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Intermediate-valence effects on the phase diagram of NiS2 „Se„
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Using a modified I alicov-Kimball model and introducing intermediate valence effects, we

reproduce the phase diagram (T —x) of NiS2 „Se„. This allows us to develop a simple picture

of the physical properties of these compounds based on the concepts proposed to explain the

anomalies found in some rare-earth compounds.

I. INTRODUCTION

The intermediate valence (IV) concept has proved
to be very useful in explaining anomalous properties
of a large variety of rare earths and their com-
pounds. ' In this sense a particularly important prop-
erty is the demagnetization produced under pressure
or by alloying, "whereby a compound expected to
show some kind of localized magnetic moment ap-
pears to lose it.

As is well known, the magnetic properties of the
rare earths are mainly determined by the inner 4f
shell. In this work we explore the possibility of find-

ing IV effects in transition-metal compounds, where
the important electrons belong to the 3d shell. As
these electrons are less screened from their surround-
ings4 than the 4 f 's, IV effects are more difficult to
identify.

NISt „Se„(0~ x ~ 2) seems to be a good set of
compounds in which to look for these effects, as we

argue below. NiS2 and NiSe2 are the limit cases of
the set and their properties are drastically different.
NiS2 is semiconductor at all temperatures', it has lo-
calized magnetic moments at the Ni sites showing
Curie susceptibility (p,rr=3.2@a) above 40 K, and
antiferromagnetic ordering below' and as all the
members of the set, it has pyrite structure with lattice

0
constant' a =5.69 A. NiSe2, on the other hand is a
metal, it shows a Pauli-like susceptibility, ' indicative
of a lack of the local moment; it does not have an
ordered magnetic phase and its lattice constant is
a =5.96 A.

The phase diagram"" shows the change of the
properties as we go from NiS2 to NiSeq (Fig. I). The
replacement of S by Se takes place with no change of
the crystal structure, which remains pyritelike. It is

striking that the exchange of two chemically similar
substances (S and Se), both nonmagnetic, produces a

metal-insulator transition and a reduction of the, rnag-
netic ordering temperature in the metallic phase; for
x «1 there is no magnetic order. Moreover, the fact
that the measured magnetic susceptibility for x =2
(NiSe2) is Pauli-like shows that the static atomic mo-

ments themselves vanish or at least are strongly di-
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FIG. 1. NiS2 „Se„schematic phase diagram obtained
from Gautier et al. (Ref. 11).

minished. %e consider the magnetic behavior to be
an essential factor of the features displayed by
NiS2 „Se„,and it compels us to introduce the IV con-
cept to explain the demagnetization, as in the case of
rare earths.

%'e will not take into account the existence of weak
ferromagnetism (for x & 0.4). Its presence seems to
be associated with nonstoichiometry, mainly when
referring to the relationship between the number of
Ni and S vacancies. '

Goodenough has discussed the band structure of
pyrites'" from a general point of view, while Khan"
has calculated the band structure for FeS2 and ex-
tended his results qualitatively to NiS2. Bands ori-
ginating mainly from the sp orbital of S2 are either
full or empty and hence are irrelevant for our model.
In the band coming from the 3d Nit+ levels (3d lev-

els split into t2g and e, sublevels in the presence of
the crystal field) correlation effects are extremely im-

portant. Usual band calculations do not take into ac-
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count correlation effects and are therefore not ap-
propriate to describe the 3d band. ' This shows up
very clearly in NiS2, which should be a conductor as
far as the band theory is concerned: the t2g band is
full (it contains six electrons), while the fourfold-
degenerate eg band is half filled by the remaining two
electrpns pf the 3ds Nit+ Experiments shpw instead
that NiS2 is a semiconductor; this indicates that the e,
band is split by the Coulomb repulsion leading to a
Mott-insulating state. Above the eg level there
should be a broad o--conduction band whose origin
cannot be clearly established: the band calculation of
Ref. 15 does not consider the 4s or 4p levels of Ni
which should give rise to such a band and which
could coexist in energy and mix with the sp anti-
bonding state.

The Fermi level is located somewhere between the
eg and the cr band.

In this paper we implement a model calculation
based on the Falicov-Kimball model" generalized to
take into account three magnetic interactions and hy-
bridization. This model has shown to be very useful
in describing metal-insulator transitions when the
physical system has a localized level near the conduc-
tion band.

This paper includes in Sec. II a description of the
model Hamiltonian and a discussion of the approxi-
rnations intrpduced; Sec. III the free energy derived
from the (approximate) Hamiltonian; in Sec. IV the
resulting phase diagram of the model is considered
and applied to NiS2 „Se„. Finally in Sec. V we
present our conclusions.

