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The electromagnetic scattering resonances of a collection of macroscopic bodies with uniform electric properties
are used to construct a spectral representation for the scattered field. The resonances and their weights are found by
solving for the eigenvalues and eigenstates of a non-Hermitian, linear integral operator I". A scheme is developed for
doing this by diagonalizing a matrix that represents I" by the set of individual grain eigenstates—the diagonal
elements are individual grain eigenvalues while the off-diagonal elements are overlap integrals of eigenstates from
two different grains. For a system of spherical scatterers, this scheme leads to a reasonable method of calculating
numerically the scattered field in cases where the multiple scattering is important. As an example, the scattering by a
pair of identical spheres is worked out analytically for a limiting case. Sum rules for the weights in the spectral

representation are derived and discussed.

I. INTRODUCTION

There are many important situations where elec-
tromagnetic waves are scattered by a collection
of particles each of which is large enough to be
described as a homogeneous body with a definite
shape. The scattering is caused by the fact that
these bodies are made of a material whose com--
plex dielectric constant k3 and magnetic perme-
ability 44 differ from those of the surrounding
medium k,, 4y. In the last several years, this
classical problem has undergone a revival of in-
terest. This interest is produced in part by prac-
tical considerations, for example, the possibility
of using a system of such particles as a selective
absorber of solar radiation, and partly because of
the fundamental questions that are raised. The
propagation of electromagnetic radiation among a
collection of particles is, in fact, formally related
to the propagation of electrons among collections
of atoms. Among recent studies,1 we may men-
tion several mean-field treatments of electromag-
netic propagation in inhomogeneous media,z'3 as
well as a multiple-scattering approach, applicable
especially to periodic arrays of spheres, which
proceeds by analogy with Green’s-function treat-
ments of electron propagation in ordered solids.*

In this article we discuss the scattering problem
in the case when U; =y =1, and when all the scat-
terers have the same value of k3 # k. We show
that a spectral representation can be set up for
the scattered field as a function of k1/k;, in terms
of certain resonances which are special values of
k1/Ky, obtained by solving an eigenvalue problem.

The spectral representation is useful if a con-
venient scheme can be found for calculating the
eigenvalues and the eigenfunctions (the latter are
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needed in order to determine the residues in the
spectral representation). We propose such a
scheme where one first has to find the eigenstates
of each isolated scattering body or grain. The
eigenstates of the entire scattering system, as
well as the scattered field, can then be expanded
in these individual grain eigenstates. The mathe-
matical problem to be solved thus becomes a sys-
tem of linear algebraic equations for the expansion
coefficients. The matrix of this system has diag-
onal elements which are individual grain eigen-
values, and off-diagonal elements which are over-
lap integrals between eigenstates of different
grains. This scheme is especially useful if the
individual grains have sufficiently simple shapes
so that their eigenstates, as well as the overlap
integrals, can be calculated analytically or nearly
so. That is the case for spherical grains, which
we discuss as an example in this article.

Other features of the spectral representation
are that it enables us to derive exact sum rules
for the residues of the scattering resonances.
The direct calculation of a resonance, where the
scattered field diverges, is, of course, a much
better procedure than to try to calculate the scat-
tered field itself there, since any approximate
method for calculating the latter quantity will
break down sufficiently close to the resonance.
Finally, the spectral representation achieves a
kind of separation of the physics of the scattering
problem from its microscopic geometry: the
positions of the resonances depend only on the
wave vector of the incident wave and on the micro-
scopic geometry of the scatterer. The residues
also depend on the direction or the point of obser-
vation. But both types of quantities are indepen-
dent of the intrinsic physical properties of the
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scatterer, i.e., the value of k1/k;. Thus, once we
have found the eigenstates, we have solved for the
dependence on the geometry, and we can substi-
tute any value we desire for the physical param-
eter k1 /k.

The approach taken in this article to the scatter-
ing problem of electromagnetic waves follows
ideas which are similar to those applied by one of
the authors (D.J. B.) to the problem of the effec-
tive static dielectric constant of a composite ma-
terial.’*® As far as we know, such an approach
has never been applied before to the scattering
problem.

In Sec. II we describe the general method for a
system of macroscopic scattering grains, and
develop the necessary formalism. In Sec. III we
specialize the discussion to a system of scattering
spheres, and set up the necessary equipment for
performing a calculation for any number of inter-
acting spheres. We do this particularly for the
long-wavelength limit when all the radii, as well
as the particle separations, are small compared
to the wavelength outside the scatterers. We get
an explicit expression for the field scattered by
two identical spheres whose separation vector b
is parallel to the incident wave vector Eo, and
whose radius @ is much smaller than |B| .

In Sec. IV we discuss the advantages of our
method, as well as its relationship to existing dis-
cussions of the electromagnetic-scattering prob-
lem.”"® Possible applications are suggested.

In Appendix A we calculate the eigenfunctions _
and eigenvaluesof an isolated sphere, inparticular
detail for the case kya<< 1, and use them to obtain
an expression for the field scattered by a single
sphere in the long-wavelength limit. In Appendix
B we calculate expressions for the matrix ele-
ments between eigenstates of two spheres, again
in particular detail for the case where the radii
as well as the separation are much smaller than
the incident wavelength.

