
PHYSICAL REVIE% B VOLUME 22, NUMBER 8 15 OCTOBER 1980

Dynamicai e&ectron-phonon interaction and conductivity in strongly disordered metal alloys

S. M. Girvin
Physics Department, Indiaria University, Bloomington, Indiana 47405

and Surface Science DioisionC, hemistry B248, Nationai Bureau ofStandards, 8'ashingtonD ,C20.234

M. Jonsont
Physics Department, Indiana University, Bloomington, Indiana 47405

(Received 21 April 19SOj

A theory of transport in random metal alloys is presented which focuses on certain model-independent features of

the electron-phonon dynamics which have been previously neglected. It is found that in the low-resistivity limit the

adiabatic-phonon approximation is valid and the disorder associated with phonons increases the resistivity. In the

high-resistivity limit where the weak-scattering approximation breaks down due to incipient Anderson localization,

the adiabatic-phonon assumption also fails, and phonons actually assist the mobility, producing an anomalous

negative temperature coefficient of resistivity. Model analytical and numerical calculati'ons suggest that this

mechanism could be the source of the Mooij correlation between the resistivity and its temperature coefficient. The

connection between these results and recent scaling theories of localization is discussed.

I. INTRODUCTION

In recent years experiments on strongly dis-
ordered metal alloys and other poorly conducting
metals have revealed a wealth of interesting trans-
port properties which defy explanation by the con-
ventional transport theory that has been so suc-
cessful in applications to good metals. Of par-
ticular interest is the discovery by Mooij of a
correlation between thb temperature coefficient of
resistivity (TCR) and. the resistivity of metallic
systems. Mooij found that metals with resistivi-
ties less than p* -150 p~~ cm tend to have the usual
positive TCR, while most alloys with resistivities
greater than p* are anomalous in that over a large
temperature range they have negative TCH's.
This-correlation is quite universal, holding for a
wide variety of both glassy and crystalline random
metal alloys.

Similar anomalies have been reported for the
thermoelectric power and the magnetoresistance. '
In the latter case a particularly interesting obser-
vation is that systems with negative TCR tend to
exhibit negative magnetoresistance. Another
anomaly which has attracted considerable atten-
tion~' is the fact that the resistivities of the A 15
compounds do not increase linearly with tempera-
ture and structural damage but rather tend to sat-
urate at approximately p*, the same resistivity
appearing in the Mooij correlation.

Numerous mechanisms and theories have been
proposed to explain these anomalies in nonmag-
netic alloys including a generalized Ziman the-
ory, ' ' the Mott s-d scattering model, ' ' a
Kondo-type mechanism involving two-level tunnel-
ing states, ""theories which study the interfer-
ence between phonon and impurity scattering

mechanisms, '~" and a theory which generalizes
the Boltzmann equation to include interband tran-
sitions. " Under the appropriate circumstances,
each of these theories can explain some of the ob-
served transport anomalies. The extended Ziman
theory in particular has been remarkably success-
ful, but all these theories are rather specific;
that is, they depend for their sucess on special
features in the density of states, the static struc-
ture factor, etc. In addition, the theories to data
have generally made some sort of weak-scattering
approximation. This seems unreasonable since
the metals in question are sufficiently dirty so that
they have very small electronic mean free paths.

It is important to ask what new and fundamental
physical phenomena are intrinsic to highly disor-
dered conductors. With this in mind, we have re-
cently" discussed the problem of transport anoma-
lies from a point of view which is valid in the ex-
treme dirty limit and pointed out certain universal
features of the electron-phonon dynamics which
appear in this limit and which could be the source
of the Mooij correlation. The purpose of the
present paper is to extend our initial discussion
and. to provide more details of the numerical cal-
culations reported earlier.

The organization of the remainder of the paper
is as follows. Section II discusses the failure of
the weak-scattering picture and the role of the
breakdown of the adiabatic-phonon approximation.
Sections III, IV, and V introduce the model and
the method of calculation. Sections VI and VII
discuss the analytical and numerical results,
respectively. Sec. VIII summarizes the present
work, while its relation to recent scaling theories
of localization in random systems is discussed in
the Appendix.
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d lnp(T)
dT (2.1)

In most metals a is positive because phonon scat-
tering decreases the electronic mean free path as
the temperature is raised. The sign of n can be
deduced from Matthiessen's rule which asserts
that the total resisitivity in the presence of two (or
more) scattering mechanisms is equal to the sum
of the resistivities that would result if each mech-
anism were the only one operating, i.e.,

(z)+ (a) (2.2)

Matthiessen's rule as stated in Eq. (2.2) follows
from the Boltzmann equation with the assumption
of a wave-vector-independent relaxation time for
each scattering mechanism. ' lf po is the resis-
tivity of a disordered metal at zero temperature
and p,h(&) is the resistivity of the pure (ordered)
metal due to electron-phonon scattering, then the
resistivity of the disordered metal at finite tem-
peratures as given by Matthiessen's rule is

p(T) = po+ p h(T) ~ (2.3)

It follows from Eq. (2.3) that p(T) ~ po and that the
TCR is positive (o. &0).

Most "good" metals to some extent obey
Matthiessen's rule and typically have p -1-10 pO
cm and ot -300-600 ppin/K. However, as Mooij
has pointed out, there exist many highly disor-
dered metals which are poor conductors (p-100-
600 pSI cm) and have p(T) ~ po and negative TCR's
(o, &0). These materials clearly violate Mattheis-
sen's rule.

If the relaxation-time approximation is aban-
doned, Eq. (2. 2) no longer holds. However, there
exists a variational principle for the Boltzmann
equation from which one can show rigorously that'

) (1)+ (2) (2.4)

The highly disordered alloys with p(T) ~ p, neces-
sarily violate even this inequality. This means
that the Boltzmann-equation formalism itself is
breaking do&en. Apparently what is happening is
that, because of the strong disorder and resulting
multiple correlated scattering, the Boltzmann
hypothesis of independent scattering events fails.
There must exist some sort of "interference"
between the impurity and phonon scattering mech-

II. BREAKDOWN OF THE WEAK-SCATTERING
PICTURE

It is not difficult to demonstrate the failure of
conventional transport theory in highly disordered
metals. In fact the Mooij correlation is inconsis-
tent with the Boltzmann equation formalism itself.

