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A classification of the local topologic ~l type of ph ~se di ~grams for fluid mixtures is obtained.

The classification derives from ideas of Thorn &nd results of Arnol'd in the theory of singulari-

ties of smooth real-valued functions, together with the &ssumption th at the state of the system

corresponds to a minimum of a smooth function on a sp ~ce of intern tl variables which c &n have

arbitrarily high dimension. Griffiths's notions of elementary and compound entities emerge in a

natural manner. The methods used are phenomenological. Some tttention is given to the ques-

tion of why these seem to work so well and how they might be rigorously est ~blished.

INTRODUCTION

Our goal, in this paper, is to obtain a complete lo-
cal classification of possible phase diagrams. We
present a phenomenological theory dealing with

phase diagrams in thermodynamic field space. Our
theory subsumes the Landau model of phase transi-
tions. But, it is deeper in the sense that it gives an
insight into why the Landau theory works. We sug-
gest how thermodynamics might be derived from the
underlying statistics of the microstate of the system.

We have been very much influenced by the work
of Griffiths. We will employ his terminology and, in

particular, we adopt his suggestion regarding the use
of thermodynamic /Ield variables (cf. Sec. I). This
simplifies the classification of phase diagrams, and
accordingly, we shall only consider phase diagrams in

field space,
In this paper, we classify typical neighborhoods of

phase diagrams by observing that phase diagrams
seem to be homeomorphic to bifurcation sets of alge-
braic functions. We, therefore, posit that there exists
a one-to-one correspondence between typical neigh-
borhoods of phase diagrams and typical neighbor-
hoods of bifurcation sets of smooth functions with a

global minimum. Adding various transversality con-
ditions gives a classification of acceptable phase di-

agrams and allows us to deduce various forms of the
Gibbs phase rule.

Section I summarizes Griffiths's work and gives
some of the mathematical definitions needed to
understand it. Section II introduces additional
mathematical terms and various examples of strati-
fied sets. Section III is devoted to the important no-
tion of bifurcation sets and gives a general descrip-
tion of the type of modeling we use. In Sec. IV, we
specifically describe the model we have in mind and
quote the results from singularity theory that we
need. This section is very concise and will probably
make extremely difficult reading for all but the most
mathematically oriented. We thereby advise the

reader to glance quickly through this section and re-
turn to it for &eference awhile reading the later sec-
tions. In Sec. V, the results of Sec. IV are applied to
thermodynamics and we rephrase Griffiths's results
in these terms. In Sec. VI a local classification of
phase diagrams is given together with a powerful gen-
eralization of Gibbs phase rule. Section VII, which is

more philosophical and speculative, suggests possible
extensions of our results.

Our theory makes no predictions about critical-
point exponents. However, extra assumptions can be
incorporated to take care of this. Although we are
presenting a phenomenological theory, the authors
are convinced that an exact theory will ultimately be
formulated along these lines. In particular, we feel
that the generalized Morse lemma is the key to
understanding how thermodynamic variables and
phases arise from systems with a large number of de-
grees of freedom. In our opinion, the single greatest
problem with phenomenological theories of phase
transitions is not that they are inadequate regarding
numerical predictions, but, rather, why they work at
all. For example, in a fluid or magnetic system, it

seems almost incredible that, given the enormous
number of degrees of freedom of the system, the
qualitative features of the phase transition can be
described in terms of a polynomial in one order
parameter. We feel that the theory we outline here is

especially important in that it provides a mathemati-
cal explanation for this.

Our theory also gives rise to significant algebraici-
zation of the mathematical techniques used in

describing phases and allows particularly elegant for-
mulations of the Gibbs phase rule and the conditions
under which it will apply. We also sketch some of
the ideas which may be used to discuss symmetry and
symmetry breaking.

The mathematical ideas used in this paper are due
mostly to Thorn' and Arnol'd. ' Recently, some of the
applications of Thorn's theory have come under at-
tack. Although we feel that criticism of the more ex-
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travagant claims is justified, the controversy should
not be allowed to obscure the value of Thorn's
theory. We hope that this paper will convince physi-
cists of the value of catastrophe-theory modeling and
singularity theory.

q
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I. BASIC DEFINITIONS

We first define the basic ideas employed in this pa-
per. Readers who feel uncomfortable with the word
topological space may substitute subset of Euclidean
space with no harm to anything except mathematical
generality. Recall that a homeornorphism of two to-
pological spaces is a one-to-one continuous map
between the spaces with a continuous inverse.

Definition. A pair of topological spaces ( Y, Q) is a

topological space, Y, together with some dis-
tinguished subspace Q C Y.

Definition Ahom. eomorphism h:( Y, Q) ( V', Q')
of two pairs of topological spaces is a homeomorphism
h: Y Y' such that h(Q) = Q'.

A homeomorphism of pairs of topological spaces is
a di ffeomorphism of pairs of topological spaces if Y

and Y' are differentiable manifolds and h and h ' are
infinitely differentiable. Two pairs of topological
spaces are homeomorphic (diffeomorphic) if there ex-
ists a homeomorphism (diffeomorphism) between
them.