II. GENERAL FORMALISM AND BASIC PROPERTIES

We consider a homogeneous, source-free host
medium characterized by material parameters
€, 03, K2 into which some inclusions of a different
homogeneous material €, o1, 11 have been intro-
duced. The inclusions occupy a finite, limited
volume. We will assume that uy=py, =1, and
attempt to calculate the total electric field E G. e,
incident plus scattered) that arises when the inci-
dent field is Eq~e !, The conductivity o and the
dielectric constant € will be lumped together in
the usual way in a complex, frequency-dependent
dielectric constant « that can have two different
values at different points in space. We represent

it in the following form:
K(F) = 161 () + K36, () = ky[1 = w0 (7)],
k=€, —4n0;/iw, i=1,2 (2.1)
u=1-r1/ky,

where 6,(r) [6,1(r)] is a step function set equal to 1
for r inside the host medium (inclusions), and set
equal to 0 outside it. Maxwell’s source-free
equations then become

_G'K-E.:(), exﬁz—c'ﬁ,
(2.2)
3'?1:0, exﬁ:—%‘ikﬁ,

~and from these e_guations we can obtain the follow-

ing equation for E:
—UX(VXE) + #E =uk?0,E,

P=wthy/ct . (2.3)

In order to find E(7) we must solve this equation
together with the usual boundary condition for
scattering, i.e., that at large distances E(F) must
be equal to the incident field Ey(r) plus an outgoing
field ~e*"/r.

In order to transform this problem into an inte-
gral equation, we need to use the tensor Green’s
function G(r - r’, %) defined by

~VX(VXxG) + G =18 - )i, (2.4)

where 1 is the unit tehsor and where G must be an
outgoing wave at large distances. The solution for
G is just

Gos(R, k) = (K26, 5 + V, Ve)e*R/(—4TR) . (2.5)
When this is used to “solve” Eq. (2.3) by treating

its right-hand side (rhs) as if it were known, the
following integral equation is obtained:

E() =E,(r)
vu [ EreEI6E -1, 0 EF), @.6)
where the appearance of Eo ensures that E satis-
fies the correct boundary conditions. We will
represent the linear integral operator appearing

in this equation by I, and the equation will then
be written symbolically as

E=Ey+uTlE, (2.7)
where
TE= f Bre,F)GE -7, 8) - BF) (2.8)

and where we have dispensed with the explicit
vector notation.
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In order to make further progress we would like,
by analogy with the static case treated in Refs. 5
and 6, to introduce eigenstates of I' and use them
to expand the solution of the scattering problem.
Although the scalar product of two fields ﬁl and
Ez can be defined by analogy with the static case,
i.e.,

(B, B)= [ dro, OB ) Ead), (2.9)

the operator I' is not Hermitian, even though it is
symmetric. Because of this, the eigenfunctions
of T in general form a bi-orthogonal instead of a
regular-orthogonal system.? Because of its sym-

metry, I' satisfies
rt=r*; (2.10)

therefore the left eigenfunctions of I are just the
complex conjugates of the right eigenfunctions,
i.e.,

Tlp=t|p,
E*| D= (T 9) = (| ) = (x|,

where we have introduced a bra-ket notation.
These eigenfunctions satisfy the bi-orthogonality
relations

(2.11)

(t*|s) =0 for t#s. (2.12)

When there is a degeneracy of eigenvalues, we
can always choose the eigenfunctions so that they
are mutually bi-orthogonal. The only property
which we cannot in general ensure is normaliza-
bility, i.e.,

@*|n+0. (2.13)

We will therefore have to assume that this proper-
ty holds for all the eigenstates, enabling us to
normalize them to unity. This property must be
verified in every particular case. When it holds,
the operator I' can be expanded in terms of its
eigenfunctions

r=2_ |nue| . (2.14)
t
The formal solution of Eq. (2.7), namely
Ee—t E,—E,+ ———E,=E,+E,., (2.15)
14l 0—=%~0 1/M—F 0= *~0 sc» .

can be written in a spectral representation by ex-
panding E,_ in the eigenfunctions of I to yield

1B, =2 |ty e |B9),
t (2.16)
Ka
Ky =— K1 :

S =

1
u

The eigenfunctions |t) all behave as outgoing waves

~e®"/y for large 7, and hence this leads to a spec-
tral representation for the scattering amplitude.

In this representation, the microscopic geometry
of the scatterers and the incident wave number 2
completely determine the eigenfunctions and the
eigenvalues. The scalar product <t*lEo> depends
also on the incident wave (e.g., for a plane wave
it depends on the incident wave vector Eo). The
physical properties of the scattering system, i.e.,
the values of k; and k;, enter only through the vari-
able s which appears in Eq. (2.16). Thus the
spectral representation clearly separates the
geometrical aspects of the problem from the ma-
terial or physical aspects.

As usual, with a spectral representation we
can always associate a sum rule. In this case,
the sum rule is obtained by letting s -, i.e.,

K1~ Ky, in Eq. (2,16). In this way we get

ms|E) =2 DKt |Ey =T|EY,  (2.17)
which is just the coefficient of @ in the expansion
of |E> in powers of . In physical terms, this is
just the first Born approximation for the scattered
field.

The eigenstates of I fall into two classes:

(1) Longitudinal eigenstates B =V¢. For these
states the eigenvalue must be #=1, and E must
vanish outside the volume of k; material [see Eq.
(2.3)]. Inside the Kk; volume ¢(r) is arbitrary,
and the equations are satisfied in a trivial way.
The only constraint on ¢ is that it must obey a
certain condition at the «;, kK, boundary: because
the tangential component of E is continuous, we
must have ¢ =const over every connected piece of
that boundary. Obviously, H vanishes everywhere
for these states.