The central quantity in the present discussion is
the temperature coefficient of resistivity

anisms which is capable of producing the negative
TCR observed in highly disordered metals.

The Ziman theory invokes this interference by
considering (in low-order perturbation theory)
coherent scattering between pairs of atoms. We
are proposing an additional rather general mech-
anism involving a breakdown of the usual static-
phonon approximation due to incipient localization.
In the limit of Anderson localization, this mech-
anism passes continuously into the phenomenon of
phonon-assisted hopping.

We begin a discussion of this mechanism by re-
calling that Mott" has suggested from dimensional
arguments that there exists a maximum metallic
resistivity which for a three-dimensional system
with lattice constant a is ha/e'. For a = 3 A this
is 60 p~~ cm. Detailed calculations" indicate that
p „may be more on the order of 1000 p,Q cm.
These considerations suggest that the alloys with
anomalous transport properties are sufficiently
dirty so that they are approaching the maximum
metallic resistivity and therefore are not far from
Anderson localization. Hence perturbation theory
breaks down and the simple picture of weak scat-
tering is not valid. Presumably, the coherent
scattering from large clusters that eventually in-
duces localization is already important. In this
strong-scattering regime the electrons should be
thought of as diffusing around rather slowly or (in
the extreme limit) as hopping between quasilo-
calized states rather than being occasionally scat-
tered between nearly coherent plane-wave states.

If the disorder is so large that the time spent
around a particular ion by a diffusing electron is
on the order of the -characteristic time for ionic
motion, the usual adiabatic- (or static-) phonon
approximation breaks down, and the dynamical
electron-phonon interaction (as will be shown)
causes the mobility to increase rather than de-
crease with temperature. This is known to occur
for localized states (in the form of phonon-as-
sisted hopping), but we are proposing Nat it oc-
curs even before localization is reached. In the
opposite limit of low'resistivity, the additional dis-
order associated with the phonons causes the mo-
bility to decrease with temperature. Hence this
mechanism, which works for both crystalline and
glassy materials, is consistent with the Mooij
correlation and is quite universal in that it relies
solely on the ability of the phonons to exchange
energy dynamically with the electrons and does not
require any special features in the density of
states, etc. Thus this effect, which has to date
been neglected, should be present in every case,
although it will not necessarily dominate over the
mechanisms which have been previously proposed.

The effect of phonons on the conductivity has
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been previously considered within the framework
of the coherent potential approximation (CPA) ~""
There are two problems with this. First, the
CPA is not valid in the dirty limit because it does
not predict Anderson localization, "and second,
in order to apply the CPA, it is necessary to make
the adiabatic-phonon approximation (this approxi-
mation is also made in the Ziman theory). Chen,
et al."argue that the ionic motion is slow so that
one may assume that the phonon coordinates are
static, Gaussian-distributed random variables.
They further argue that in the dirty limit where
the mean free time is small, the uncertainty in
the electron energy is large compared to the
maximum phonon energy so that the conservation
of energy in the scattering of one electron by one
phonon is of little consequence. Such uncertainty-
principle arguments may work well in some
cases" but are dangerous since they are definitely
wrong for the case of strong disorder. As will be
seen from our model calculation, the adiabatic-
phonon approximation does indeed work well in
the low-disorder limit. However, in the dirty
limit the electrons are diffusing so slowly that they
are sensitive to the time dependence of the phonon
amplitudes. Thus the adiabatic approximation gets
worse with increasing disorder, not better. It is
the dynamics associated with this breakdown of
the adiabatic approximation which leads to phonon-
assisted mobility.

Chen etal. obtain an interference between
(static) phonons and the impurity potential which
they suggest represents phonon-assisted hopping.
However, no phonon dynamics is involved, and the
interference arises solely because of sharp struc-
ture in the density of states near the Fermi level.
While this may actually be present in some sys-
tems, this is not the dynamic effect we are seek-
ing, and we specifically avoid it by choosing a
model. with minimal structure in the density of
states.

In order to overcome the objections to the CPA
and the adiabatic-phonon approximation, one would
like to find a scheme for calculating the conductivi-
ty which is valid in the dirty limit and in which
phonon dynamics can be included. Such a scheme
is outlined in the next three sections.

III. THE MODEL

In order to study electron-phonon dynamics and
transport properties in poorly conducting metals,
we consider a model system described by a simple
tight-binding Hamiltonian with random-site ener-
gies arid coupling to local phonon modes of the
form

H = t Q c~,c,. + Q (e,. + y, )n, +a,„„, (3.1)

with

(3.2)

() (O) = lim [-Im ll((u+ i5)/(o] . (3.3)

The retarded response function ll(or+ f6) is ob-
tained by analytic continuation from the Matsubara
function, "

(3.4)

where d is the dimensionality, 0 is the volume of
the system, and P is the inverse temperature,
1jks7.'. The current operator for the Hamiltonian
of Eg. (3.1) is

(3.5)

where -e is the electronic charge. Equations
(3.3)-(3.5) maybe combined using standard Green's-
function techniques to obtain the following exact
expression for the dc conductivity (in the absence
of phonons):

where sites i and i+ ~ are nearest neighbors, &, is
a random-site energy, and b;, creates a phonon of
frequency cu, on site i. We neglect correlation of
phonon amplitudes on different sites. This as-
sumption of local phonon modes vastly simplifies
the numerical calculations by making the phonon
contribution to the electron self-energy site diago-
nal, thereby precluding the necessity of perform-
ing momentum summations over the Brillouin
zone. In addition this assumption, though crude,
is physically reasonable for systems at tempera-
tures greater than the Debye temperature (a con-
dition which will be assumed in Sec. V), since
phonons of all wavelengths will be thermally ex-
cited and the phonon correlation function will
therefore be short ranged. Furthermore, long-
wavelength phonons are of little importance in a
system with a short electronic mean free path. "

The Fermi level is taken to be at the center of
the band. This assumption and the choice of site
energy distribution minimizes the structure in
the average density of states. We consider two
different distributions for the random-site ener-
gies. For numerical studies, the Anderson mod-
el" with a flat distribution between +—', V is con-
venient. For analytical-purposes the Lloyd mod-
el, which has a Lorentzian distribution centered
on zero, is preferred.