We remark that the assertion that ( Y, Q) and
( Y', Q') are homeomorphic as pairs is stronger than
the assertion that Y is homeomorphic to Y' and Q is
homeomorphic to Q'. For example, let Y = Y'=R',
and let Q be the unit circle on xy plane and Q' a cir-
cle which is knotted (say a trefoil knot, cf. Fig 1).
Then ( Y, Q) and ( Y', Q') are not homeomorphic as
pairs, although Y is homeomorphic to Y' and Q is
homeomorphic to Q'. It is intuitively clear that there
is no way to unknot Q' in Y' without breaking it (for
a formal proof see Crowell and Fox ).

FIG. 2. (a) 0 = ((x,y) C R2}y =0}. (b)
0'= {(xy) E R2}x2=y3}. (R,0) and (R2.Q') are
homeomorphic, but not diffeomorphic as pairs.

Note also that the condition that the pairs ( Y, Q)
and ( Y', Q') be diffeomorphic is stronger than the
condition that they be homeomorphic. For example,
let Y = Y'=R', Q = ((x,y):y =0},Q'= [(x,y):x'=y'}
(see Fig. 2). It is easily seen that ( Y, Q) and ( Y', Q')
are homeomorphic but not diffeomorphic as pairs.
Since ( Y, Q) and ( Y', Q') would be physically two

very different phase diagrams, this suggests that we
consider two diagrams to be the same if and only if
they are diffeomorphic as pairs.

However, it turns out that diffeomorphism is too
strong a requirement. Consider the following exam-
ple. Let Y = Y'= R' and Q and Q' be subsets of R'
consisting of four lines through the origin with dif-
ferent cross ratios (see Fig. 3). We would certainly
consider ( Y, Q) and ( Y', Q') to be qualitatively the
same, and yet, even though they are homeomorphic
as pairs, they are not diffeomorphic because dif-
feomorphisms preserve the cross ratios of our lines.

Hence, for physical purposes, the correct notion of
equivalence of pairs of topological spaces would seem
to lie somewhere between homeomorphism and dif-
feomorphism. In Sec. II, we shall propose a different
definition of equivalence which seems to be suitable,
Our strategy will be to classify pairs by diffeomor-
phism and then group together diffeomorphism
classes which are qualitatively similar.

For the sake of clarity, we define what we mean by

(a) (b)

(a) (b)

qt

FlG. l. (a) 0 is the subset of R3 consisting of the points
on unit circle in the xv plane. (b) O' E R is a trefoil knot.
Then g and 0' are homeomorphic, but the pairs (R,Q)
and (R3,g') are not homeomorphic.

FIG. 3. There is no diffeomorphism of R2 carrying the
four lines in (a) to the four lines in (b).
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a phase diagram. Recall first, that a field variable is

one which takes the same value in two coexisting
phases. Examples are the temperature, pressure, and
chemical potentials of the components (in fluid sys-
tems). It is always possible to pick a complete set of
thermodynamic field variables.

Now, suppose Y is thermodynamic field space and

Q is the subset consisting of all the points at which at
least two phases coexist or coalesce, The pair of to-
pological spaces ( Y, Q) is called a phase diagram W.e
often call either Y or Q the phase diagram when the
other member is clear from the context. Experiment
and theory suggest that Q is not just any arbitrary
subset of Y. Griffiths asks for topological conditions
on ( Y, Q) such that ( Y, Q) be an "acceptable" phase
diagram.

In order to discuss such conditions, Griffiths intro-
duces the notions of characteristic and typical neigh-
borhoods. These notions apply to any pair of topo-
logical spaces and we shall state their definitions at
this level of generality. Let us agree that a I~eighbor-

hood of a point y 6 Y is a connected open subset of Y

containing y. If Y is a metric space (i.e., distance is
defined), then we may assume that a neighborhood
of y C Y is an open ball (i.e. , the set of x C Y such
that the distance between x and y is less than some
number r)

Definition In a pair .of topological spaces ( Y, Q) a

typical neighborhood, N, of a point y 6 Y is a neigh-
borhood of y satisfying the property that if N' is any
other neighborhood of y contained in N, then
(N, N P Q) is homeomorphic to (iV', N' g Q) (see
Fig. 4).

Note that if JV g Q =8, then we merely require

that N be homeomorphic to N'. Hence, a typical
neighborhood of a point y in Y which is not in Q is

any neighborhood of y which does not meet Q. In

most cases, we sha11 only consider typical neighbor-
hoods of points q C Q. Typical neighborhoods are of
two types. A particularly nice type is the following.

Defiiritioit. A chaI'acteristic ireighboI'hood of a point

q E Q is a typical neighborhood N which satisfies the
property that if N' is any other typical neighborhood
of q, then any homeomorphism h:( iV, N P Q)

(N', iV' P Q) is such that h (q) =q.
Whether a typical neighborhood of a point is a

characteristic neighborhood depends on the dimen-
sion of the space Y. For example, any typical neigh-
borhood of a triple point is a characteristic neighbor-
hood when dim Y = 2. This is not the case if dim
Y = 3 (see Fig. 5). Now, one might conjecture that if
a typical neighborhood of a point is not a characteris-
tic neighborhood, then it can be derived by extending
a characteristic neighborhood along a line, or a plane,
or a higher-dimensional hyperplane. For example, if
a triple point occurs in the case when dim Y = 3, one
observes a line of such points, That is, the typical
neighborhood is just the Cartesian product of the
characteristic neighborhood of a triple point with an
open interval. This leads us to define another type of
typical neighborhood.