(2) All the eigenstates for which u+ 1 (these ave
transverse fields). From Eq. (2.3) V-E =0 both
inside ky and inside k; regions. These states
must obey the equations [either (2.3) or (2.11)] in
a nontrivial way.

It can be shown that only the class (2) eigen-
states are needed to expand the scattering prob-
lem. I E isa solution of the scattering problem,
while E; isa u=1 ‘eigenfunction, we can write

(E}|Ey =(Ef| Ep) + w(E} |T | E)
=(BY |Egy + u(E} | By, (2.18)

where we used Eqs. (2.7) and (2.11). The scalar
product of |E¥) and the incident field |Ey) can be
shown to vanish as follows:

<EflE0>=de91E1-'E’0=L avve -,
1

:_{V AV (oFy) - 6V E,].  (2.19)
1
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The second term under the last integral vanishes
because the incident field is a transverse field.
The first term can be transformed to a surface
integral (over the k;3-k; boundary), where ¢ = ¢,
=const, and then back again to a volume integral,

leaving ¢, outside the integral. Thus we get

(EF| Eg) =y f avv-E,=0. (2.20)
We have thus shown that

(Et | E) =u(EY |E), (2.21)

and hence (Ef |E) =0 for u#1.

The physical significance of the class (2) eigen-
states is that at special values of k1/k; (the eigen-
values), an outgoing wave can arise in the system
spuriously, i.e., without the presence of an inci-
dent wave. If we assume that k; is real and posi-
tive, which means that % is also real, such an
eigenstate represents a constant net energy flow
out to infinity due to the outgoing wave character
of the field at large distances. Since there is no
gain or loss of energy in the host medium for
purely real k;, this requires that there be a source
of energy inside the k; scatterer. This means that
we must have Imk; <0 for any eigenstate, i.e.,
Imu > Ofor any eigenvalue #. This is, of course,
unphysical, which means that we can never actual-
ly encounter a resonance in a real system. How-
ever, resonances for which |Imu] is very small
can sometimes be approached very closely. This
is what occurs in a Fabry-Perot interferometer
when an incident wave gets “trapped” and under-
goes many internal reflections before finally get-
ting out again.

In order for the spectral representation to be
useful, we must find a convenient scheme for cal-
culating the eigenstates lt}. This is achieved by
noting that, as in the static case,’’® I' can be writ-
ten as a sum of individual grain operators, follow-
ing the analogous property of ©,(r):

0,(1)=2 0,1,
r=),r1,,

where the sums are over distinct, nontouching
grains a. The scheme consists of first finding the
eigenstates ﬁw (r) of every isolated grain, and then
using these states to expand the solution of the
entire problem.

T E.,=5,E

ad™" ax )

(2.22)

_ . (2.23)
OIMER =2, A0 ME,. 7).

The functions ©f, ©; are nearly the same as 6,,0,,

They differ from them in that they are equal to 1
over a volume that is infinitesimally larger than
that of ©1,0,. This is required in order to avoid
spurious singularities when calculating scalar

roducts. Note that the expansion represents
E(7) only inside the k; material, and that in each
grain only the eigenfunctions arising from that
grain are used.

In this scheme, the operator T is represented
by a matrix between individual grain eigenstates,
which can be represented as follows in the form
of an overlap integral:

:a |F IG;EW) =3bﬁ<e:E:a ]Eb3>
=Sps f dayea(ﬁaa’ Ebﬂ) .

(2.24)

Note that the integration volume includes only the
grain a. The problem of finding the eigenstates of
T" thus becomes a problem of finding the eigenvec-
tors of this non-Hermitian matrix. Once the
eigenvalues ¢ and eigenvectors (©,E%, |/) are known,
we can expand the scattered field E in a series
of individual grain eigenfunctions E

Some care must be exercised when doing this
because the usual decomposition of the unit opera-
tor 1, based on completeness,

1=) |E XE% |,

is only valid inside the grain a. Even if we sum
this expression over all grains a, we still get a
decomposition of the unit operator that is valid
only inside ki material. However, we would like
to expand E,, also (or even mainly) outside the
scattering grains. In order to achieve this, we
note that in order for I" to operate on one of its
eigenfunctions E,, only values of E, inside the «,
material are needed. As a result of this opera-
tion, however, we obtain the values of E, every-

(2.25)

where. Therefore, we can write
1 +
By =7 > r[0iE,) = Z-Fle % [OiE,)
=22 | B, )(OE% |E,). (2.26)
ao

Here we have used Eqs. (2.22) and (2.23) to ex-
press the result of T operating on an isolated grain
eigenfunction ©E . The result of Eq. (2.26) is an
expansion of the eigenfunction E,; which is valid
also outside the k; material. (In fact, inside the
k1 material it is not a very useful expansion be-
cause even inside a particular grain a eigenfunc-
tions from other grains also contribute.)

Using these results, we can now rewrite Eq.
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(2. 16) as a sum over the individual grain eigenfunc -

tions E with coeffic1ents that are given in terms
of the e1genvectors (9 It) and both the pertur-
bed and unperturbed eigenvalues tand s,4:

Eo= 2 sl E)OFEL|D 2
ac sb Byt -
X(t* |O;E, 9 (OrE}s| Ey . (2.27)

The sum rule of Eq. (2.17) becomes, in this
scheme

2 Sen|EL)OEL

ac +1bBst

(¥ |y Ey o) (O Efs | Eg)

:'; | Eaa><e;E:a |E0> . (2,28)

A somewhat more useful sum rule can be obtain-
ed by deleting the summation over a« in the last
equation. Even though the states E « appearing in
the expansion are not independent, since each
state has not been restricted to its own grain, we
can nevertheless equate the coefficients on both
sides of Eq. (2.28): This follows from the fact
that both sets of states {f} and{©:E,} are inde-
pendent and complete over the volume of k3 ma-
terial. We thus get the following sum rule for the
residues of the partial scattering amplitudes of
Eq. (2.27):

E<e,, .,a|t\<t*leEa><e*E:B|Eo> (©E%, |Ey ..