We shall evaluate the conductivity using the
Kubo formula which relates the conductivity to the
current-current correlation function":
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where A, &(e) = -2 Im G,&(&+i&) is the ij component
of the spectral density for the electronic Green's
function, G,&(a+i5), nz(e) is the Fermi function,
and the angular brackets denote the ensemble
average over the random-site energies.

In order to evaluate the conductivity in the dirty
limit we have chosen to work within the real-
space representation rather than the usual momen-
tum-space representation so that the random-site
energies are diagonal and the kinetic energy is
treated as a perturbation. In the limit of short
mean free path the lattice sums in Eq. (3.6) may
be conveniently truncated to include only a small
cluster of sites. Unfortunately, it is not possible
to evaluate the ensemble average of the spectral
densities required in Eq. (3.6) by simply con-
sidering a small cluster because this would never
produce Anderson localization. Close to localiza-
tion the individual random spectral densities de-
velop strong correlated fluctuations which act to
suppress the conductivity. This information is
lost in any cluster expansion. To date no qualita-
tively accurate methods for handling this problem
have been developed, although progress has re-
cently been made using renormalization-group
schemes. ~ If one restricts hopping to paths
containing no closed loops it turns out that the
problem simplifies considerably. %e have there-
fore followed the lead of Abou-Chacra, et al."
who found that it is possible to study Anderson
localization on the Cayley tree (Bethe, lattice). A
Cayley tree is a lattice (see Fig. 1) containing no
closed loops and having a fixed connectivity, K
(i.e., each site has E+ I neighbors). As Abou-
Chacra, et al. have shown it is possible to obtain
fairly easily and accurately by numerical means
the random distribution of spectral functions re-
quired in Eq. (3.6), even when the disorder is so
large as to produce localization. There remains
a problem, however, in that the vector directions
required in Eq. (3.6) are ill-defined on the Cayley
tree. It is possible (as will be shown) to construct
a natural extension of Eq. (3.6) for the Cayley
tree.

The conductivity (without phonons) which we cal-
culate (see Fig. 2) has the correct limiting proper-
ties in that it diverges for zero disorder and van-
ishes suddenly when Anderson localization occurs.
The critical value of disorder at which the conduc-
tivity vanishes is in excellent agreement with the
value obtained by Abou-Chaera, et a/. for critical

FIG. 1. Cayley tree of connectivity %=2. Note that
only one path connects sites z and j.

localization. It should be emphasized that in the
absence of phonons the conductivity is essentially
temperature independent. This results from the
constancy of the density of states near the Fermi
level which has been built into the model. We do
not consider the situation in whi. ch the Fermi level
lies below the mobility edge and the finite energy
width of the factor ( dn~/dF) gives ri-se to activated
conduction.

Ne now turn to a discussion of the details of the
calculation. To illustrate the calculation of the
spectral density A;& we consider first a system
without phonons. Rather than calculating the spec-
tral density directly, it is convenient to consider

b

b
O

O

FIG. 2. Conductivity of a Cayley tree of connectivity
%=2 as a function of disorder (V). Note the broken
scales.
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A, q(e) = -2 ImG, q(c), (3.8)

G,g (~)= Gg, (z)—,, y-6& -O&(6)
(3.9)

1
(3.10)

where o', in Eq. (3.10}, in contrast to o„de-
scribes hops on al/ paths from site. i. For exam-
ple, if there is no disorder, i.e., e, =0 for all i,
one readily finds that

{7)(E) = [6 —(zm —4'')' ']/2, (3.11)

with the branch of the root being chosen so that o,
lies in the lower half-complex plane. The local
spectral density is given by

e(41ft' —P)(x+ 1)(4Ift'- P)'i'
A, ,(e)=, .

[-,'(Z —1)]V+[-,'(Z+ I)]'(4At' —z')

We shall henceforth express all results in units
where 4' = 1 so that the unperturbed tight-bind-
ing band edges are at +1.

IV. EVALUATION OF THE KUBO FORMULA

Having established a procedure for calculation of
the electron Green's function we turn now to the
evaluation of the correlation function related to the
conductivity. This is the Kubo formula of Eq.
(3.6).

One expects for strong disorder, where the
mean free path is short, that the position space
summation [over j for fixed i, for example, in
Eq. (3.6)] will converge rapidly. The lowest-

a,.(z}, which is the hopping self-energy for all for-
ward-going paths from site i. For a Cayley tree
of connectivity E, 0; satisfies"

g2

o, (e) = (3.7)
k=1 f+ j(t ~i+A~

Given the probability distribution for the random-
site energies e&, Eq. (3.7) constitutes a recursion
relation for the probability distribution of the ran-
dom self-energies o, . Note that o, in Eq. (3.7) is
independent of e„ the site energy at the same site.
Hence the random variables o; and ~,. are uncor-
related. We chose to solve Eq. (3 ~ 7) for the
probability distribution of the hopping self-energy
with a numerical Monte Carlo scheme (which will
be described in Sec. VII) somewhat different from
that of Abou-Chacra et al."

Knowing the self-energies o;, one may calculate
the required spectraL functions from

order term in the sum is for i and j being nearest
neighbors. The corresponding two-site contribu-
tion to the conductivity, a„ is for a cubic lattice

ze'f'O'N
AS

(4. 1)

where N/0= 5' is the site density and z is the co-
ordination number. Note that as a result of the
symmetry of the ensemble-averaged system, Eq.
(4. 1) is independent of the initial site i, and all z
of the nearest-neighbor sites j are equivalent. It
is extremely important to note that even though
Eq. (4. 1) explicitly involves only two sites, the
spectral functions depend on the random-site en-
ergies on all the sites. The ensemble average is
therefore nontrivial to perform even for this
lowest-order term.

The full expression for the conductivity may be
written as

(4.2)

where A(0) is a vertex correction that represents
hops to sites outside the initial pair i and j. The
vertex function diverges for vanishing disorder
and zero temperature because the mean free path
is infinite. For large disorder and/or high tem-
perature the mean free path is short and A(0) be-
comes of order unity, since the two-site contribu-
tion dominates the summation in Eq. (3.6). The
form of Eq. (4.2) is convenient because A turns
out to be a smooth function of disorder and tem-
perature. We note in particular that the complex
information about Anderson localization is fully
contained in the two-site term, a,(0) of Eq. (4.2).
This is in contrast to the wave-vector representa-
tion of the Kubo formula where this information is
entirely contained in the vertex function. Using
the real-space representation means that the es-
sential physics we wish to discuss is contained in
the two-site conductivity term. This is useful be-
cause it turns out to be fairly easy to evaluate nu-
merically and yields results with relatively little
statistical noise. In addition, there is a problem
in evaluating the Kubo formula on a Cayley tree
due to the lack of mell-defined directions. This
problem, however, affects only the vertex func-
tion and not o,(0), which is the object of primary
importance. It wiQ be shown below that is it pos-
sible to make a reasonable estimate of the true
vertex function for the real lattice by considering
a natural extension of this function to the Cayley
tree.

