PHYSICAL REVIEW B

VOLUME 22, NUMBER 7

1 OCTOBER 1980

Percolation with first- and second-neighbor bonds: Renormalization-group
calculation of critical exponents_

Rosane Riera, P. Murilo Oliveira, C. M. Chaves, and S. L. A. de Queiroz
Department of Physics. P(ml['/icia Universidade Catélica.
22453 Rio de Janeiro. Braczil
(Received 23 April 1980)

We propose a real-space renormalization-group approach for the bond-percolation problem in
a square lattice with first- and second-neighbor bonds. We treat the respective probabilities as
independent variables. Two types of cells are constructed. In one of them we consider the lat-
tice as two interpenetrating sublattices, first-neighbor bonds playing the role of intersublattice
links. This allows the calculation of both critical exponents v and y, without resorting to any
external field. Values found for the critical indices are in good agreement with data available in
the literature. The phase diagram in parameter space is also obtained in each case.

I. INTRODUCTION

The percolation problem' has been extensively
studied in recent years. In analogy with thermal
phase transitions we can define ¢ritical exponents,?

and a number of techniques initially devised for ther- .

mal problems is used to calculate these exponents.’™
Specifically, real-space renormalization group has
been successfully applied to this problem by several
authors.*™8

In this paper we apply the real-space
renormalization-group (RG) techniques to the bond-
percolation problem in a square lattice, taking into ac-
count both nearest- and next-nearest-neighbor bonds,
with probabilities p and ¢ of being active, respective-
ly. We treat p and ¢ as independent variables (that
is, no a priori relation between them is assumed).
This will allow us to find the phase diagram for the
system. To our knowledge, a phase diagram has not
been found or proposed. in any other treatment of
this problem.

Two types of cells are considered. Both display the
symmetry and the connectivity of the original lattice,
which is important in order to achieve accurate
results with relatively small cells.>%?

In one type of cell, we make use of the fact that
the original lattice may be decomposed into two
square interpenetrating sublattices, each one formed
by second-neighbor bonds, coupled by the first-
neighbor bonds [see Fig. 3(a)]l. Thus, for a given
sublattice, the first-neighbor bonds act like an exter-
nal field and this allows the calculation of both ex-
ponents v and vy, without resorting to any ‘‘applied”’
field (in the percolation problem, the ‘‘applied” field
is simulated by a ‘‘ghost’ site connected to every lat-
tice site by ‘‘ghost” bonds®>%10).

Up to now, the only approach treating p and ¢ as
independent variables* evaluates solely the

correlation-length exponent, using a decimation pro-
cedure.

II. SIMPLE-CELL APPROXIMATION

We recall briefly the pure first-neighbor-bond case
treated in Ref. 8. One chooses a b x b cell. The cell
has the same symmetry as the original lattice and
each bond has a probability p of being active. The re-
normalization transformation casts it into a primitive
cell in the renormalized lattice, each renormalized
bond now having probability p’ of being active. Both
the original and the renormalized cells have the prop-
erty of generating the entire lattice by suitable primi-
tive translations. ~(Figure 1 shows the case b =2.)

A recursion relation is defined when some
prescription relates the two probabilities p and p’. In
this case, a natural one’~® is to count for p’ all paths
that traverse—that is, ‘‘percolate’’ through—the ori-
ginal cell in a given direction, for example, vertically.
We then get, for a given b, '

p/=Ry(p) . (n
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FIG. 1. (a) A b x b cell in a square lattice with only
nearest-neighbor bonds; here » =2. (b) A renormalized
cell.
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Clearly the same recursion relation would be ob-
tained if we had considered the horizontal direction.
For b =2 the above definition leads to> "8

Ry(p)=p>+5p*(1—p) +8p3(1—p)2+2p*(1—p)3
=2p5—5p*+2p3+2p?

for we have two paths with two active bonds [135
and 246 in Fig. 1(a)], eight paths with three active
bonds and so on. In what concerns the ‘‘vertical per-
colation,” that is, entering the cell through sites 1 or
2 and leaving it through 5 or 6, it is irrelevant wheth-
er bonds 12, 47, and 28 are active or not, so the
counting of paths in Fig. 1(a) takes into account only
the five remaining bonds.