(2.29)

III. SCATTERING BY A COLLECTION OF SPHERES

The first step is to find the eigenstates of a sin-
gle, isolated sphere. This is most easily done by
returning to the formulation of the problem as a
partial differential equation, as in Eq. (2.3), to-
gether with the boundary condition of outgoing
waves at large distances (there is no incident wave
in the eigenvalue problem). As we found in the
general case, the eigenstates of a single sphere
fall into two classes, and we will only need the

—J

<e+CEg;,)m b'l'n’

These matrix elements are evaluated in Appen-
dix B, and in particular detail for the long-wave-
length limit a<<1, ka’ <1, k|b’-b| < 1. The
right eigenvalues ¢ and the right eigenvectors
(0;CE®) |1y of this matrix must be found. Using
them, we can write the spectral representation

transverse eigenstates, for which u#1. Because
of the spherical and inversion symmetry, the
eigenstates of I' are also eigenstates of the angu-
lar momentum operators J, and J% and of parity
P, and they can be constructed from the usual
transverse electron (TE) and transverse magnetic
(TM) vector spherical harmonics (VSH). This is
done in detail in Appendix A. Because J,, J°, and
P are Hermitian, therefore eigenstates differing
in their TE or TM character, or in their angular
momentum quantum numbers [, m are orthogonal in
the usual sense. Bi-orthogonality must only be
invoked for eigenstates that differ only in the ra-
dial quantum number n. Therefore the complex
conjugation that must be applied to a right eigen-
function of I" in order to change it into a right
eigenfunction of I'"=TI* is only applied to the ra-
dial functions. This operation is denoted by C;
thus

I_‘IE:F) —Sln)lElmn ’
(3.1)
rt\CE(IFn)v)—sln)*lCElm ’

where F stands for either E (a TM state) or M (a
TE state).

For a single sphere of radius «, the scattered
field is calculated in Appendix A in the long wave-
length limit ka<<1, in the standard form of a spec-
tral representation as a function of s [see Eq.
(A26)]. The solution is obtained in a form that is
applicable for any values of k3 and k,~—one merely
has to substitute the appropriate value for s =,/
(k; = k1). For example, if the sphere is a perfect
conductor then s =0. With the help of the sum
rule’ on the zeros x;, of the spherical Bessel
functions 7, (x),

1 1

EEA TR (3.2)

we recover the well-known results for this prob-
lem.’

In order to discuss the scattering by more than
one sphere, we need the matrix elements of I be-
tween eigenstates of different spheres with radii
a,a’, centered at b, b’,

'F'e+'E;'I;:m'n'>_ S(F,) (e CEblmn \Ebl m'n’ ‘—S(Ifﬂn’ f. - day[CE (I‘ b) El m'n’ (I‘ b,)] (33)

Ir-bl<a

for the scattered field,
1
\Esc>: sbl) 'Eblmn><e CEblmnlt> S—t
FbolmmF'dt ' m'n' st

X{(CHOLEE ) )

b'l'm'n

x (O3 CEE ) i |Eo) . (3.9)
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As is shown in Appendix B, in the long-wave-
length limit we only need to consider the approxi-
mately separate subspaces of E™ states (with
eigenvalues denoted by %) and of E® states with
n=0 (with eigenvalues ¢*’). In that case the rela-
tive components of the eigenvectors are of order
O(%%). Consequently, the order of magnitude of
the residue of any pole in Eq. (3.4) is determined
by the FI=F'l'’=M1 or Fln=F'l'W =E10 terms in
the sum. This order of magnitude is determined
by the product

sbl) IEblmn> +’CE;FI)m'n' 0)
""xi«ka)a’ F=Fo. (3.5)
kv (ka)5 , F=M

One should not conclude from this result that the
TE states are unimportant compared to the TM
states, since although the residues are smaller,
the eigenvalues /™ are also smaller than the #®
eigenvalues by the same type of O(¥*d?) factor.

As an example, we apply the procedure deve-
loped above to the problem of the scattering by
a pair of identical spheres of radius @, whose
centers are at b and b’. In this case, the sym-
metry of the scatterer leads us to choose a co-
ordinate system in such a way that the z axis lies
along b’=b. The incident wave vector K is chos-
en to lie in the x-z plane, and is given in spheri-
cal coordinates by (k, ©(, 0). From this choice it
follows that only states with m =m’ can lead to
nonvanishing matrix elements of I' [see Eqs. (B5)-
(B8)]. We also assume that |b’—=bH| > a, in which
case the off-diagonal matrix elements are usually
much smaller than the differences between the un-
perturbed isolated sphere eigenvalues. We there-
fore restrict ourselves to considering only the
electric and magnetic dipole states of each sphere,
and we ignore all interactions except when they
couple a pair of states with the same unperturbed
eigenvalues. We are thus left with the problem
of diagonalizing a large number of 2 X2 matrices
of the form

(t(:::)bb <e CbemnI Fleb’Eb tmn> ’ (3-6)

with the matrix elements given by Eqs. (B11) and
(B12). The matrices (t%),, have the form

iy t
t‘,,‘:,’z,[“ 1], (3.7)
t ty

and therefore the eigenvalues and eigenvectors
are

to=tyxty,
1
75 (3.8)
\t§> = 1 .
=7z

The quantities (t%)), and (/%)), are given by

2
any _ [ ka
(trm)o——(xo") )

), = 1 (ka)( a )3{(—2) for m=0

4 B _1% ’
3V5 Xon \Ib bl 1 for m=+1

2o =73, (3.9)
)y =+ (_b__d_’_>3{(— 2) for m=0 ,

- bl 1 for m=¢1
Xon =nT.