The lack of well-defined directions is not a
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t 2

S—= 2 g( 5 5 )(A»» 6A»» (()Nz6

where +5 are nearest-neighbor lattice vectors.
Performing the lattice sums. , relabeling dummy
indices, and using the symmetry of the spectral
density A»&

——A&„one ean express Eq. (4.3) as

S=a, +2+a„,

(4.3)

(4.4)

problem in one dimension where the actual lattice
and the Cayley tree of connectivity K=1 are identi-
cal. Let us therefore begin by considering the
conductivity in one dimension. It is convenient to
define a quantity S by

nectivity K to be different from z —1, one obtains
the following Cayley-tree approximation to the
conductivity of a three-dimensional simple-cubic
system:

rr(0(= f dr (- )g X" 'rr„(r(. (4.8)

The integration over energy e in Eq. (4. 8) intro-
duces a thermal broadening of width 4 ~T around
the Fermi level. As mentioned earlier, the model

. has been intentionally chosen so that the density of
states and the mobility are essentially energy in-
dependent in the center of the band which is the lo-
cation of the Fermi level. We therefore replace
Eq. (4.8) by

where

2a =f (A'
~
»»A» g» A»» A» y»»} (4.5)

2

o(0)=- Q K" 'a„(0) .
asm „., (4.9)

Again, because of the translational symmetry, the
ensemble-averaged quantity a„depends only on n.

In going from Eq. (4. 3) to Eq. (4.4) we have
also used the fact that in one dimension 5

since 6 and 5' are either parallel or antiparallel.
If one now considers the chain of sites connecting
site i and site j (j=i+n) on the Cayley tree of
Fig. 1, one sees that this resembles the one-di-
mensional lattice, except that

~

6 6'
~

/5' may dif-
fer from unity. The two-site contribution, though,
is still given by Eq. (4. 5) with n =1. This is be.-
cause 5'=+6 in those terms in Eq. (4. 3) which
contribute to a,. For terms a„ that involve longer
chains (n & 2), we have arbitrarily taken 6 6' to
be +-,'5', using the general "forward" and "back-
ward" directions of the Cayley tree to determine
the sign. Noting that the Cayley tree has zK" '
chains of length n emanating from a given site sug-
gests the following form as a natural extension of
S to the Cayley tree:

S= K" a„, (4. 6)

where a„ is still given by Eq. (4.5). It is conven-
ient to use Eq. (3.9) and Eq. (3.10) to express a„
as

8 t2
rr„(r&=4(~G, , (r)~ (rmrrr&((mrrr', „)

+1 i+I +5+0

The two-site contribution is thus

o,(0) = (e'/|» 5v)a, (0),

and the vertex function is

(4. 10)

a(0)=QZ"-' "
a, (0)

' (4. 11)

V. ELECTRON-PHONON INTERACTION

We again emphasize that the phrase "two-site"
does not refer to a cluster calculation restricted
to two sites only. The ensemble averages in Eqs.
(4. 10) and (4. 11) involve the entire lattice.

The approximations used to circumvent the dif-
ficulties connected with the lack of well-defined
directions on the Cayley tree are admittedly some-
what arbitrary. However, the vertex function cal-
culated in Eq. (4. 11) has the correct limiting fea-
tures in that it diverges for zero disorder and be-
comes of order unity for large disorder. Further-
more, in the high-disorder regime the. two-site
term of Eq. (4.10), which is unaffected by these
approximations, is the major contributor to the
conductivity. These considerations suggest that
we have a method of calculating the conductivity
which is at least qualitatively correct over the
entire range of disorder from very weak to very
strong (including the regime of Anderson localiza-
tion).

(4.7)

Referring to the chain of sites between i and j in
Fig. 1, 0~ is the self-energy for hops from a site
k (in the chain) in all directions except backwards
along the chain (toward site i), and o~ represents
hops in all directions except forward along the
chain (toward site j). By combining Eq. (3.6)
with Eqs. (4.3)-(4.7) and letting the number of
nearest neighbors z be six while allowing the con-

We consider first the effect of the electron-
phonon interaction in perturbation theory. The
lowest-order phonon self-energy for site i due to
the phonons at site i is given in the Matsubara no-
tation by

E»(i»o)= —E (&, ( P Q &(»&i)G(i»(»o i+a),
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o, (e)=Q—
«-i ~ ~~.a —o~.a(~) —~~.a(e)

(s.3)

Recall that g, is the self-energy for forward-going
hops and thus in the absence of phonons depends

where D„(iQ) is the phonon yroyagator. This self-
energy simply adds to the hopping self-energy in
Egs. (3.9) and (3.10), and Eq. (3.V) becomes

only on those site energies forward of site i. The
phonon self-energy complicates the situation by
introducing a dependence on all the site energies.
It turns out, however, that this complication can
be ignored without significant numerical error in
the final results.

In order to calculate the retarded electron-pho-
non self-energy, the Matsubara sum in Eq. (5.1)
must be evaluated. One finds that

"de', „n~(e')+ns((g, ) 1-n~(e'}+ns((g, ) (5.3)

ImZ, (e+ is) = — dxg(x)A«(a+x), (5.4)
2

where

g(x) -=Q ' [5(x —co,) + 5(x+ (o,)].lx, I'
S

(s.s)

The dynamics of the electron-phonon interaction
enters Egs. (5.3) and (5.4) as a convolution of
the electron spectral density over the phonon
frequencies. The adiabatic-phonon approximation
amounts to neglecting the energy transfer to the
electron, which yields

Z "(&+is)=t,T'gG„(&+is),

and in particular

rmZ;. '"(e+ is) = (u, r/3)ga, , (e),

(s.6)

(s.v)

This result simplifies considerably if the tempera-
ture is high compared to the Debye temperature,
in which case ns(+, ) = ksT/ap, en~(e'). This as-
sumption will hereafter be implicit. In particular,
the imaginary part of the self-energy simplifies to

I

tral density). For strong disorder the spectral
density consists of a set of sharp peaks separated
by regions of nearly zero density. (Indeed, when
the disorder is large enough to localize the elec-
trons, the spectral density will consist of a set of
delta functions. ) In the strong-disorder limit the
convolution over phonon frequencies in Eg. (5.4)
makes ImZ, (e) nonzero for all e, while the static
result is nearly zero almost everywhere. The
static approximation therefoxe fails in this limit.
This is a key point. It makes absolutely no dif-
ference in calculating the ensemble-averaged
spectral density, but as we shall see it strongly
affects the conductivity (which is the ensemble
average of the product of two spectral densities}.