From the fixed point p* =R, (p*), the correlation-
length exponent® follows: v =Inb/In\,, where
A= (dp'/dp )p*. Also, p* represents the renormal-

ization-group approximation’ to the critical concentra-
tion p. for the given lattice. The cells of the type
shown in Fig. 1 give the exact result p, =~; for any

value of . This can be seen from duality arguments
and is demonstrated elsewhere.”®

The counting of percolating paths becomes difficult
as b increases, so we make use of a computer pro-
gram which generates the exact recursion relation
once the cell and the prescription for p’ are given.
With this program we have generated all the recur-
sion relations of this paper. For the pure p case,® the
values of the exponent v for cells with b from 2 up to
5 approach quite rapidly the accepted value'! 1.34
+0.02, indicating that errors decrease as b increases.

Now, we connect also second-neighbor sites, the
respective bonds having probability ¢ of being active,
and construct a b xb cell such that for ¢ =0 it
reduces to the one considered previously. The case
b =2 is shown in Fig. 2. Again, we count for p’ all
paths traversing the cell in the vertical direction, that
is, such that one reaches the nearest-neighbor cell in
the original lattice. In Fig. 2(a) this corresponds to
counting paths beginning at points 1 or 2 and reach-
ing points 5 or 6. For ¢’ we count paths traversing
the cell along the diagonal direction, that is, such that
the next-nearest neighbor cell is reached. In Fig.
2(a) this corresponds to counting all paths beginning
at point 1 and reaching the point labeled 9. Paths
passing through points outside the cell, such as
12749, are not counted. Again there is a vertical-
horizontal symmetry and in addition, a northwest-
northeast symmetry in the definition of ¢’. With
these prescriptions we obtain, for a given b

p'=Ry(pq) . (2a)

a'=0s(p.q)=q0s(p.q) . (2b)
where

Ry(p,0)=R,(p) , (2¢)
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FIG. 2. Cell in the original lattice (a) is transformed into
the one shown in (b). Full circles denote sites belonging to
the cell, whereas sites belonging to neighboring cells are
shown as empty circles. (c) Typical plot of the RG flow
lines in the approximation of Sec. II. The heavier line AB
separates ‘‘percolating’” (outside) and ‘‘nonpercolating’” (in-
side) regions.

the latter being defined by relation (1). We have fac-
tored out ¢ in Eq. (2b); from our definition and from
our cell this is always possible.

The renormalization-group flow in parameter space
is shown in Fig. 2(c). We comment on the main
features of this diagram. The interesting fixed point
is B(p*=—;—,q*=0), as expected. Due to the factor-

ized form of Eq. (2b), the matrix for the linearized
transformation in the vicinity of this fixed point is
triangular (9¢'/9p =0 if ¢ =0). Hence, the relevant
eigenvalue of the transformation A, = (dp’ /9p)g
leads, in view of relation (2¢), to the same exponent
as in the pure p case, in accordance with universality.
The second eigenvalue, A\, =(9¢g'/9q ) 5, is smaller
than 1.

The curve 4B separates the parameter space into
two regions: the external (internal) part comprises
points such that we do (do not) percolate through the
lattice. Curve AB is then a phase boundary for the
problem. It is interesting to follow the flow line
along this boundary, for it shows the second-
neighbor ‘‘interaction’’ becoming irrelevant, ap- -
proaching ¢* =0 as successive renormalizations are
performed.

A line of fixed points at p =1 is also found. Its
origin can be traced back to the fact that Q,(p,q) [for
instance in Fig. 2(a)] is the probability of reaching
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site labeled 4, and this is clearly 1 when p =1, what-
ever the value of ¢; hence, Q,(1,¢4) =g¢. It should be
pointed out, however, here and in Secs. III and IV,
that the physically interesting region of the parameter
space is the vicinity of the phase boundary AB.