De/inirion Achara. cteristic cylinder of a point q C Q
is a typical neighborhood N of q C Q such that
(N, N p Q) is homeomorphic to ( IY x B,M x B)
where ( II', M) is a characteristic neighborhood of a

point in M, and B is homeomorphic to an open ball

in R for some r» & dim Y.

Griffiths defines an acceptable phase diagiam ( Y, Q)
as one such that (i) any point q 6 Q has a typical
neighborhood which is either a characteristic neigh-
borhood or a characteristic cylinder; and (ii) any
characteristic neighborhood is equivalent to one of a

given list.
It is unclear, in Griffiths's paper, how the list men-

tioned in (ii) is constructed. He indicates that there
are elementary and composite characteristic neighbor-

FIG. 4. N is a typical neighborhood of O„but not of P, or
of R. M is a typical neighborhood of P. N is also a charac-
teristic neighborhood of 0, while M is not a characteristic
neighborhood of P.

FIG. 5. lV is a typical neighborhood of the triple point,
which is ~ characteristic cylinder.
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hoods and he gives a set of rules for constructing
composite characteristic neighborhoods from elemen-
tary characteristic neighborhoods.

In Secs. II and III, we will give a method for con-
structing elementary characteristic neighborhoods and
will conjecture that all elementary characteristic
neighborhoods can be constructed in this fashion. By
making use of the theory of Sergeraert, we are also
able to get a set of rules for determining composite
characteristic neighborhoods from elementary charac-
teristic neighborhoods.

II. STRATIFIED SETS AND BIFURCATION SETS

In this section, we recall some standard mathemati-
cal terminology which we shall need. Experimental
evidence indicates that in a phase diagram ( Y, g), g
is not a submanifold of field space Y. For, if it were,
then in a small enough neighborhood, N, of any
point q E Q, there would have to exist local coordi-
nates xi, . . . , x„on Y (dim Y = n) such that'N g Q
is given by xi= =xk=0, k & n, q being the ori-
gin. Clearly, this condition is not satisfied in the
neighborhood of a triple point (or critical point).
However, Q is a union of submanifolds (of different
dimensions) of field space, Y, which are arranged in

a very definite fashion. For example, in the neigh-
borhood of a triple point (dim Y =2) we have three
submanifolds of codimension 1, consisting of points
of two-phase coexistence, and one submanifold of
codimension 2, consisting of the single point that is
the triple point. If dim Y =3, in a neighborhood, N,
of a critical endpoint, N Q Q is the union of two

submanifolds of codimension 1, two submanifolds of
codimension 2, and one subrnanifold of codimension
3 which is a single point (see Fig. 6). These are ex-
amples of stratified sets, the union of the submani-
folds of the same codimension being considered as a
single (unconnected) submanifold. The formal de-
finition is as follows:

Definition .Suppose Y is a differentiable manifold
and g C Y is a subset of Y. A stratification of Q is a
partition of g into disjoint subsets

Q = go U U Q„, called strata, which satisfy
the following conditions: (i) g; is an open submani-
fold of Y consisting of firiitely-many connected com-
ponents, each of which is a submanifold of the same
codimension as Q;. (ii) The codimension of g; is i

(iii) Q;+i C g;, where the bar denotes closure.
A subset Q C Y which admits a stratification is said

to be stratified.

Returning to Fig. 6, a stratification of Q C Y in the
neighborhood of a critical endpoint CE is given by
Qo=o. Qi = Qii U Q&2 Q2= Q2i U Q22 Q3=CE
In general, for any stratification of a phase diagram
( Y, Q) we will have Qo=8.

In the mathematical literature different definitions
of a stratification are sometimes used. Various regu-
larity conditions are often imposed as part of the de-
finition. These subtleties will not concern us here.
Later, when we mention stratifications of subsets of
infinite-dimensional spaces, we shall allow a count-
able infinity of strata and waive the requirement that
each stratum consist of finitely many components.

Acceptable phase diagrams always seem to have a
"natural" stratification in the sense that it is clear,
physically, how to define the strata. Each component
of a stratum should be composed of points of the
same type. We would, however, like a definition of
natural stratification which is more geometric and
rigorous. The following is an attempt at such a defi-
nition.

Suppose that we have two stratifications
g' = U,.

"
o g and g" = U, .

"
o Q;" of the same

underlying set. We say that the stratification Q"
dominates Q', written Q' & Q", if

N n

UQ c Ug;" forallj, 0 j n

The relation" ( " gives a partial ordering on the set
of stratifications of a set. Intuitively, if g' & g" then
Q" has larger strata than Q'. We say that

Q = go U . U g„ is a natural stratification of Q
if (a)

Q22

Q3

~g=g —g= U QJ
J i+1

and (b) any other stratification Q' = Qo U Q„'

of the set Q which satisfies (a), is such that Q' & g.
For example, the stratification given above for the

neighborhood of a critical endpoint (Fig. 6) is natur-
al. The stratification

FIG. 6. A typical neighborhood of a critical endpoint
(when dim Y ='3) showing the components of the natural
stratification of the neighborhood.