As a matter of convenience, the real part of the
electron-phonon self-energy will be neglected,
since in the large-disorder limit it is much small-
er than the fluctuations in the random-site energies.
Actually, to perform the frequency integration in
Eq. (5.4) would be a numerically difficult prob-
lem in the strong-disorder limit. However, by
approximating g(&u) as a Lorentzian

where
g((o) = (uo g/m((u'+ (oo) (s.9)

(s.s)

It is instructive to compare the results that re-
tain the electron-phonon dynamics [Eqs. (5.3) and
(5.4)] with the adiabatic approximation [Eqs. (5.6)
and (5.7)]. First we note that in the zero-disorder
limit the real part of the self-energy vanishes at
the Fermi level (the center of the band) in both
cases. If, in the absence of disorder, . we neglect
density-of-states effects, i.e., take A«(e} to be
independent of energy in the range -S ~D,„&e
(I'~n, „, we have from Eqs. (5.4)-(5.7) that the
adiabatic-' (static-) yhonon approximation is exact
for ImZ, in this limit. Now, as the disorder is
increased, structure develops in the spectral den-
sity (although not in the ensemble-averaged spec-

of width ~L„ taken to be the Debye energy, the
required frequency integral can be easily per-
formed analytically:

ImZ, (e+ ib) =ksTglmG«(e+ i&uo) ~ (5.10)

It is clear from the discussion of the previous
sections that G«(e+ i~o) is easily evaluated by the
same methods used to find G«(e+ is). The ap-
yroximation leading to Eg. (5.10) may be justified
a poste~xi by the observation that the results are
essentially independent of the choice for &oo (taken
in this case to be 0.-01 in units of the half-band-
width).

In summary, we find that the static approxima-
tion to the electron-phonon interaction is good for
weak disorder, but the fact that the electrons can
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&Z = Z; —Z' (5. i2)

As discussed above, this difference tends to zero
in the absence of disorder when the static ap-
proximation is exact, but becomes important when
the disorder is large. The real part of &Z; was
found to be of little importance in the numerical
calculation and so was set equal to zero.

In addition to phonon self -energy corrections
there are phonon vertex corrections which also af-
fect the conductivity. Since we are treating the
static-phonon effects exactly these vertex correc-
tions are automatically included. We neglect any
dynamic contribution to the vertex function.

Finally, we note that the electron phonon cou-
pling g defined by Eqs. (5 ~ 5) and (5.8) is related
to McMillan's parameter, ~ g vi, a

exchange energy with the phonons becomes crucial
for strong disorder. These results were estab-
lished in perturbation theory. However, if we
have only static phonons, we do not have to con-
fine ourselves to perturbation theory. In fact,
we can solve the static-phonon pr'oblem exactly by
simply adding to each site energy e,- an additional
energy y, whose probability distribution is a Gaus-
sian of width

(5. ll)
We shall take maximum advantage of this fact by
treating the static yart of the electron-phonon in-
teraction exactly and by including the dynamic
part in lowest-order perturbation theory. The
latter is given by the difference

dynamics in the conductivity of disordered sys-
tems. While the approximations involved are
necessarily rather extreme, it is useful to con-
sider these results in order to gain greater in-
sight into the essential physics of the problem
before going on to discuss the details of the full
numerical calculations.

Some basic conclusions may be drawn directly
from the fact that the conductivity [Eq. (3.6)] is
related to.a configurational average of a product
of spectral functions of the form

f=(A,.~A„,), (6. l)

V = -jy
on each site. One obtains

(6.4)

rather than to a product of average spectral func-
tions of the form

(6.2)

The latter quantity would determine the conductivi-
ty if correlations between the two spectral func-
tions were neglected. We begin with a considera-
tion of this approximation. Equation (6.2) may be
exactly evaluated within the Lloyd model" in which
the random-site energies have a Lorentzian prob-

.ability distribution

P(«) = /y[ (v~' +r')1. (6.3)

The Lloyd model has the interesting property that
the average effect of the random potential is pre-
cisely equivalent to the effect of a uniform co-
herent (optical) potential

(5. l3) (A,, (e)) = 2Img„-(e+iy), (6.5)

where 8' is the bandwidth. We arbitrarily take
A=0. 25 and 8'=5 eV so that g=1.25 eV. This
choice is consistent with the deformation-potential
estimate of g made by Chen et aI,.'

In summary, there are two effects of the elec-
tron-phonon interaction within the approximation
used here. The first is an increase in the static
disorder due to the presence of.an additional ran-
dom-site energy y,. on each site. The second is
an increase in the hopping self-energy due to an
imaginary self-energy i Im&Z, produced by the
yhonon dynamics. These two corrections enter
the expression for the conductivity [Eq. (4.7)]
and also enter the right-hand side of the recursion
relation [Eq. (3.7)] that determines the probability
distribution of the hopping self-energies c,.

VI. ANALYTIC RESULTS

A. Neglect of correlations

Within certain approximations, it is possible to
obtain analytic results showing the role of phonon

where g, &
is the Green's function in the absence of

disorder, a quantity which is easily calculable for
any lattice. Hence if correlations are ignored, the
conductivity may be evan. ated exactly and is found
for small disorder to be simply proportional to the
mean free time

c(0)=Z/r, (6.6)

o(O) =-S '/&'. (6.7)

Thus the conductivity diverges for zero disorder
and goes continuously to zero with increasing dis-
order.