Except for the trivial fixed point p*=¢*=0, no ad-
ditional fixed point is found.

We would expect the phase boundary to cross the ¢
axis at g, = —; for the lattice formed only by second-

neighbor bonds is also a square lattice. Our calcula-
tions give g. =0.442 for b =2 and ¢, = 0.445 for
b =3, approaching, although slowly, the value -;
The intercept of the curve 4B with the line p =¢
gives p. =q.,=0.275 for b =2 and p. =g, =0.264 for
b =3, which is to be compared with 0.252(+40.003,
—0.007), found by Magalhies et al.,” whose treat-
ment assumes the a priori relation p =gq.

IIIl. DECOMPOSITION INTO TWO SUBLATTICES

The cells and renormalization-group transforma-
tions considered in Sec. Il have the advantage of be-
ing a relatively simple and natural extension of the
pure first-neighbor-bond problem, reducing to it
when ¢ =0 and giving reasonable numerical results.
However, at p =0, the cells do not respect the ‘‘two-
sublattice symmetry’’ of the original lattice, that is,
its decomposition into two disconnected sublattices
for p =0 is not preserved under the renormalization-
group transformation. This gives rise to a not quite
correct behavior of the flow lines on the ¢ axis. In
other words, at p =0, we would expect to have the
same behavior along the g axis in the vicinity of ¢, as
we have in the neighborhood of p. on the p axis.
From the point of view of the renormalization group
this amounts to requiring that the intersection of
curve AB with the g axis be a fixed point. In a cell of
the type shown in Fig. 2(a) this does not happen, for
in this renormalization transformation, ¢ generates
contributions for p’ even if initially p =0 [for exam-
ple, path 145 in Fig. 2(a)]. It might be argued that
the existence or not of a fixed point at 4 and the
behavior of the flow lines near it are not (directly)
physically observable, being only auxiliary quantities,
the important thing being the phase boundary itself.
We shall see below, however, that the appearance of
a fixed point at 4 depends on the use of the two-
sublattice symmetry and this has the effect of chang-
ing the curvature of the phase boundary [see Figs.
3(c) and 3(d)].

Having in mind the idea of displaying explicitly the
two-sublattice symmetry, we introduce a cell of the
type shown in Fig. 3(a) which, under renormaliza-
tion, becomes the one shown in Fig. 3(b). Two
prescriptions defining renormalized p’ and ¢’ as func-
tions of p and ¢ are discussed in Secs. III A and III B
below.

(b)
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FIG. 3. Cell in the original lattice (a) and transformed in
the renormalized lattice (b). Full circumferences denote
sites belonging to the cell, whereas sites belonging to neigh-
boring cells are shown as half-circumferences. First-
neighbor bonds are dashed and second-neighbor bonds are
represented by full lines. « and B refer to the sublattices.
(¢) and (d): qualitative plots of the RG flow lines in the ap-
proximations of Secs. III A (¢) and I B (d). The heavy line
AB separates ‘‘percolating™ and *‘nonpercolating’ regions.

A. First RG transformation

Refer to Fig. 3(a). For p’ we count all paths start-
ing at sites «a, or «, which end at sites B, or 8,, that
is, paths in which there is a change of sublattice.
This is consistent with the idea that p bonds are now
thought of as intersublattice links. For ¢’ we count
all paths going from site a; or «; to site as or ay,
but only through sites in the given sublattice «. Here
again, the symmetry of the cell makes several defini-
tions equivalent, such as starting at «; or a3 and go-
ing to a; or ag for ¢’ and from «, or a3 to B, or B3
for p’. With these definitions we get

P’ =Py(p.q)=pFy(pgq) , (3a)

q'=Rp(q) . (3b)

Note that Eq. (3b) involves only second-neighbor
probabilities and the functional dependence of ¢’ on
¢ is the same as that obtained in Eq. (1). This comes
from the fact that, within a given sublattice, ¢ plays
the same role as p in the pure first-neighbor-bond
problem. Note also that there must be at least one
factor p in each contribution to p’; hence, the form of
Eq. (3a).
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The renormalization flow is shown in Fig. 3(c).
Point A4 (p*=0,q*=%) is now a fixed point; the
same is true of B(p*=%,q*=0). The line of fixed
points has disappeared but there remains a fixed
pointat C(p=1,q =%), whose existence comes

from the particular form of Eq. (3b).