Qo=@ Qi =Q» U Qi2 U Q2i Q~=Q22

Q3=CE

is not natural, because (a) is not satisfied. On the



3432 A. J. COLEMAN AND DONAL O' SHEA 22

other hand, the stratification of the plane given by
setting

Qo= ((x,y) Ixy & 0},
Q, = ((x,y) (xy = 0, (x,y) & (0, 0) }

Q, = ((0, 0)},
satisfies condition (a), but is not natural (since Qo is

not maximal).
It is worth noting that not every stratified set ad-

mits a stratification satisfying (a). For example the
subset Q of R' consisting of the union of the xy
plane and the z axis is clearly stratified. It is also
clear that condition (a) can never be met.

If we allow that any "acceptable" phase diagram
admits a natural stratification, then we can give a def-
inition of equivalence of phase diagrams which over-
comes the defects mentioned earlier in both the no-
tions of topological and differentiable equivalence.

Definition Two . phase diagrams ( Y, Q) and ( Y', Q')
will be said to be equivalent if there is a homeomor-
phism h: Y Y' which carries the natural stratifica-
tion of Q onto the natural stratification of Q'.
That is, if Q = Qi U U Q„and
Q' = Q,

'
U U Q„' are the natural stratifications

of Q and Q' then h(Q;) = Q .
We remind the reader, that in an acceptable phase

diagram, Qo=8. The above definition depends on
the fact that every acceptable phase diagram admits a
natural stratification. This is the case if our classifi-
cation scheme is correct. A natural stratification is

necessarily unique.
In addition, we could require that the restriction of

A to Q; be a diffeomorphism. Under this definition
of equivalence, the two phase diagrams in Fig. 2 are
not equivalent, We remark that the characteristic
graphs of Griffiths are just a method for keeping
track of the incidence relations between the com-
ponents of the strata in the natural stratification of
the phase diagram.

Stratified sets arise in a number of different ways
in mathematics. The zero set of a polynomial func-
tion is a stratified set. For instance, the subset of
R, considered above, consisting of the union of the
xy plane and the z axis is the zero set of the polyno-
mial (x'+y')z'. Another way stratified sets arise is

as the bifurcation set of algebraic or analytic func-
tions. Since it is in this latter context that we en-
visage phase diagrams as arising, we pause to give
some definitions.

III. NOTION OF MODELS AND BIFURCATION SETS

In this paragraph, we introduce the notion of a bi-
furcation set. The definitions we present will be
tailored to our purposes and the reader should be

aware that the mathematical definitions can be ex-
tended to many more gerieral situations than present-
ed here. However, although our definitions and
results will be restricted to those cases which we actu-
ally need, we preface the' formal (and narrow) defini-
tions with a general philosophical discussion which
hopefully will motivate and place in perspective the
more technical discussion to follow,

Suppose that we are given a system which, micro-
scopically, has an extremely large number of degrees
of freedom, but which exhibits macroscopic behavior
which seems to depend on relatively few macroscopic
variables. This is the case for thermodynamic sys-
tems. One way of trying to handle this situation
mathematically is to associate„ to any microstate of
the system, a mathematical object, f', belonging to
some space, J, such that the macroscopic state of the
system will be determined by some gross qualitative
feature of f'. We suppose that the object f', varies
continuously with a set of parameters s E B (which
are values taken by the macroscopic variables). By
saying that f', "determines" the macrostate of the
system, we imply that, if the mathematical objects f',
and f, are qualitatively the same (a situation which
we denote by f', —f', ), then the corresponding states
of the system are qualitatively the same,

The specific example we have in mind is where
B = Y is thermodynamic field space. Then to each
value of the pressure, temperature, chemical poten-
tials, and so on, at which a phase transition does not
occur, there corresponds a single phase (liquid, gas,
or solid). However, at any such point in field space
there are many possible microstates. Moreover, at
two nearby points of field space the microstates may
be different, but the phase of the system is the same.
We want some way to pass from the set of micro-
states allowable at a fixed point in Y to the phase of
the system at the same point. Thus, we would like to
parametrize the set of rnicrostates by a space X, the
members of which have qualitative features which
determine the phase. Clearly, X must be a large
space. In our model, we take J to be a function
space.

It may happen that, although f,
'

depends continu-
ously on s, qualitative features of f, may change
discontinuously. The set of all points in A' at which
the qualitative features change will typically (but not
necessarily) constitute a closed, nowhere-dense sub-
set X of X called the bifurcation set in X The sub-
set Xa of B consisting of all points s for which f,

'
C X„

will be called the bifiIrcation set in 8 or the catastrophe
set, Of' great interest is the pair of topological spaces
(B, Xs). It is this pair that we intend to identify with
the phase diagram. Before doing so, let us formalize
the above discussion somewhat.

Definition: A tnodel will consist of a quadruple
(X,B, ib, —) where (a) X is a topological space (the
space of objects or microstates), (b) B is a topological
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space (the space of macroscopic parameters), (c)
q»:8 X is a one-to-one continuous map [specifying
how and what B parametrizes in X; if s6 B, we often
write 4(s) = f, j, (d) —is an equivalence relation
on X (which specifies when f,g E X have the same
qualitative features). In our model, the elements of
X are functions.