One must now ask how phonons affect the situa-
tion. Equation (5.4) gives the lowest-order pho-
non self-energy. This is a random quantity since
it involves the spectral function A, , (e), which in
turn depends on the random-site energies. How-

where P is a constant depending on the particular
lattice. For very large disorder, the conductivity
is proportional to the square of the average density
of states at the Fermi level:
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ever, the phonon self-energy fluctuates much less
strongly than the spectral function since it in-
volves an average of the spectral function over
different frequencies. Indeed, in the extreme
case of white-noise phononsss one has g(x) =g in
Eqs. (5.3) and (5.4), and

These correlations are the key to the negative
TCR (in our model). Their retention in an analy-
tic scheme is a difficult task, but by making cer-
tain approximations one can at least illustrate the
effect. This is the scope of the next subsection.

Zyh Z kg g (6.8}
B. Inclusion of correlations

is the exact phonon self-energy, which does not
fluctuate at all. For the purpose of making analy-
tic calculations, we therefore assume that the
phonon self-energy may be replaced by its average
value

c(0)= (e'/a e~)a, (0)A(O),

where

(e. is)

In Sec. IV the conductivity was found to have the
form

Z,h= -if, (6.9) a~(0) =- t'(A, ) A)~ —A,) At, ), (6.16)

where g increases with temperature. In the pre-
sence of phonons Eq. (6.5) becomes

(A,~(e)) = -21mg, ~(e+ iy+i() . (e. io)

Hence the effect of phonons is exactly the same as
that of the static random-site-energy disorder
(i.e., the static-phonon approximation is exact),
and for small disorder the conductivity becomes

c(0)=J'/(y+ 5), (6.11)

in accordance with Mattheissen's rule [Eq. (2 ~ 3)].
For large disorder the conductivity is

a(0) =I '/(y+ ~)'. (e. i2)

For all values of disorder the phonons act to de-
crease the conductivity. Equation (6.11) satisfies
Eq. (2.4} as an equality. Equation (6. 12) on the
other hand satisfies only the inequality.

If.correlations between spectral functions are
neglected one can explicitly evaluate the Cayley-
tree approximation to the conductivity given by
Eq. (4.9):

where

e' t).(y+ g+ a)'
ties (y+ ~)[(y+ ~+~)'+ t']2 ' (e. 18)

-i~= (-z/2}[[4zt'+ (y+ g)']'t' (y+ ~)} (e. 14)

is the ensemble-averaged forward-hopping self-
energy. Equation (6.14) conforms to the large
and small disorder limits given above, and the
conductivity is a monotomically decreasing func-
tion of both disorder (y) and temperature (g).

One is thus led to the conclusion that there is
an intimate connection between the failure of the
Boltzmann formalism and the neglect of correla-
tions between the spectral functions in the conduc-
tivity. The approximation made in Eq. (6.2} is
reasonable for weak disorder (where the Boltz-
mann theory is valid), but in the presence of strong
disorder it is essential to retain the correlations
between the spectral functions as in Eq. (6.1).

and sites i and j are nearest neighbors. This form
is convenient because in order to proceed analyti-
cally it is necessary to make the major approxima-
tion of considering only the random-site energies
&, and e& explicitly and of treating the disorder on
other sites only in an average sense, by introduc-
ing the optical potential of Eq. (6.4)~ This sim-
plification severely underestimates the complex
fluctuations in the spectral functions; however,
this is partially compensated by the fact that Eq.
(6.9) overestimates the dynamic-phonon effect.
The qualitative effect of correlations wiQ still be
present in Eq. (6.16).

As noted earlier, the required Green's functions
are particularly easy to evaluate if i and j are
considered to be adjacent sites embedded in a
Cayley tree. For example, one has

(6+ $$ -Et —Z)
G„(e)= (e. iv)

(~+q ~, Z)(e+—i~ e, —Z—) —t' '

where Z is the (ensemble-averaged) self-energy
for hops to sites other than i and j. Note that G, ,
depends on both e, and e& so that Quctuations in G«
and G&z are correlated. This tends to reduce the
conductivity [through the factor a, (0) in Eq. (6. 15)]
and in a complete theory would ultimately lead to
Anderson localization (a, =0). In the present ap-
proximation Eq. (6.15) becomes

4t'q'
a, (0)=

I (e, i@)(c~ —iq) —t' —
I

' (6. 18)

where q—= $+&. Since the phonon self-energy i)-
scales with temperatures and since dq/dg & 0, one
sees that the TCR is related to (-d 1na,/dq) (de-
laying for the moment a discussion of the tempera-
ture dependence of the vertex function). The av-
erage over e, and e~ in Eq. (6.18) can be per-
formed analytically in the Lloyd model with the
result

(
4t q y+q y I'+q

1"'-y' (y+q)' t+I'(I'+q)(y+ '))+)t '}'
(e. 19)
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@=0.0
I.O

(and hence q) is large and C = 1. For large dis-
order q is small and C =0. From Eq. (6.2$) one
has

dlnC t ~~ 0q(q'+t') ag
(e. 24)

0.5

0.0 0.2

$/v4Kt*

I

02

For large disorder the derivative becomes in-
creasingly negative. This is the dynamic-phonon
effect we have been seeking. The crossover point
at which the negative contribution due to the dy-
namic effect wins out over the static effect of Eq.
(6.21) occurs at roughly q = t (more or less inde-
pendent of the lattice connectivity K). That this
is reasonable can be seen from an inspection of
Eq. (6.18), which shows that correlations strongly
affect a, only for q =t. From Eti. (6.23) it follows
that at the critical resistivity, C = 1/W in this
approximation.