Since these quantities are all real, the matrix of
Eq. (3.7) is Hermitian, and the right eigenvectors
of Eq. (3.8) are also the left eigenvectors:

lcty = |ty . (3.10)

When these results, as well as the scalar pro-
ducts (CEF) |R(©,)Ey from Eq. (A25), are sub-
stituted into the spectral expansion, we obtain the
following result for the scattered field in the
asymptotic region kr> 1.

sc(r)—g--z: XXy ) TE) - 1%, T80, (3.11)

where the partial-wave- scattermg amplitudes T‘F
that appear are given by

ka)a tlm(eo)
9 s-3-({ENn’
T =_4Ei(121)' 2 (ka)® g’m(eo) (3.12)

> 1 1
X .
21 Ao sxa + (k) — Xan (D)

{0 =r4Egi(127)* ¢

The quantities d%},,(9,) in these equations are
Wigner’s rotation matrices,'’ which appear be-
cause the incident wave vector does not lie along
the z axis (see Appendix A). By setting ©(=0 in
these results [note that d%),(0)=6,,,] and com-
paring with Eq. (A26), it is easy to see that the
scattering amplitude reduces, as it should, to the
sum of the scattering amplitudes of two isolated
spheres in the limit |f)’ - f)| >a. To leading or-
der in a/ 15’ - 5|, the only change brought about by
including the interactions is a small shift in each
of the isolated sphere eigenvalues, with the shift
depending also on the azimuthal quantum number
m. Note that only one of the perturbed eigenval-
ues from each pair £, contributes to the spectral
sum with a nonzero weight, namely

(5 o= (E5mg + (50 . (3.13)

This is in agreement with a similar result found
previously in the static limit.> Note also that a
discussion of electrostatic resonances in the two-
sphere system has recently been given that has
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certain points of similarity with the present dis-
cussion.'? However, M states do not appear in
that discussion, which is confined to the strict
static limit.

IV. DISCUSSION AND CONCLUSIONS

We have presented a new approach to the exact
calculation of electromagnetic scattering by mac-
roscopic scatterers including the multiple scat-
tering. The approach is based on a calculation of
a complete set of scattering resonances, i.e.,’
outgoing fields which can arise spuriously without
the presence of an incident field at special values
of k3/k,. When this approach is applied to an iso-
lated sphere, the known results are rederived, al-
beit more tediously than by the usual phase-shift
analysis.” In particular, the expression for the
scattered field includes summation, not only over
the angular momentum quantum numbers / and m,
but over an infinite set of radial quantum numbers
n as well. The practical advantages of our ap-
proach appear only when more complicated prob-
lems are considered: The phase-shift analysis
of the scattering by even two spheres is already
very complicated, owing to the loss of spherical
symmetry. In our approach, by contrast, all that
is needed is to include the two-sphere interaction
terms in the matrix of I', which must then be
diagonalized. Thus, the scattering by a small
number of spheres is not a much more difficult
problem than the scattering by a single sphere.

We should mention that the scattering resonances
of a single sphere were investigated by Debye in
his thesis, and are described in Ref. 8 (p. 154).
Nevertheless, apparently no use was made of
these resonances to discuss the scattering by more
than one sphere. Also, there was no general the-
ory of such resonances for an arbitrarily shaped
scattering system.

It would seem that our approach should be use-
ful for discussing the scattering by dense systems
of strong scatterers (i.e., x3/k, very different
from 1) where multiple scattering is important.
Such systems are metal-insulator granular com-
posites of various types (e.g., cermets or metal
smokes). In these systems the scattering is not
confined to a small region of space, but is present
everywhere. The problem is then to calculate
the propagation of a wave (i.e., its dispersion
law and its absorption) through the composite scat-
tering medium. It would be interesting to apply
our approach to this problem.
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APPENDIX A: THE SCATTERING PROBLEM
OF AN ISOLATED SPHERE

The basic transverse vector spherical har-
monic (VSH) is defined by

- Ly,,
szfﬁ—(l:‘f)-]m- (A1)

The eigenstates of an isolated sphere of radius a
are constructed from the two basic types of VSH—
the TE (or electric multipole) field and the TM (or
magnetic multipole) field as

TE: E® #)=r¥ (X, ,.(Q),
. (a2)
wE (7 o x £EV (VT
: =—rma T LVX X .
™ Elmn(r) k[l-u,,, el(y)][v fln (7) lm(ﬂ)]
The radial functions have the following form for
both cases F=M and F=E:

() :{Aﬁ,)j, (L - ) ?7) for r<a

A
BEY(ky) for r>a , (43)

where j, and #{"’are the spherical Bessel func-
tions.” The eigenvalues (F) as well as the coeffi-
cients A and B are determined by continuity condi-
tions at »=a. Note that, beginning with Eq. (A2),
and throughout Appendix A, ©;(#) is nonzero only
within a sphere of radius a centered at the origin.
_ The tangential component of E as well as that of
H must be continuous at »=a (the latter require-
ment follows from the assumption that © =1 every-
where). It follows that the following radial func-
tions must be continuous there:

,(M) df(M)
no»

dr (A4)
® 1 dbfy)

tn l—u,,,el dr

We thus get the following equations for determin-
ing the eigenvalues:

A= k(1= 7)) a, (A5)
xj; (x) _a (x) AB
71 (x) x=x%)— BP0 lee’ (46)
1 xj’(x)) _ 1( xh‘”’(x))

1+ 500 = 200 )], A7

For given ! and F, we get an infinite sequence
of solutions x?f,) which are enumerated by the index

. (or “radial quantum number”) n. The eigenvalues

x‘,’f,) or u(,‘:) are, in general, complex owing to the

nature of the rhs of Eqs. (A6) and (A7), reflecting
the non-Hermitian character of I'. They are also
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evidently independent of #, and this degeneracy
is due to the fact that the total angular momen-
tum operator of the em field J commutes with I,
Since J is a regular Hermitian operator its eigen-
states, namely the VSH, satisfy the usual ortho-
gonality relations when integrated over the angu-
lar variables. It is only the states with the same
angular momentum and parity but different radial
quantum number 7, i.e., the radial (spherical
Bessel) functions, that satisfy instead the bi-or-
thogonality relations. Therefore instead of taking

the complex conjugate of the entire isolated sphere
. J

1=(CE{" |EM 5=

right eigenfunction, we only have to conjugate the
radial part in order to get a left eigenfunction.
This operation will be denoted by a capital C.
Thus, instead of |£*) we have

CEM = sl ()X, (Q), (Ag)

CE®,= (;(1—_;;?9—1)) [VXFE* ()X, Q)] .

The coefficients ALY are determined from the
normalization condition on Ef";,f,,

. tny2 8 0
f Br[AM, k(1 = )1’27)]2x;*,,,-x,m=(i‘%)m“— fo " dx(xj, ), (a9)

(i)

: A(B) 2
1=(CED B2 = [ d"f(—ﬁﬂw) [953 Gl = ) 2R ) (95,1 = ) 2K, ]

k(1

Ay 3[_%%5'[ i 5, (%) P (—%E@Y(l +ka

In

E;’,M)] . (a10)

hy (ka)

In order to get the last equation we had to use the integral formula

| (9% an%s,) (9 Br% ] =
r<a

which is valid when g;.(x) is any spherical Bessel
function, as well as Eq. (A7). The other coeffi-
‘cients B are determined from A% by using the
continuity conditions

B(F)__A(F)]%(xln) A12

An important special case that is both instruc-

tive and useful occurs when ka <1, In that limit,
Egs. (A6) and (A7) become

Hald| e A13
0 | =OE D, (413)
]l_l(x) l ) — l 1

(xJ, @) ") |~ BF T 21

+o(Fd), (A14)
respectively, where we have used the relation
1+1

fl(x) =— f, () +£ax), (A15)

valid for any spherical Bessel function, and the
asymptotic form of #’(x) for small x

21 - 1)1
(——xm)—-- (A1s)

h(l)(x) >~
Equation (A14) has one solution with a very small
%= 0(ka), to which we assign the radial quantum
number #=0:

M—{ [ st () 0+t g 1.+ 25D | }

(A11)
r
I+1
(x%))z =—k2 a2 ; + O(k‘*a*) ,
: (A17)
+1
=2

Comparing with Refs. 5 and 6, we see that these
are the eigenstates that reduce to the electrostatic
multipole resonances in the limit #=0. All other
solutions of Eqs. (A13) and (A14) are O(1), and
they are given, to lowest order, by the zeros

X1 n=1,2,. .., of the spherical Bessel func-
tions j,(*):

2
%1 -1g
X0 = x, 4, +O(R ), = ( lk::) , n=1

(A18)

v 2
*B = x,, +0E ), u® %—(%) , n=1,

In the strict electrostatic limit, u,,, (as well as
u,,,)) n=1 are all infinite, and such states are then
not needed when expanding the static electric field,
as was shown in Ref. 6. As we will show later,

a similar conclusion holds approximately for the
E® gtates in the limit ka<<1. We now proceed
to calculate all the necessary ingredients for sol-
ving the scattering problem of a single sphere in
that limit explicitly in terms of the zeros x;, of
the functions 7, (x).
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By using the result it is straightforward to calculate the normaliza-
“ : tion integrals in Eqs. (A9) and (A10). Using the
f dr 74, (ar)j, (B7) asymptotic form of j; (x) for small x
0
& oy . . i ( )z_.___xz (a20)
“ZE_F (8j; (aaj; 4 (Ba) - oz],-l(aa)], (Ba)], N1\ = @I+’
(A19) we thus find

) 172 1 2 172 (ka)l+1
ool Sy e
w\F Gy T \@ @i-nn

® 2)1/2——&1— B‘E’u<2>1/2 (ka)“z
Ain "(‘5 kajaiy) ® o \S&) TRi-ni’ "7 1 (a21)

A <v1 )1/2 (2l+1)!!< 1 )(1-1)/2 B(E)z <Z+1)1/2 (ka)m
o= @ Gray T \1+1 L WP -1t

The remaining quantities which must be calculated are the scalar products ((,E(,’:,B,,]EO) We will take E,
to be acircularly polarized plane wave witha wave vector k whose spherical components are (2,6 ,,0), , it
lies in the x-z plane and makes an angle 6, with the z axis. The reason for not taking the z axis along ko
is that in cases where the scattering system has an intrinsic axis of symmetry, it is usually better to
choose that as the z axis. Such a case occurs in the scattering problem of two spheres, which is dis-
cussed in Sec. III.