In general, we try to choose —such that there ex-
ists a finite set ft, . . . , f„C X, such that (i) the set
0; = (g E X( f; —gI is open in X, (ii) f; +f, if i W j
(iii) U;" ~8, is dense in X. Then, X„=X
—( U,", t), ) and Xs =4 '(Xx) are the bifurcation

sets in X and B, respectively. The map 4 is called a
process and the pair (8, Xtt) the morphology of the
process.

Hence in modeling a system as described above,
we must specify four "things": X, B, 4, —.Fre-
quently we know, or are trying to explain, the mor-
phology (8, Xs). We choose X and —to be "rea-
sonable" in some sense. Specifying 4 is difficult, if
not impossible.

Thorn discovered that, for many purposes, it is not
necessary to strictly determine 4. More precisely, he
found that for some classes of topological spaces X,
and relations —,there exist very mild conditions on
4 (which most models of physical interest seem to
satisfy) which guarantee that locally the morphology
(8, Xtt) can only take finitely-many different topolog-
ical types. Moreover, for low-dimensional spaces of
parameters B, he explicitly listed all these topological
types.

Rather than give examples here, we refer the
reader to Thorn's book. ' The following two para-

graphs will actually constitute an example of the
above approach. Specific examples of computations
will be restricted to those of interest for phase transi-
tions.

IV. SPECIFIC MODEL

A. Basic notation

We shall take B to be thermodynamic field space
and X to be C» (R ), that is, the space of infinitely
differentiable functions, with a global minimum, on
R . To specify the relation —,we must pick out a

gross distinguishing feature of the elements of X
which determines the phase of the system. We
choose the most obvious feature, namely, the struc-
ture of the absolute minima of the functions.

More precisely, we say that at a point y E R, the
function f 6 C, (R ) is equivalent to a function
g E C» (R ) at the point z 6 R, if there exists a dif-
feomorphism h of a neighborhood U of y with

h (y) = z and a diffeomorphism k:R R such that

g (h (x)) = k (,f (x)) for all x 6 U. We write

f y —g, z. Two functions fg E C, (R ) with isolat-
ed absolute minimay', . ~ . , y'and z', . . . , z',

respectively, will be said to be equivalent, written
f —g, if (i) r = s, and (ii) there exists a permutation
of they' such that

f,y' —g, zt for all 1 «j, «r
The definition of —for functions with absolute
minima which are not isolated is similar. We again
examine neighborhoods U of points at which the
function has an absolute minimum. Functions with
nonisolated minima will turn out to be unimportant
for what follows.

We have now specified B, X, —.To complete the
description of our model, we need to say a few words
about 4. In particular, we must describe the condi-
tion on 4 under which the result of Thorn, that we
alluded to earlier, applies. It turns out that these
conditions are intimately related to the structure of
X~. In fact, the conditions we impose on 4 are ex-
actly those necessary to guarantee that the structure
of X~ determines the structure of X~. Hence, we
must also discuss the structure of X~. We shall find
it more convenient to discuss X~ before discussing
the conditions on 4.

We shall find that X~ is an infinite-dimensional
analog of a stratified set. In order to make this more
precise, we introduce the notion of codimension of
equivalence classes of functions. Although it is not
necessary, it is easier to do this in terms of germs of
functions and equivalence classes of germs, and this
is the approach we take. These considerations occupy
Secs. IV B—IV D. In Sec. IV E we discuss the condi-
tions on 4 and in Sec. IV F we describe how Xq
determines X~.

B. Germ of a function

Two functions f and g in C, (R ) will be said to
have the same germ at a point y E R~, if there is a
neighborhood N of y in R" for which f (x) =g (x) for
all x C N. The germ off at the point y C R" is the set
(equivalence class) of all functions having the same
germ as f aty. It is denoted by (f)» or simply (f) if

y is clear from context. Defining arithmetical opera-
tions on classes in the usual way, it becomes evident
that (f+g) = (f) + (g), (fg) = (f) (g) and if,
g (y) A 0, (g) '= (g '). The set of germs of func-
tions at y, which we denote by C» (R ), is not only a

vector space, but an algebra.
Two germs (f), (g) 6 C» (R ) are said to be

equivalent, written (f) —(g), if there are functions

f,g with germs (f ) and (g ), respectively, such that

fy —. g,y with k = identity (k:R R as in the defini-
tion of "-").Note that we use the same symbol to
denote equivalence of functions and equivalence of
germs. This should not prove to be confusing, be-
cause it is evident from the definitions that if f and g
are functions with a unique, isolated global minimum



A. J. COLEMAN AND DONAL O' SHEA

at y 6 R ", then (f )» —(g )» ~ f —g. This observa-
tion, although trivial, allows us to make a drastic sim-
plification of the problem. Namely, at least for func-
tions with a single, isolated global minimum, we need
only consider germs of functions. We will take care
of the case where functions have more than one iso-
lated, global minimum a little later. The procedure
of replacing functions by germs and replacing
C~(R ) by C»(R ) is an example of the mathemati-
cal procedure called localization. It is a very powerful
technique.

6(f) is spanned by l, x,x', . . . , x" ' whence dim

Cp(R ')/d (,f) = n —1 and cod, (f) = n —2.
(ii) m arbitrary, f(x) ,

='x)' + +x'.