At A the Jacobian matrix is diagonal, for both
9¢'/dp and dp'/dq are zero, but now A\, =9dq'/dq and
N, =0p'/0p are both larger than 1. From Eq. (3b) it
follows that the exponent v =Inb/In\, coincides with
those referred to in Sec. II, in accordance with
universality. On the other hand, A, is a
““magnetic’’-like eigenvalue, in the sense that
nearest-neighbor bonds are the analogs of a ‘‘one-
spin operator’’ in a thermal problem, for each sublat-
tice. In the Appendix it is shown that the ‘‘suscepti-
bility’” exponent? v is given by y =In\,/InA;.

We have performed calculations for 6 =2, 3, 4 for
F,,(O,q )

In order to estimate the value to which our results
should converge as b — oo, we extrapolate®'? In\,
against Inb, obtaining the value 1.9 for the fractional
dimension'? d;=2—mn=1In\,/Inb. With the scaling
‘relation y = vd, and the previously extrapolated
value® of v, we obtain the limiting value y =2.5, in
good agreement with data available in the literature,
namely, 2.435 (Ref. 6), 2.375 (Ref. 2), and 2.279
(from the data of Ref. 8).

At the fixed point B there is only one relevant
eigenvalue, namely 9p'/dp (the Jacobian matrix is tri-
angular at B). From this, we get v=1.042 for b =2
and v=1.099 for b =3. These values show a poorer
convergence than those previously calculated for this
exponent. The reason is that in this case our renor-
malization transformations and cells do not reduce to
those considered in the pure p case when ¢ =0.

The phase boundary 4B, shown in Fig. 3(c), has
now changed with respect to that in Fig. 2(c). This
can be understood if we consider the situation p =0
and ¢ slightly less than % We then expect each sub-

lattice to develop large clusters of active bonds.
Thus, an infinitesimal amount of intersublattice
bonds will connect these large clusters and an infinite
cluster will be formed, that is, the system percolates.
This means that the phase boundary must be tangent
to the ¢ axis at 4. Clearly, the same argument does
not apply at B: if, in a large cluster of first-neighbor
bonds, one adds some second-neighbor bonds, most
of them will be “‘wasted,’’ for they will connect sites
already connected by p bonds. Note, however, that
with the recursion relations (3) the curvature of the
boundary at B has the same sign as that at point B in
Sec. II [Fig. 2(c)], implying thc existence of an in-
flection point.

We shall see that with the recursion relations de-
fined in Sec. III B, no change of curvature along the
boundary is observed [see Fig. 3(d)].

B. Second RG transformation

We now introduce contributions from p to the re-
normalized probability ¢’; for p’ we keep the same
definition leading to Eq. (3a). As at least two first-
neighbor bonds are needed to contribute to ¢’ [for
instance, to go from «, or a;, to as or ag in Fig.
3(a)]l, we can write the new recursion relations as

p'=pFy(pq) , (4a)
q'=p2Gb(p,q)+Rb(q) , (4[‘))

where R,(g) is the same as in Eq. (3b).

Before defining G,(p,q) we note that the form of
Egs. (4) implles both the existence of a fixed point at
A (p*=0,q ——) and the same values of v and y
obtained at this fixed point in Sec. III A, regardless of
the functional dependence of G, on p and ¢g. This is
because A has coordinate p* =0, (3q'/dp ), is still
zero, and (dq'/dq) 4 has the same value as before.