In order to expand such a field in VSH, we start from the expansion of a circularly polarized plane wave
traveling in the z direction’

N

E)T)=Ep,.e™*

=E, 2 i Man(2r+ 1)) (ij, (ERya 2 7 (V5 (krﬁcul]) ;
1=1
e, =e tie,. (A22)

We then rotate the coordinate axes by the angle (-6,) around the y axis, and use the fact that the E-type
and M-type VSH with a given ] are the components of an irreducible spherical tensor in order to represent
that rotation by Wigner’s d(,flz,,, (6,) matrices.!* The field EO(F) as a function of the rotated coordinate axes
will be denoted by R(6,)E,(¥), i.e., we use the same symbols ¥ = (», Q) to denote the new coordinate of a
given field point. In the rotated coordinate system, this field, which now has a wave vector k, pointing in
the right direction, has the following expansion:

o 1
R(BO)E(,:EOZ:IZ # an(21 +1)]2d%, (0K ij, (-r)X, A(Q) £ G/R) VX, (kr)X,m(Q)]} (A23)
1= -1
This result reduces to Eq. (A22) when 6, =0 because the rotation matrices satisfy
a® .(0) = (A24)

The required scalar products are now easily calculated by using the orthogonality properties of the VSH
as well as Eqs. (Al1) and (A19). For the present case, i.e., ka<<1, we thus get
8121 +1)a*]*? (ka)’
2r-11 P
#8721 +1)a*]'” (ka) **
1(27- 1)1 Xin

#an(2l +1)a)*?
@I+t

* R(6)E) =a®,.(6)E,

(CE®, |R(0 )E) =+d%],(6 )E, - n>1 (A25)

(CEE) |R(6)E) =+d },.(6)E, (@ +1)"2(kay ™.
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In order to calculate the field scattered by a single sphere of radius a and arbitrary «; in the long-wave-
length limit ka <1, we choose ©;=0. The scattered field is thus given by )

oo

3l

_z(ka)ZI +1

E (k a/ X, iﬂ)z

LE, 2 #[an(2l+ 1)}1/2[ih§”(kr)i,*1 [
1

1=

+ ;—e[gx BP(r) X, ]

@ -1nF

n=1

(Ra)* + sxj1,

_z(ka)Zt +3

<_(z +1)(ka)?**!

- (ka/,,)! )] (A26)

[QI+ DN F s—1/@i+1) @« Fl@I= DI T4 (ral + 527,

It is immediately clear from this equation that the
electric partial wave (VXA{"X,,;) of the scattered
field arises, to lowest order in ka, only from the
n =0 radial eigenstate. On the other hand, in the
magnetic partial wave hfl)i’(m all the radial eigen-
states n= 1 contribute to the scattered field to
lowest order in ka. The ka dependence of the iso-
lated sphere eigenvalues and other quantities cal-
culated in this appendix are extremely useful when
one attempts to calculate the scattering by a col-
lection of spheres in the limit where all the radii
a, satisfy ka; <<1. -

APPENDIX B: MATRIX ELEMENTS OF TWO-SPHERE
INTERACTIONS

- In order to calculate the matrix elements of T’
between two eigenstates belonging to different
spheres, according to Eq. (2.24), we must cal-
culate an overlap integral of the two eigenfunc-
tions over one of the spheres. To facilitate this,
we will expand the eigenstates of one sphere in
VSH centered around the other sphere.

In this appendix, we use the following definition

FR|F =BT (@) =@M D G (@,)

U J'M

I
and notation for the VSH (Ref. 13):
¥inl@) =2 ¥, a(Q)8,(m| gl M), (B1)
m
where Eq are the spherical unit vectors
- 1 - -
e1=- 7= (e, +ie,),

-éo = -éz N (BZ)
E-l :_Eik ]

and where (Im |g|JM) is a Clebsch-Gordan vec-
tor coupling coefficient. The connection between
this definition and the TE and TM VSH which are
so useful in electromagnetism is

- -
Kim=Yi2m,

l

i - 1/2 -
7?' [-6 sz (k'V)Xz m] = (m) fz +1 (k’l’)Y, 1+lm (B3)

I+1\2 .
-(m) fia6enY,; 1

where f; (x) is any spherical Bessel function. Ac-
cording to Ref. 14 the required expansion is

i B sregeyf X 1 ’
xf)'(kb)YM (Qb)il (- 1)1 J+J M[ l l}[?\ J J ]
0 0 Olp M M

AdJd > -
x{ } tor |B>|%| and [F-B|> %], (B4)

117

where 3-j and 6-j symbols appearv as coefficients.

Using this expansioni it is a straightforward matter to evaluate the required overlap integrals between a
state of the sphere at b with a radius ¢ and a sphere at b’ with a radius a’:

(6;CEW | EWr gy = AVPBIO(4m)* 257 ' (= 1)1V ™, (a, 4y1)

bl mn n

_ N A4
XY z*h{”(kIb'—bI)Yw(ﬂb'-b)[
Au

][7\ I A ]{A 1 l’}, (B5)
L om —-m' 1 1

0
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* (E) (E)
<ebCEb1 mn I Eb'l'm’n’ >

ABPB®, . 4 172
_ARBy - _11+1~m'< m )
@ -y (-1) I +1)(21" +1)

; >, > b '
XZ z‘hﬁ‘n(klb’—b|)Ym (Qb"b)[ 1 ]
i Lom —m!