6(f)=[h)x)+ ' ' ' +h x~lh), , h ECp (R ))

But any nonconstant g 6 C(P (R ) can be written in

the form

p(x) =x)g)(x)+ +x„g (x),
where

g, CC,"(R ) .

C. Codimension of a germ

Given a germ, (f), of the function / aty, defin'e

the set 9((f') ), called the orbit of (f'), by

t)((f)) = [(g) «,"(R ) ~(f) —(g))

For

p (x) =
l

—p (tx) dt
f' d

"o ilt

= Jt [())g (tx)x, +
0

+9 g(fx)x ] dt

Now t)((f') ) is a subset of C» (R ) and C» (R )
is an infinite dimensional vector space [e.g. , the
germs of functions, (1), (x —y), ((x —y) )',
((x —y) )', . . . , are linearly independent over R in

C» (R') ]. It is natural to inquire as to whether
I)(( f') ) has some "nice" structure, perhaps as a sub-
manifold of C» (R ). To this end, we define a

number cod, [8( ( f') ) ] and then show that (t( ( f ) )
can be thought of as a submanifold and

cod, [t)((f) ) ] as its (smooth) codimension. Thus,
without any further ado we set

Caa(Rm)
cod, (fy) =cod, ((f')») =dim, —

1

pl pl
=x)J r))g(tx) dt+ +x t) g(tx) dt

0 ~o

and we may set
fl

p;(x) =
J ();g ((x) dt

Hence 1 spans Cp" (R )/6( f') and cod, f'=0.
(iii) m =2, f(x) =x) +x2. Then

8 f/Bx) = 4x)', t)f/, Bx2 = 4x2, and so

&(f) = [h)x) +h)x) }h).h2 6 C)) (R'))

Then an easy computation shows that

ji 2 2 2 2 2 21[x,X],X2»XI ~X]X2,X2,X]X2 X[X2»X1X2 J

where d»((f)») is the subspace of C»(R ) defined
by

)

&,((f), ) = I(g)) + + (g)
s)x ) Bxpp

where (g ), , . . . , (g ) range over C» (R ) and

(I)f/I)x)), . . . , (I)f/I)x ) are considered as germs
aty. C» (R )//))»((f)») denotes the quotient space
of germs of functions aty modulo 6»((f')»). That
is, it is the space of all germs with two germs

(g) ), (g) 2 being considered equal if there exists a

(h) E ts)»((f)») such that (g), = (g)2+ (h). The
codimension is said to be infinite if dim

C» (R )/4»((f)») is not defined.
We give four examples. In all of them we take y to

be the origin, 0, in R and we systematically drop the
angle brackets ( ), it being understood that all func-
tions are to be thought of as germs at 0. We write 5
in place of Ao.

(i) m =1, f (x) =x", n ) 1. Since fif /fix =nx"'
0 ( f) = (hx" '}h 6 C)) (R")

If g E h(f) then x" ' divides g and so Cp (R )/

spans Cp (R')/6 ( f) (see for example, Raghavan').
Hence cod, (f) =9 —1=8. We will return to this ex-
ample later as it turns out that for different
a, f'(x) =x)' +x, + ax)2x j are differentiably ine-
quivalent but may be topologically equivalent (see
Godwin6), so that the topological codimension of f is

equal to 7.
(iv) Suppose f E C)) (R ) and

g(x~+), ,x~+„) =x~+) + +x~+„e C)) (R")

Let

a(X, X +„) =g(X, X )

+g(x +), ,x ~„) 6 Cp" (R +")

Then cod, h =cod, f.
The number cod, ( ( f') ) is called the smooth codi.

tnension of the germ ( f'). Later we shall define the
topological codimension of (f ).

We now wish to explain in what sense cod, is the
codimension of tl( ( f') ). Let y = (y, , . . . ,y ) be a
point of R . Since C~ (R~) is infinite dimensional,
a natural approach is to look at finite-dimensional
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subspaces of it. Let e»(R ) be the subspace of
C» (R ) consisting of all (f ) 6 C» (R™)satisfying

( f ) (y) = 0, d (f ) (y) = 0 [i.e., ( Q ( f ) /()x, ) (y)
= (t)(f) jBX )(y) =0]. Let R»[x~, . . . ,x ]",

denote the set of all polynomials in

x] —y~, ,x —y with degree less than or equal to
k and no terms of degree less than 2. Define the
projections

j»:e»(,R ) ~R»[x~, . . . ,xm]", (k «2)

by setting j"(f ) = [T( (f ),y, k) ], where T represents
a Taylor series expansion of (f ) about y up to and
including terms of order k. R»[x~, . . . ,x ]2 is a
finite-dimensional vector space. It is easy to show
that j»"(8((f) ) ) is a submanifold of
R»[x~, . . . ,x ]k2. Moreover, given ( f) of finite
smooth codimension, there exists an integer N, such
that for all k «W, j»(9( (f) ) ) is a submanifold of
R»[x~, . . . ,x ]k2 of codimension equal to cod, ((f))
(Trotman and Zeeman'). The reader may easily ver-
ify this for example (i) above. This result means that
we can think of 8( (f ) ) as a "limit" of submanifolds
of codimension cod, ( (f ) ).