Thus far the effect of phonons on the vertexfunc-
tion A has not been included. In the present ap-
proximation in which fluctuating site energies are
retained only on two sites, it is possible to cal-
culate A from Eq. (4.11) analytically. The result
is

FIG. 3. Correlation factor C of Eq. (6.22) as a func-
tion of $/(4Ãt2) ~t for different amounts of disorder, y. (e.as)

where

b. y+ (+b.
A(0) =1+ (e.26)

r'=-~'+t'. (e.ao)

It is interesting to compare this result, which
contains correlations, with the no-correlation
(NC) value

(y+q) t'
[(y+ rt)'+ t' I

One can define a correlation factor C by

Og= QgNg C ~

(e.al)

(6.22)

The two terms in Eil. (6.22) each contribute to the
TCR. As noted earlier, the static disorder and
the phonon self-energy enter a~ in exactly the
same way if correlations are neglected. Hence,
-da»o/dg & 0, .which makes a posNive contribu-
tion to the TCR. The correlation factor C depends
on the static and phonon disorders in different
ways. Figure 3 shows that C decreases with sta-
tic.disorder (y) but increases with temperature
($). This is true for all values of y and g and pro-
duces a negative contribution to -da, /d$. Except
for small K the correlation factor C is well ap-
proximated by

c =q/(q'+ t')"'. (e.as)

For small disorder the hopping self-energy &

The nth term in Etl. (6.25) is associated with paths
terminating n sites away from the central pair of
sites i and j. Note that as expected, A(0) diverges
in the limit of vanishing disorder and temperature
but becomes of order unity in the limit of strong
disorder and/or high temperature. The vertex
correction is a monotonically decreasing function
of both disorder (y) and temperature ($) and there-
fore contributes a positive term to the TCR. This
is also the case in the full numericaL calculations
(where all correlations are included), and we at-
tribute this to the fact that the electron mean free
path is decreased by both elastic (disorder) and
inelastic (phonon) scattering. This positive con-
tribution to the TCR is large for small disorder
and dominates over the correlation effects which
are weak. For large disorder, correlation ef-
fects are strong enough to produce a negative
TCR. However, if the phonon self-energy -i$ is
large enough so that rI & t in Eq. (6.18) correla-
tions are weakened, the density of states is low-
ered, and the mean free path is shortened. Hence
the TCR becomes positive again at very high tem-
peratures. This behavior is illustrated in Fig. 4.
As wiQ be shown in the next section, this picture
is confirmed by the full numerical calculations.

It is interesting to note that one can anticipate
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PIG. 5. Besistivity as a function of gkI3T (electron-
phonon coupling times temperature) for various amounts
of disorder (V) calculated in the two-site approximation
(see text). Energy units are chosen so that W/2=1, 8"
being the bandwidth.

Since it is rather expensive to generate Gaussian
random numbers, we found it advantageous to
create a field of 10~ such numbers and sample
this field at random in order to assign values to
y& (in a typical ensemble average of the conduc-
tivity, 10'-10' values were required). One now
has all the parameters needed to calculate one new
value each of o, (0) and a, (i~n) from their respec-
tive recursion relations. The first elements of
the two initial ensembles are replaced with these
new values. The process is then repeated to gen-
erate replacements for the second elements, and
so on until all 4000 elements have each been re-
placed up to 100 times.

The above procedure, which must be repeated
for each temperature and value of disorder, con-
verges rapidly from almost any initiaL ensemble
except in the region of critical localization where
care must be exercized. As mentioned in Sec.
V, the electron-phonon interaction causes 0, to
depend on site energies over the entire lattice
rather than just those site energies for sites for-
ward of i (as is assumed in the recursion rela-
tions). However, the dependence is very weak,
and numerical tests show that this complication
can be safely ignored as was done in the caLcula-

tions reported here.
Having obtained ensembles representing the

probability distributions of c, (0) and o, (icuD) for
particular values of the temperature and disorder,
we are now ready to calculate the ensemble-av-
eraged conductivity. The number of terms N re-
tained in the summation in Eq. (4.9) and the num-
ber of different site energy configurations M used
in evaluating the ensemble average varied with
disorder. For weak disorder (V= 2}, N= 100 and
M = 5000 were used, while close to the localization
threshold (V= 5), N= 20 and M = 15 000 were
used. Each configuration was defined by a set of
N+ 1 site energies and hopping self-energies
generated from the appropriate probability distri-
butions (ensembles) and the recursion relation Eq.
(5.2).

The results of the, numerical calculations are
shown in the figures. Figure 2 shows the conduc-
tivity as a function of disorder at zero tempera-
ture. The critical value of disorder, V*=5.5
(4Kt )' ', is in excellent agreement with the
vaLue obtained by Abou-Chacra et al." On the
other hand, the value of the critical conductivity
is roughly two orders of magnitude smaller than
Mott's minimum metallic conductivity (=0.1 e'/
8'5). We believe this to be an artifact of the Cay-
ley tree, which has an iQ-defined dimensionality,
and we speculate that a calculation on a real three-
dimensional lattice should produce a value of the
minimum metaBic conductivity in better agreement
with Mott's estimates. It should be noted that the
strength of disorder necessary to induce Anderson
localization in a real lattice seems to be con-
siderably smaller than that required on a Cayley
tree.

The temperature-dependent resistivity of Fig.
5 was calculated using the two-site approximation
to the Kubo formula. One sees that for weak dis-
order, there is a small positive TCR, but as the
disorder increases the TCR changes sign and be-
comes increasingly negative. The resistivity in
Fig. 6 is based on the full evaluation of the Kubo
formula and shows similar behavior although the
numerical noise is considerably worse.

There is a remarkable qualitative similarity
between Fig. 6 and the crude analytical results
of Fig. 4. In particular, one observes in both
figures that for strong disorder the TCR changes
sign and becomes positive at high temperatures.
As discussed in Sec. VI, this is a reQection of the
two competing aspects of the electron-phonon in-
teraction. It follows that a Mooij plot of the TCR
versus resistivity is temperature dependent, i.e.,
a materiaL that has a negative TCR at low temper-
atures could have a positive TCR at high tempera-
tures, with the resistivity being nearly unchanged.
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FIG. 6. Besistivity as a function of g k z T (electron-
phonon coupling times temperature) for various amounts
of disorder (V). Energy units are chosen so that
8'/2= l, 8' being the bandwidth.

FIG. 7. Temperature coefficient of resistivity (TCH),
e as a function of reduced resistivity p/p*. The num-
bers in parentheses indicate the value of V (disorder).
The experimental points plotted by Mooij (Ref. 1) fall
within the hatched area. From the Mooij plot p*
=150 pOcm, whereas in our model calculation p*
=750 pQcm.

This behavior has been observed in some rnater-
ials. '

Figure 7 shows a Mooij plot generated from the
results displayed in Fig. 6. All points are for
room temperature (gk~ T= 0.005 in units of W'/4,
see Sec. V) ~ Except for an overall scale factor
in the resisitivity the results are in qualitative
agreement with the observed Mooij correlation.
Our Cayley-tree calculation" estimates p+ —750
p, ~h cm for a simple cubic lattice, while experi-
mentally p* = 150 p,Q cm.