’ 1 4 ?
y ([(zz')m[x 1+1 1 +1]{x 1 1 }+[z(z'+1)]”’2r‘ I+1 1 -1]{7\ 1 1 ]Im(a, B
0 0 o J1ur+1 1+1 a0 0 JU1 1r-1 1+1

+[[(l+1)l’]""’[)t l',l-llﬂl{x ! l}+[(l+1)(l’+1)]”2[7\l—1l-l]{)\ ! z}]
| , 0o o o Jltr+1i-1 o 0 oJlr-1i-1

XI;-1(a, u?f,)) s (BB)
(OFC B | By ) = Al B (am) 2474 (o 1)ttt ot
; >, - P A A
XY MHOE|D =B )Y, (cz,,,_b)[ ]
A L om —-m')
S C AN A T PN A 1 r 41 \12 10 ’ ,
N N A R N ) )
00 0 JU r+1 1 oo o Jl1r-17
B7
A‘E’B"E", , , ( )
<9§CE§E1),M\E§”";"»{,.'>=—J"‘T‘Y%E(1 ) (am)t 2 F (= )t
=~ %n
. . A !
<2 z“h;“(k\b'—bI)Ym(nbl-b)[‘ Pt ]
au uw m _ml
I )“2[)\ 1+1 l']{)\ I z'}
x ( L.(a, u®)
+ - 1+1 14
[211 o o ot i+t o '
I+1\2 (v 1-1 1IY(v 1 U
+(Ez'+—1'> [ }{ }Iz-ﬂa, ) |. (B8)
0 0 oJl1 v 1-1
The function [; (a, #) in these equations is defined by
a 3
_ . / . a . . X . .
I(a, u)= J; dr 5, (1 = u) ?r)j, (kr) =- 'k—a_u(h(x)]t-l(ka)-E]t-l(x)]t Uw)),seu-m‘ r (B9)

for 7> 0 [note in this connection that j.1(x) =#¢(x), the singular spherical Bessel function]. For the case
when.ka <1, I(a, u) can be evaluated approximately for u=u" or u=u by using the appropriate expan-
sion of ,(ka), as well as Eqs. (A17) and (A18):

@ (ka) 2
u(2l+ 1)1
_ aa (kd)l-l (1 - u)1/2
BCTES VT

a(ka)'jy (x, -
1o, i) V) 5’; sl , (B10)

-1

3 242 .
& o @ (ka) "G 06p)
I,(a, u;,,) l(Zl—l)l!x," , n= 1

% (Ra)* (1 +1) 1+ 1)“2 .
@r+1)@7+1)11@7+3)11\ 1

L(a,u)= [ 400) = @1+ 1)jy ()]s -0 24

11 = u)'%a) for a1,

I 1 (a’ u%)) =

In the long-wavelength limit ka<<1, ka’ <1,k |5—5' I <1, only the largest value of A needs to be kept in



3538

the sums.

DAVID J. BERGMAN AND D. STROUD

22

If we use the asymptotic form of hf), as well as the approximate expressions for the A and B

coefficients and the eigenvalues u obtained in Appendix A and the above expressions for I;, we find for the

matrix elements between states on different grains

wm (ka)(ka’
(s |Tloj e = - 1y on )
=in =in’
2 ( 4mil’ )“2 L+U +m=m' Y21+ = m+m' )
2l+21' +1\@+1)27+1)(@’ +1)(21’ +1)
. l+m l-m
a 1+1/2 a, 1'+1/2 2
X |B'_E|) (Ib’ |) Yiapm-m(@yr) =0 (%), (B11)
. 1
+ E) + (E) ~ 1'+m
(O3CE e | T IOV E R i) = (= 1) @r+1)@1" +1)(21+21" +1)
x(. 4mil’ >“z[l+l’+m—m']m[l+l’—m+m"]1/2
?
(27-1)(21'+3) I+m /-
a 14172 a’ 1+1/2 0
X<|6'-51) (IB'—EI) Voo, wonl0) =0 %), (B12)
O(k*) for n#0 andn'#0
O;CE® |r|6;.EE.
(OLCEm | T o) = {O(k2 ) forn=0 and»n’#0 orn#0 andn’'=0, (B13)
. + O(F*) forn’'+#0
<e CE'(bAllim l F‘eb’Egl)’m’n’> :{O(k2) for nl =0 (B14)
- b
. O(k*) for n#0
LB P10} E ) ={ 00 107770 ®15)

In Egs. (B13)-(B15) we have not reproduced the
complete results since we will now argue that they
are not needed for a calculation of the scattered
field in the long-wavelength limit.

The diagonal matrix elements of I" are just the
isolated sphere eigenvalues s and s%. From the
results of Appendix A, these eigenvalues exhibit

the following behavior in the long-wavelength limit:

1 ka >2
M) — ~_ -0 k2
Sin = Urp (x! ~1n ( ),
s = ul -(i“ ) =0(*), n>1 (B16)
in In

@ _—%m L
WD T2l +1

R

=0(Y.

Consequently, it is easy to see that the subspace
of E™ states is unperturbed by the other states to
lowest order, and the same is true of the subspace
of E®), n=0 states, and of the subspace of E®,
n#0 states. Furthermore, the E® n#0 states do
not contribute in leading order to any of the multi-
pole components in the expansion of the scattered
field. Therefore, in discussing the long-wave-
length scattering by a collection of spheres, we
will have to diagonalize the I' matrix only within
the separate E* and E®, n =0 subspaces. For
this purpose only the matrix elements of Eqs.
(B11) and (B12) are needed.
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