D. Multigerms

We now have to consider functions, f, with n dis-
tinct isolated global minima y', . -,y" 6 R, n ) 1,
y'=(y'I, . . . ,y' ), I ~i ~n Then we are. only in-

terested in the n tuple of germs

EC (Rm)x xC (R )] n

.Sergeraert has shown that if we set

Coo (Rm)
cod (f) =$d&m (( ) )

—I

then cod, (f ) has a geometric interpretation as a

codimension in a manner exactly analagous to that
given for functions with one absolute minimum.
Henceforth, we will refer to this result as Sergeraert's
theorem.

The n tuple (,f ) =((,f') ~, . . . , (,f) „) of germs

of a function, f, at its n isolated global minima
y', . . . , y" will be called the multigerm (or, more
simply, germ) associated to f. If f has only isolated
global minima we set cod,f = cod, ( (f ) ). If f has
nonisolated global minima we set cod,f = ~. Using
these definitions and Sergeraert's theorem, we can
now stratify X . First note that f f X if

cod,f =0. This is equivalent to the following condi-
tions: (i) f has a unique isolated, global minimum

say at y C R; (ii)

82
det II f (y) II A 0

Qx;9xj ] ~t;j ~m

(that is, y is a nondegenerate critical point) I.n fact, a
theorem of Morse says that the above conditions
hold if and only if

(f), —.f(y)+(xi-yi)'+ +(x -»'
where y = (y~, . . . , y ) and the right-hand side is
understood as a germ aty. f 6 X, ,

is such that

cod, ( f) = I only if f has exactly two nondegenerate
global minima. If cod, ( f) = 2 then it can be shown
that there are only two possibilities: either f has ex-
actly three nondegenerate global minima or f has a
single (isolated) minimum y and

(f), -f(y)+(xi —yi)'

+(X2 y2) + +(Xm ym)

where the right-hand side is to be interpreted as a
germ.

In general, a stratum of X, ,
of codimension

n « I will consist of the set of functions f C X

such that cod, (f) =n If f 6 X.
, ,

and

cod, (f) ~5 then f will belong to one of finitely-
many equivalence classes of functions. If
cod, (f) «6 then there are infinitely-many different
possible equivalence classes to which f can belong.
However, if we change our definition of equivalence
—(given at the beginning of this paragraph), by al-

lowing h in the definition of —to be a homeomor-
phism (instead of a diffeomorphism), then f will be-
long to one of only finitely many differ-ent equiva-
lence classes.

The above theory and what follows in Secs. IV E
and IV F can be presented in a mathematically more
elegant fashion by defining cod, ( f) without reference
to germs and interpreting it as a codimension in the
space CP (R ). However, the definitions and con-
cepts are more difficult in this case and for computa-
tion one needs to use germs. For an exposition of
this more global approach see the excellent papers of
Dubois, Dufour, and Stanek. Very efficient
methods for computing the codimension of a func-
tion have been developed. See, for example, Kush-
nirenko. '

E. Transversality conditions on 4

We now must say a few words about 4. We sup-
pose that 4 is 1-1 and smooth. Both these assump-
tions could be weakened somewhat at the expense of
clarity. According to the fundamental dogma of
Thorn, C will be structurally stable. By this we mean
that small variations in 4 should result in maps
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"essentially the same as 4" and, hence, in the same
morphologies. The justification for this is that no
two experimental situations are exactly the same; that

- is, 4 varies slightly from observation to observation.
The fact that the results of. various observations agree
lends credence to the idea that the morphology
should be independent of small perturbations of C.

For thermodynamics there is another good reason
why small variations in 4 should not matter. Name-

ly, to any fixed value of the thermodynamic field
variables there correspond many possible microstates.
(In fact, it is the statistical distribution of the possible
microstates which is usually thought of as determin-
ing the macrostate). Hence there are likely to be
many possible choices for 4. In general, small

changes in 4 should not change the morphology
qualitatively.

There is one easy condition that mathematically
sums up many phrases currently used by physicists,
such as "lucky accidents don't happen,

" "in gen-
eral, " etc. This, is the notion of transversality. The
notion of transversal intersection makes precise the
feeling that it is "exceptional" for two lines in R' to
intersect or for two curves in R' to be tangent at any
point of intersection. The formal definition is as fol-
lows:

Definition Let X, Y be. manifolds and N c Y a sub-
manifold. The map f':X Y is said to be trai~sveisal

to N at x 6 X if (i)

df„( T„X) + Tt (~)N = Tr(„) Y, f (x) C lV

or (ii) f(x) f N. Here df„ is the derivative of f atx'
and T, denotes the tangent space to a manifold at the
point a. We write fT„N fis transversal .to N, fTlV, if
f'T N for all x C L. Finally, if N is a stratified set
(and, hence, not necessarily a submanifold of Y),
then f is transversal to N, written f TN, if f is'
transversal to each stratum of N,

Two submanifolds N, M of A' are said to intersect
transversally if i:N X is transversal to M for all

x 6 N, where i denotes the inclusion map.
Intuitively, if we think of f (X) as a manifold of di-

mension dim f (X) then, f transversal to N means
that (i) if dim f (X) ( codN then f (X) and N do not
intersect (i.e., lucky accidents don't happen); (ii)

f (X) and N are not "tangent" in any sense. For
more examples see Fig. 7. Note that if f is not
transversal to N, any small perturbation of f will radi-

cally alter the nature of the intersection f (X) P N.