VIII. SUMMARY AND DISCUSSION

We have presented a theory of transport in
metal alloys which focuses on those model-inde-
pendent features of the electron-phonon interaction
which appear in the limit of strong disorder. It
was found that the breakdown of the adiabatic-
phonon approximation produces a direct correla-
tion between the resistivity and its temperature
coefficient which is in qualitative agreement with
the Mooij correlation. This effect is quite univer-
sal and should generally be present, although in
specific cases it may not dominate over the model-
dependent mechanisms previously proposed. ~22

Some comments need to be made concerning the

Cayley-tree approximation. We have already re-
marked that the conductivity at zero temperature
(Fig. 2) exhibits a maximum metallic resistivity
much larger than Mott's estimates. Imry" has
also pointed out that the sharp drop in resistivity
of the Cayley tree when localization occurs is in-
consistent with the predictions of recent scaling
theories" of localization in three dimensions.
Nevertheless, we do not feel that the Cayley-tree
approximation compromises the validity of our
central physical idea because fluctuations in the
spectral density leading to the inequality

(8. l)(Aq~ A~, ) «(A,.~ )(A„,)
certainly occur on real lattices, though they are
conveniently calculable only on the Cayley tree.

Calculations on real lattices will also be neces-
sary in order to discuss the resistivity saturation
observed in A15 compounds ' which cannot be ex-
plained by our present results. Clearly, our mod-
el of a single tight-binding band with intentionally
minimized structure in the density of states is too
simple to describe the A.15's adequately.

In summary our main purpose in this and a pre-
vious paper" has been to introduce the new physi-
cal idea that phonon-assisted mobility can occur
in disordered systems, even in the regime of ex-
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tended states, and to illustrate the effect qualita-
tively with a simple model calculation. Clearly,
further work is required to make the present mod-
el more realistic and to study the relevance of
this effect to other transport anomalies.
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a= Ag, (e'/RL„), (Al)

where A. is a constant of order unity, g, is a
critical dimensionless conductance of order unity,
and L„ is the length scale at which the conductivity
becomes Ohmic. L„increases with disorder and
goes to infinity at critical localization. Following
Thouless, ' Imry argues that at finite temperatures
the relevant length scale is L = min(L„, l»), where
l» is the inelastic mean free path (due to phonon
scattering). For I»& L„ the relevant length scale
decreases with temperature, thus increasing the
conductivity. Highly disordered samples arethere-
fore predicted to exhibit a negative TCB above
some temperature T* whose value depends on dis-
order. At some higher temperature l~h becomes
on the ordeq of a microscopic length, the scaling
theory breaks down, and the conductivity presum-
ably starts to decrease again.

Although there is some controversy regarding
the validity of the scaling theory, especially for
two-dimensional systems, "it is interesting to
make contact with the present work. To this end
we note that Imry's argument may be translated
from the language of length scales to time scales.
For large disorder the imaginary part of the
hopping self-energy for a particular site is small.
This causes large fluctuations in the local spectral
density A.«and causes A« to depend strongly on
site energies at distant sites (i.e., to be sensitive
to the Thouless boundary condition). This is
equivalent to the statement that L„ is large and
the conductivity is therefore small. Adding an
imaginary yhonon self-energy tends to damp out
the fluctuations in the spectral density and hence
enhance the conductivity (cf. Fig. 3}. This is

APPENDIX

In this Appendix we wish to comment on a recent
paper by Imry which applies a scaling theory of
localization" to the problem of the Mooij correla-
tion. The basic result of this theory is that the
conductivity (in the absence of phonons) has the
form

& E(L) 2h 2h
, G(L——)=——,c(L}L . (A2)

Here, Eq. (A2) is a relation between the conduc-
tance G of a cube of length L, 6E is the mean
spacing of the energy levels of the cube, and 4E
is the average shift in an energy level upon a
change in boundary conditions. The second equali-
ty of Eq. (A2) serves to define the conductivity of
the cube which becomes Ohmic (independent of L)
for L )Lg ~

We note that

5E(L) = [p(e)L']"'= (p,L'/a') ' (A&)

where p, is the local density of states in a cubic
lattice with nearest-neighbor distance a. Then
we follow Thouless and note that in the strong-
disorder limit 4E(L) =0 /t~, where t~ is the time
it takes an electron to diffuse a distance L (& L„}.
The time t~ is related to the imaginary part of the
electron self-energy, -g, by the relation t~
= (L/a) '8/q, and consequently

&E(L) L
5E(L) a (A4)

From Egs. (A2} and (A4) we then conclude that
the conductivity is

c= (e'/aK)(qp, ./2) . (A5)

It is interesting to observe that. our analytical re-
sult [Eq. (6.15), (6. 19), and (6.26)] for the con-
ductivity is also proportional to the imaginary
yart of the electron self-energy in the strong-dis-
order limit.

As was discussed in previous sections the self-
energy is a sum of two terms, q = g + b, , where g,
the dynamic-phonon term, increases, and &, the
static term, decreases with increasing temyera-
ture. If we identify b p, /2a with 1/L„and intro-
duce the inelastic mean free path as qp, /2a
=1//, „ it follows from Eq. (A5) that

equivalent to the statement that the relevant
length scale is reduced from L„ to I,„, thus en-
hancing the conductivity.

There is, however, one essential difference be-
tween our results and Imry's. We find that for
large disorder the addition of even an infinitesimal
imaginary self -energy increases the conductivity
so that T* is zero, whereas Imry's argument sug-
gests T~ is finite. It seems to us that Imry's
argument is basically correct, but that the inelas-
tic mean free path perhaps enters the problem in
a more complicated manner than he suggests.

To illustrate this yoint it is useful to consider
the following relation due to Thouless which is
the starting point of the scaling theory of Abrahams
et al.'0:
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e=(e'/ll), I '=I,„'+L„',
which should be compared to Eg. (AI), If we
assume that for T&T* and g&~ it follows that
l = l,„, and we have Imry's result. However,
even when $ & ' (at low temperatures), and thus
I = L„, it is conceivable that f increases more
rapidly than & decreases with an increase in tem-

perature, i.e., d$/dT & d~/dT, which would
result in a negative TCH even for 0 & T & T*.
This is of course the result of the present work,
and it is interesting to note that if the new length
l» were to enter. the scaling theory of Imry, as
suggested by Eq. (A6), the above-mentioned dif-
ference between our results might vanish.
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