II. MODEL

As mentioned in Sec. I, we will consider a generali-
zation of the Falicov-Kimba11 model that includes
magnetic interactions between the spins of the local-
ized levels, and a hybridization term that leads to an
intermediate-valence interpretation of the properties
of the compounds. The Falicov-Kimball model is
based on the existence of a set of highly correlated
localized states and an uncorrelated broad conduction
band. Hence we will set up a Hamiltonian for the
system that consists of:

(i) A set of localized states representing the 3d
levels of Ni +. %'e will tentatively identify them with
the narrow eg band" split from the t2, filled band by
a strong crystal field. The asssumption that this is a
highly correlated band is justified by the fact that
NiS2 is a Mott insulator. This assumption implies
that we will consider for the localized levels only,
states correspondirfg to the 3d' (tf,e,') (triply degen-
erate) and 3d7 (thea) (doubly degenerate) configura-
tions. For shortness we will call these "spin-one" and
"spin-one-half" states. We denote by 8;t (8;. ) and
8;t„(8;„) the creation (annihilation) operators for

(ii) A set of states representing the conduction
band, of energy eK and creation and annihilation
operators CK, CK . . As discussed in the Introduc-
tion, it is difficult to identify from the presumed
band structure the origin of these conduction states.
%e will tentatively refer to them as the 0- band. The
corresponding Hamiltonian is

tHb, „d —Z, eKCK~CK~
Kcr

(iii) An effective repulsion between localized and
band electrons. The most obvious origin for this in-
teraction is the Coulomb repulsion, but other contri-
butions of elastic origin can be included in the same
term. '" The corresponding Hamiltonian is

r

Ho = QGt I+ XB; 8; C~ Ct.
ijcr m

(2.3)

(iv) Magnetic couplings between spins on different
sites. Since each site can be doubly or singly occu-
pied, with corresponding S = 1 or —spins, this part of
the Hamiltonian consists of one of three terms, cor-~i
responding to spin-one —spin-one (J~S S ), spin-
one —spin-one-half (J2S . o ), or spin-one-half —spin-

I
one-half (J3 o. o. ) interactions. Since all phases are
essentially antiferromagnetic, probably there are large
contributions of superexchange to these interactions,
although conduction-electron-mediated contributions

'

could also influence the resulting coupling constants.
The magnetic interaction Hamiltonian is

H,g= XJS; g;+a, (2.4)

where 5 runs over the (magnetically relevant) nearest
neighbors to site i, and the symbolic notation
JS; 8;+& should be understood to mean

JiS S

t
'J30 'o

depending on the kind of spin we have at sites i and
i +8, respectively.

these states, '8' and

8(~~8( „=~i;3d, m ) (i;3d, n )

where i stands for the Ni'+ site and m = —1, 0, or 1

stands for the three possible 3d states while
n = —2, —, stands for the two possible 3d states.

1 1 7

Calling 4 the energy necessary to add one electron to
the 3d7 configuration (obtaining the ground state of
the completely correlated 3ds configuration) the
Harniltonian for the localized states reads

Hh, =h XB; 8;.
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(v) A hybridization term that mixes the 3ds with
the (3d7+band) states by transferring one electron
from the d states to the band. It is

Hhr bX'V ( BtB 'C '+'C tB tB'')
~

'
~ (2.5)

The effect of this term is to introduce a noninteger
occupation of the 3d levels, as can be seen from the
fact that the number of d electrons ceases to be a

good quantum number. Furthermore, it produces a
demagnetization of the 3d levels. Precisely this last
effect is in our opinion a key feature of the (Se-rich)
compounds under study.

In order to make progress in the solution of the
resulting very complicated Hamiltonian, we will make
use of two approximations'.

(a) Terms (2.3) and (2.4) will be treated in the
mean-field approximation. This procedure reduces
Hg to

Ho'=Go XC)gCjg+Gna XB, ~B, ~ —
G. Nn.na

Jo' INf

(2.6)

where

G = XGi= XGi
l J

n=X(B; „B; ). .

na ——X(CtC; ) =1 —n

For simplicity we wi11 use in our numerical calcula-
tions the ansatz of Sales and ohlleben. Conse-
quently the model Harniltonian does not contain the
hybridization terms explicitly. This term is included
in our calculation by replacing T by T'" in the ex-
pression for the free energy derived from the model
Hamilt, onian.

After all these approximations our actual model
Hamiltonian reduces to

Hloc + h band + +G + Hmag (2.g)

This allows us to calculate the corresponding free en-
ergy in terms of n, S, and 0., where the effect of hy-
bridization will be included.

