. Such a high value of the critical ex-
ponent y had not been observed in previous work, as
all the crystals studied were out of the quantum-limit
extension. This extension may be expressed as
x, + Ax for KTa] „Nb„03and v, + Ay for
K] ~Na~Ta03, where Ax and Ay are the deviations in
concentration above which the quantum-limit regime
with y = 2 disappears. With the present homogeneity
of the samples, only the following upper bounds
could be determined, i.e., bx ~ 0.002 and Ay ~ 0.04,
as obtained from Figs. 1 and 2. In terms of the fer-
roelectric phase diagram, an increase of the transition
temperature from 0 to 18 K has dramatic implications
on the observation of the quantum-limit regime. No
fit is possible with Eq. (I) for samples with

Tc o18 K
The one-to-one correspondence between y = 2 and

a vanishing Tc allows attribution of this observation
to the crossover from classical (y = I) to quantum
behavior (y=2). The crossover region from pure-
quantum to classical regime is thus rather large. Fig-
ure 3 shows the phase diagram of quantum ferroelec-
trics and the pertinent regions of classical, quantum,

TABLE I. Parameters of the fits of Barrett's formula a=A +8t —T&coth( —T]/T) —To] [Eq.(2)] and of e —T ~ tEq. (1)]1 1

for crystals near the quantum limit.

Fit to Eq. (2) Fit to Eq (1)

(K) T] (K) To (K) Standard

deviation
(percent)

Temperature
range
(K)

Quantum

regime

Standard
deviation
(percent)

SrTi03 Ref. 6
Ref. 7

Ref. 8

86400
90000
80000

100
84
80

45
38
35.5

1-300
4—300

16-150

No
No
No

KTa03 Ref. 3

Ref. 4
Ref. 5

48.3
47.5
48.5

55200
54500
50100

53.3
56.9
52.8

1 1.8
13.1

12 ~ 3

4-300
4—300

10-300

No
No
No

KTa& ~Nb„03
x =0.006
.v = 0.008

x =0.012

59
72

60

50000
45000

46000

47
64

20
30

32

0.6
6.0
5.5
4.2

8-300
14-35
14-300
24—300

No

y = 2.0 + 0. 1

No

0.3

K& ~Na~Ta03
Y =0.08
v =0.12

Y =0.17

57
58

49

52000
49000

52000

52
57

59

19
28

33

1.8
9.7

33

10-300
14—35

6.5
26-300

No

y = 2. 1 + 0.1

15—300
No

0.7
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turn ferroelectric with hydrostatic pressure being the
interaction parameter, KH2PO4. Neither the inter-
change of composition by pressure nor the fact that
the symmetry of KH2PO4 is lower than that of KTa03
seems to affect the results: the data show a fit of ~

with y —2 at Tr —0,[Fig. 4(b)] and the impossibility
of such a fit at Tr & 0 [Figs. 4(a) and 4(c)]. High-
temperature data appear to be unavailable for those
pressures. Therefore, no fits of Eq. (2) can be
shown. Nevertheless, the behavior of potassium
dihydrogen phosphate (KDP) at Tr =0 agrees well
with our findings described in the next section.

40—

30—

20—

10—

III. REVIEW OF THEORY

The Hamiltonian used' to predict critical behavior
at the quantum limit is given by

H=X mu( + Dgu(
l, a l, a

0.10 0.20 0.30 0.40 0.50
2

+ g Xui~ F g ul~u r

4n
l,l, a

FIG. 3. Ferroelectric phase diagram for (0)
KTa& „Nb„03 (upper scale) and (0) K& „Na&Ta03 (lower

scale). The solid line is the transition line between paraelec-
tric and ferroelectric states. The crosshatched 'and the
hatched areas indicate the temperature and concentration
ranges where y =1 and y = 2 hold, respectively.

and intermediate behavior.
To complete the picture, we should like to mention

preliminary measurements on Verneuil-grown
Sr&,Ca,Ti03 crystals, "where a quantum regime with
y=2 was also obtained for z =0.003. Furthermore,
in Fig. 4 we reinterpret data from Samara" for a quan-

I denotes the lattice sites, and ul is the o.th com-
ponent (a = l, . . . , n) of the displacement of parti-
cles with mass m. The model parameters are D, E,
and F.

H involves nearest-neighbor interaction of a simple
d-dimensional cubic lattice. Upon setting T =0 and
introducing an interaction parameter S = 4dF —D, it
was shown that this Hamiltonian is in the same criti-
cal equivalence class' as a four-dimensional Hamil-
tonian in interaction-parameter (rather than tempera-
ture) space. The fixed point of this Hamiltonian is

thus Gaussian and at T=const=0, e(S) —(S —S, ) '.
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FIG. 4. Log-log diagrams of the temperature dependence in the paraelectric phase of the dielectric susceptibility for KH2PO4
crystals under hydrostatic pressure. The data sets and the quantum-limit value p, are taken from Ref. 11: (a) p )p„
(b) p =p„and (c) p (p, . The broken straight lines correspond to e= T 2. The attempted fit is reasonable only at the
quantum limit [case (b)l.
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In view of the criticality of the phase diagram
T, —(S —S, )I~2, this leads to 0(T) —T neglecting
logarithmic corrections. Since this Hamiltonian is

stripped of all but the essential qualitative features, '

it cannot account for any observation outside the crit-
ical region. This region is in turn covered by the re-
normalized harmonic phonon approximation. " A

shell model was constructed" in such a way as to ac-
count for the Raman spectra observed in quantum
ferroelectrics and to point to the probable origin of
ferroelectricity in terms of anisotropic oxygen polariz-
ability. The 1S-parameter version of Migoni et' al.
has recently been simplified to a three-parameter
(pseudolinear) model'3 which represents the tempera-
ture dependence of the soft modes in perovskites
quite well. The Hamiltonian considers nearest- and
next-nearest-neighbor interaction within a linear
chain and, in particular, the anharmonic force
between the oxygen core and its ligand (Fig. 5):