We now complete the definition of ¢’. At first
sight, it might seem reasonable to take all nearest-
neighbor bonds into account. However, if this is
done, the symmetry between sublattices a and 8 will
be lost, in the sense that calculating ¢’ with paths go-
ing from «; or a; to as or ag gives a different result
than using paths from B, or 8, to Bs or B¢. In order
to keep this symmetry, we do not take into account p
bonds connecting sites in the cell to sites in a
nearest-neighbor cell. This corresponds in Fig. 3(a)
to exclude bonds such as Bas, Bras, and Bras.

With this prescription, B (p* = %, ¢*=0) is a fixed
point and the Jacobian matrix is still triangular at B.
The eigenvalue A= (dp'/dp ) p is, of course, the
same as in Fig. 3(a), but the second eigenvalue is
slightly larger than 1 and increases as b goes from 2
to 3 [see the flow line along the boundary 4B of Fig.
3(d)]. This implies the existence of another fixed
point on this boundary, which we call D in Fig. 3(d).
Both the fixed point C and the straight flow line AC
of Fig. 3(c) are no longer present.

For b =2, D is located at (p*=10.486, ¢*=0.010);
there is only one relevant eigenvalue at this fixed
point, namely, A, =1.958, from which we get
v=1.031. These values are to be compared with
(p*=0.3894; ¢*=0.1516) and v =0.861 obtained by
Young and Stinchcombe.* Larger cells are needed to
improve this value of v.

IV. CONCLUSIONS

The phase boundary AB of Fig. 3(d) is very similar
to the one obtained by van Leeuwen!? for the Ising
model with first- and second-neighbor interactions.
There, the enlargement of the parameter space by the
introduction of second-neighbor couplings shifts the
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original fixed point along the phase boundary. In the
present case, however, due to our definition of the
renormalization transformations, both points D and B
occur. Had we taken all p bonds into account, it
would have been possible to get contributions to ¢’
made out of only p bonds, and B would no longer be
a fixed point. But then symmetry between « and 8
sublattices would be broken, as stated above.

As already remarked at the end of Sec. IIl A, there
is no change in curvature along the phase boundary
in Fig. 3(d). This means that now, near point B, the
condition for percolation is less restrictive. This, in
turn, comes from the introduction of a p dependence
in Eq. (4b), which clearly makes possible the percola-
tion with smaller values of ¢, for a given p. On phys-
ical grounds, we expect that the diagram in Fig. 3(d)
be our best representation of what actually occurs in
the true infinite lattice.
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APPENDIX

Let u = % —gq, so u.=K.p!? is the equation of the

critical line (or phase boundary) near the critical
point (p,u)=(0,0), where ¢ is the ‘‘crossover’ ex-

ponent. Clearly, as the effect of the linearized renor-
malization transformation in the neighborhood of the
critical point is to transform the pair (p,u) into

(Xyp, Nyu), one has ¢ =InX,/In\,. If the average
cluster size diverges as S (0,u) ~ u~7, then it is easily
shown' that S(p,u) ~ (1 — K.p"®)~7, hence,
S(p,0)~p* As S(pu)=3,s*(ns), where (ng)
is the average number of clusters of size s per site,
we can define the quantities (n;)o and (n), through
S(0,ug) =3, s*(ng)ygand S(p—0, uy) = 3, s2(n),,
where uy is a fixed small value.

We are interested in studying the effect of intro-
ducing a small amount of p bonds on the behavior of
the average cluster size: then we can take p < I/N,
where N — oo is the total number of sites. The pres-
ence of a p bond will make finite clusters couple, that
is, it will lower by one unit the number of clusters of
two given sizes and will raise the number of clusters
with greater size. If we assume that the coupled clus-
ters were most probably of a size close to the average
(this is a reasonable assumption as long as we are
dealing with large numbers, so the spread in the
probability distributions shrinks down as 1/~/N ), one
has

(ng)o—1/N=(ng)o—=Ap. §~S

n =
(s (ng)y, otherwise ,

where So=S5(0,u¢) and 4 is a constant. Then,
S(p—0,uq) =3 s*(ns)o— BSgp (B =const)

or
[S(p—0,uy)—S(0,ue)l/p=—BI[S(0,uy)]? ,

from which one has S(p,0) ~ 1/por y/¢p=1.
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