III. FREE ENERGY

F = h —TS = En —Bn —i3a'+ (—W + 6+ G)

+ T t[n ln(n) +(1 —n) ln(1 —n)]

The model Hamiltonian allows us to write the free
energy for our system. The form used here is valid
for a square density of states"; furthermore we
neglect the conduction-band entropy: this approxi-
mation is valid whenever T/W « 1 ( W is the
bandwidth) and amounts to taking a T =0 Fermi dis-
tribution, f(e) to calculate the free energy of the
band. The resulting free energy per site is

N is the number of lattice sites. The magnetic part is

H~fs = —2J(hns gs;, + Jthn Nls —J28(1 —n) rr XS;,

—igloos X(T(g+ J2blt (1 —l1)No S

—2J3h(1 —n) a' $ o;, + J3h(1 —n)2No2, (2.7)
where

pS 't

—n ln3 — 8 )
' ( m) dm

0 i

+2cr—(1 —n) ln2 —
J Bg2(m) dm '

(3.1)

where E = E' —J2$(T+2J3(T

8 = B'+J~S —J2SO. +J3(J

(3.2)

(3.3)

and h is the number of (magnetically relevant)
nearest Ni neighbors to each Ni site; henceforth we
will replace bJ; simply by J,(i =1,2, 3).

(b) We assume that the main effect of the hybridi-
zation term is to introduce a lifetime for the 3d lev-
els. This leads to an intermediate valence behavior;
the consequences of this assumption on the physical
properties have been treated by one of the au-
thors. ' ' On the other hand Sales and %ohlleben
proposed for the physical properties of intermediate-
valence systems, a simple ansatz which consists of re-
placing the real temperature T by an effective tem-
perature T'""=—T +1. The numerical consequences
of both assumptions are similar if one takes I to be
of the order of the inverse lifetime. ""

with

E'= 5+ G ——8'
2

B =G ——8'I I

4

and BJ is the inverse Brillouin function correspond-
ing to angular momentum J. The factor ln(2i+1)
measures the entropy associated with a free ion, and
the integral of Bj ' takes into account the magnetic
ordering. Equation (3.1) is a generalization for two
magnetically ordered phases, of the free energy ob-
tained in Ref. 23; notice that for S = o =0 Eq. (3.1)
reduces to the normal expression for the Falicov-
Kimball model with a square band.



J. MAZZAFERRO, H. CEVA, AND B. ALASCIO 22

The nonmagnetic part of the energy h per site is

I+OO

bnonmag
= D ( a)f ( a) ~+

+a X (8,'..8,.) + (H;r")

= E'n —8'n2+( —W+5+G) (3.4)

D(E) is the density of states. The introduction of
the magnetic energy, (H'",", ), corresponds to the re-
placements E' E, B' Band subtraction of J3a .

As mentioned before we introduce our intermedi-
ate valence assumption at this point, namely: we re-
place Tin Eq. (3.1) by T+I'= T'"". When applying
the model to a specific system such as NiS2 „Se„,the
different parameters appearing in the expression of
the free energy will generally be functions of the con-
centration x.

IV. PHASE DIAGRAM

A. General

By minimizing the free energy F with respect to the
order parameters n, S, and a, we obtain the (T/8) vs

(E/8) phase diagram shown in Fig. 2. Our charac-
terization of the metallic and insulating phases is as
follows: at temperatures smaller than the critical
temperature T„ the free energy as a function of n

shows two minima n, , n2 for each value (E/8), say

n~ & n2. %hen the absolute minimum of F is at

n~(n2), we will say that the system is in the metallic
(insulating) phase. For T =0 this gives, simply,

n =0(na= 1) metal

n = I ( na ——0) insulator

8. NiS2 „Se„

Here we apply our model to NiS~ „Se„. In order to
adjust the phase diagram obtained from the model to
the experimental one, we use relations obtained by
Alascio eI at. " In their work, the MI transition tem-
perature in the magnetically disordered high-
temperature region was shown to be (in our nota-
tion)

T'""= Tr + I' =
ln—3

2

(4.1)

The following features of the phase diagram should
be pointed out: (a) there are four different phases:
(i) a paramagnetic (P) insulator (I); (ii) an antifer-
romagnetic (AF) insulator; (iii) an AF metal (M);
and (iv) a paramagnetic metal. (b) The MI first-
order transition line ends at a critical point C. This is
a consequence of the configurational entropy [term in

small square brackets in Eq. (3.1)]: because of this
1

term, as T T„n~ and n2 both approach n, = —,.

(c) The MI transition line below T, but above the
magnetic ordering temperatures, has positive slope.
This ensures that the region above it corresponds to
the insulating phase. Physically this is due to the fact
that the spin value assigned to it is bigger than the
metallic one.