~ 2 1 ~ 2 1 ~ 2

2 1 1(+ 2 ~2~2(+ 2 I
I

r

+ x —,.f'(u»+I —u»)'+ —,g2(ill ull)'
I

where

2(T)
2.f'+g

~ =ar+a2 .

Note that g2 ( 0. In virtue of Eq. (6),

gr = 3g4(w'& r

=3g4 d'q C„(q)wF 20I0'cothh0IF(q)/2kT

(9)

For temperatures near T1, given by the self-
consistency equation Tl =g0IF(Tl )/k, the integral in

Eq. (9) may be approximated by its integrand

approximation,

g4WI 3g4WI ( W ) I' gTWI3, 2

where (w') r is the thermal average of the mean-
square shell displacements of w arriving from a/i

modes.
This leads to. a renormalization of the rigid-ion fre-

quency of the linear chain, eo0, as

+
4 g4(2II —ull) +

2 / (u2I 2)I ) gr = —,G cothgI0F(TI )/2kT (10)

+
2 f ( u2I vI+1 )
1

I

Introducing the relative displacement between shell
and core,

lV( = U( 01(

the following equations of motion are derived:

III lull g2WI +g4WI'+ f'(u II+I + u»-I —2ull)

III2u2I = f(WI+I + WI) + f. (ull+I +ull 2u2, )

with the condition for adiabaticity of the oxygen elec-
tronic shell

mls I= (2f +g2) wl '+g4WI f(u2I+ u2I I
—2—ull) =0

In the spirit of the renormalized harmonic

92,94

where G contains all multiplicative constants.
Inserting Eqs. (8) and (10) into Eq. (7), Eq. (2) is

recovered, " in which the constants are identified as

2ll f 0IO 0IF( Tl )=0(T~oo) =400 ', B =
kG

g~F(T, ) &lg2I~F(TI)
T1

k
'

kG0

Note that, at the quantum limit, Eq. (6) is replaced"
by a self-consistent equation from which a leading

exponent y = 2 is derived. This exponent is the same
as the one obtained by the renormalization-group
(RG) theory.

This compatibility between a renormalized harmon-
ic approximation and the strict result from RG theory
can only be expected at the actual quantum limit.
There, the Hamiltonian has a Gaussian fixed point; a

condition necessary for the validity of the renormal-
ized harmonic approximation.

IV. SUMMARY

FIG. 5. Linear chain model (after Ref. 13). Notation:

»r1. (rr2 are the masses of anions and cations; f,./': nearest-

and next-nearest-neighbor coupling constants; p2, g4. har-

monic and. quartic shell-core coupling constants. u1. u2

denote displacements of particles 1 and 2, respectively, v be-

ing the shell displacement.

The shell model involving a large oxygen polariza-
bility has been shown to account for the susceptibility
of several cubic quantum ferroelectrics. It produces
two analytical formulas [Eqs. (1) and (2)] valid for
the high- and low-temperature regimes, respectively.
The high-temperature regime extends to —60 K in

KTa03 and —80 K in SrTi03. These temperatures
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were considered as a lower bound for the validity of
the approach leading to Eq. (2). The low-

temperature regime extending to —35 K is described
by Eq. (1) which, for Tc =0, can alternately be
gained by the shell model or the RG approach. The
intermediate range is reasonably closely covered by
either approach. In the low-temperature regime, and
in samples with T~ =0, the standard deviation of the
fitted RG results is lower by an order of magnitude
than that of the shell-model results. For samples
which are stable and cubic down to the absolute zero
(x (x„no Tr ), the quality of the fit is good for the
shell model (the deviations are 0.6% for KTa~ „Nb„03
and 1.8% for K, «Na«Ta03) while, for samples having

T& —30 K, a fit of the shell model yields a deviation
of about 4%. We attribute the lower quality of the
shell model in the latter case to the failure of the re-
normalized harmonic phonon approximation near Tc
in three dimensions. " For those samples, alternate
fits to power laws with an intermediate exponent can

be attempted within relatively small temperature
range above T~. At the very quantum limit, the sus-
ceptibility exponent coincides for cubic and axial
symmetry: y = 2 has been obtained for KTa~ „Nb„03
(x =0.008), K~ «Na«Ta03 (y =0.12), and KH&PO4

under hydrostatic pressure (p = 17 kbar ). This is a
clear indication for the presence of a Gaussian fix
point which has in common all equivalence classes
for d = 4 including arbitrary degeneracy of the order
parameter n = 1, 2, 3 and anisotropy of the dipolar in-
teraction.
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