T/ BII
where T~ is the real transition temperature. More-
over, the critical-point condition reads

1/2 ~( 1+ I n( q ) / 2, 1/ 2 )

E,'= T;""(2+in—,'), (4.2)

M(P)

4J,

38
I(A M(AF)

1.0 1.2 E/B

FIG. 2. Theoretical phase diagram without IV effects. It
contains four different phases: M, I, P, AF denoting metal,
insulator, paramagnetic, and antiferromagnetic, respectively.
The values of the magnetic interactions J;, were chosen in

such a way that the critical point c has higher temperature
T, , than any of the ordered magnetic phases,

where E,
'

denotes the value of E'(x) for x =x,.
%e have used data from the three published exper-

imental phase diagrams. "' It should be noticed that
there is no complete agreement between these works.
Moreover, the experimental picture is not yet clear
enough to fix all the variables. This is especially true
of the magnetic order aspects. Because of this situa-
tion, we will take a reasonable value for J2 (J2 ——550
K), and assume E' to be constant, in order to show
that it is possible to obtain good agreement between
the experimental and theoretical phase diagrams. '4

Specifically, we use Tr=(73lx —302) K; where Tr
is the metal-insulator transition temperature over the
ordered magnetic phases, as well as the critical-point
coordinates T, =137 K, and x, =0.6. For x =0, i.e.,
NiS2, the magnetic ordering temperature is T~ =40
K. Finally, along the boundary line between the AF
and P metallic phases, TM decreases linearly from
TM =100 K at x =0.55 to TM =30 K at x=0.9. For
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FIG. 3. Theoretical NiS2 „Se„phase diagram; we also
show experimental points: k 6 Jarrett et al. (Ref. 12);
~ 0 Gautier et al. (Ref. 11); 0 Czjzek et al. (Ref. 11).
Filled and empty symbols denotes MI and magnetic transi-
tions, respectively.

V. DISCUSSIONS AND CONCLUSIONS

In Sec. IV we have shown that it is possible to ob-
tain a phase diagram similar to that of the NiS2 „Se„
compounds based on the ideas contained in the
Falicov-Kimball model (coexistence of localized and
extended states), provided we complement it with
magnetic interactions. Furthermore we have to intro-

x =1, TNt vanishes.
We assume that I' follows the law I =222x, this

being the simplest possible assumption we can make
to introduce the demagnetization via the intermediate
valence effect. This behavior is strongly suggested by
the experimental linear demagnetization mentioned
above.

Considerations about the magnetic transition tem-
perature, "help us to choose the values

J~ =
~

(222x +40) K and J3 =444 K. Then from

Eqs. (4.1) and (4.2) we obtain E'=649 K and
B'= ( —386x +772) K. After all these considera-
tions, we get the phase diagram illustrated in Fig. 3.
As it can be seen, there is an acceptable agreement
with the experimental one.

From the free-energy expression, it is very easy to
obtain (in the limit n 1) the law

ns = exp[(E 2B)/T]. Hence —the energy gap at zero
temperature is bs,„=2(2B—E). For NiS2 we get
'51

p 0.12 eV. This is of the order of the gap ob-
tained by Kautz et al. It should be pointed out,
however, that we have used for Jq(x =0) the value
550 K, which is appropriate around x =0.5.

duce the concepts developed for rare-earth com-
pounds to explain the fact that the static magnetic
moments of the system vanish.

Although the choice of parameters as functions of
Se concentration is not unique, we believe that the
description we propose for this set of compounds is a

good approximation to reality in term of fundamental
and simple concepts. The remaining ambiguities in

the choice of parameters could be eliminated by
studying the physical-properties of the different
phases. More experimental data are needed for this
purpose, in particular, measurements of the magnetic
susceptibility and inelastic neutron scattering in the
metallic phase.

The use of the Sales and Wohlleben's ansatz intro-
duces some inaccuracies in the theoretical phase di-

agram, particularly at low temperature, where it
predicts finite entropy. The consequence of this is
that the slope of the phase boundary lines do not go
to infinity when the temperature is lowered. The
general features of the phase diagram are consistent,
however, with other approaches to the problem. '

The idea of applying IV concepts to transition-met-
al solids is not new. Wohlleben and Coles' have in-
terpreted magnetic anomalies of transition-metal al-

loys, as arising from valence fluctuations at the 3d
shell. The phase diagram of V203 under pressure and
of (V& „Cr„)203, and the physical properties of the
metallic phases of these systems strongly suggest the
presence of IV effects.

In our model, the phase change implies a strong
variation of the gap between the 3d levels and the
conduction band. Since magnetic interactions J; are
expected to be gap dependent according to Koiller-
Falicov, ' it would be highly desirable to calculate
them using their theory. Unfortunately, band calcu-
lations are not available for NiS2 nor for NiSe2., a de-
tailed determination of the magnetic structure would
also be useful.

The phase diagram of NiS2 „Se„has been com-
pared" to the theoretical phase diagram obtained by
Cyrot. However, since this theoretical model is
devised for the case of one electron per local site, it
seems too far fetched to compare its predictions with
the phase diagrams obtained from NiS2 „Se„orV203.
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