We have seen that X, , is stratified. If 4 is

transversal to X then we shall say that the sys-

tem modeled is generic [CiTX, , mea. ns that

there exists K such that cod iIi(b) ~ K and
j~@Tbj~"(X ) for all b 6 B, jr ~ K, and any y
which is a global minimum of C((b) j. We believe that
systems consisting of mixtures of pure fluids are gen-

(a)

(b)

(c)

FIG. 7. (a) Examples of curves in R2 which do not meet
transversally. (b) Curves in R which meet transversally.
(c) A schematic indication that arbitr drily small perturb &-

tions preserve the transversal nature of the intersection, (d)
Some nontransversal intersections in R, (e) Some
transversal intersections in R .

eric. It is this case on which we shall concentrate in
the next section.

Of course, not all systems are generic. It may hap-
pen that there are symmetries which are always
obeyed and which force 4(B) to intersect strata with

a higher codimension than dim B. This seems to be
the case for some magnetic systems.

F. Determination of X& from X&

It is clear that via 4 the bifurcation set X8 (phase
diagram) is just a copy in some sense of the bifurca-
tion set X~. In particular, there should be some rela-
tion between the natural stratification of a phase di-
agram and the stratification of X~, It was Thorn who
discovered the basic techniques for determining X&
from X&. The work of others, notably Sergeraert,
Dubois, and Dufour have provided us with a more
complete picture. The key notion is that of the
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universal unfolding of a function W. e present the basic
definitions.

Definition I.f f 6 C» (R ) then an unfolding of f is

a function F C C (R +") such that F(x, 0) = f(x)
for all x C R, 0 E R". An unfolding F E C (R +")
is called versal if, as u varies in some neighborhood
of 0 in R", F(x,u) = f, (x) describes all possible ine-

quivalent functions into which f can be deformed by
arbitrarily small perturbations. A versal unfolding
F.E. C (R"+") of f is called universal if any other
unfolding G C C (R +"), where r ( n fails to be
versal.

The usual definitions given in the mathematical
literature, are equivalent to those given above. What
makes the above definition workable is the following
theorem of Mather. "

Theorem Let f. E C (R ) have a unique global
isolated minimum at 0 E R, f (0) =0. Then a

universal unfolding F E C (R +") is given by

F(x,y) = f (x) + u&gi(x) + + u„g„(x)

where gi, . . . , g„are functions in C (R ) which are
such that (1), (gi), . . . , (g„) are a basis for
Co (R )/b, o((,f)o). In particular, n =cod, f. An
immediate corollary is as follows.

Corollary. Let f 6 C» (R ) have a unique isolated
global minimum and be such that cod, f = n The.n a

versal unfolding F 6 C (R x R'), r ) n, is given by

F(xyi, . . . ,'y, ) =,f(x)+yogi(x)+ . +y„g„(x)

»

where g [, . . . , g„are as in the theorem above and
the variables y„+], . . . , y, play no role.

Mather's theorem is extremely useful. %e shall

use it throughout all that follows. For the moment,
we use it to motivate the definition of topological
codimension. Let f(x) E. C (R ) have a unique iso-
lated global minimum and let F(xu) E C (, R +") be
a universal unfolding of f(x). From Mather's theo-
rem we know that n =cod, (f). Let G(x, v) 6 C
x (R +") be an unfolding of f (x) 6 C (R ) which

has the property that as v varies in a neighborhood of
0 in R", f„(x)= G (x, u) runs through all possible to-
pologically inequivalent functions into which f can be
deformed by arbitrarily small perturbations. [Recall
that two functions fi, f2 6 C» (R ) are topologically
equivalent if they are equivalent in the sense of Sec.
IV A with h and k allowed to be homeomorphisms. ]
If no other unfolding with fewer than r parameters
satisfies the above condition, then r is called the topo-

logical codimension of f, written r =cod f. Clearly
cod f ~cod, f. The number (cod, f —cod f) is called
the modality of f. Mather" has shown that there are
only finitely many different topological equivalence
classes of functions f C C» (R ) with a given topo-
logical codimension.

As an example, let us consider f(x) 6 C» (R'),

where f(xi,xq) =x~'+x2. Then by Mather's
theorem and example (iii) of Sec. IV C a universal
unfolding is given by F(x, u) 6 C (R'+') where

F( xix 2u/, u2, . . . , us)

+x2 + ujx/x2 + u2x[x2+ u3x]x24 4 2 2 2 2

+ u]x) + u5x)x2+ u6x2 + u2X) + usx22 2

Now, we have mentioned that for small variations of
p, i the topological type of f„(x)= F(x,u) does not
change. Hence, cod ( f) =cod, ( f) —1=7. For more
on the question of modality and topological codimen-
sion, see Arnol'd. '

It is worth mentioning that there is a definition of
equivalence of unfoldings, which we do not give (cf.
Thorn'), and that the universal unfolding is unique,
up to this notion of equivalence. More importantly,
if fg 6 C (R ) and f —g then the universal un-

foldings of f and g are equivalent. We shall only
need the weaker, but nevertheless, remarkable
results listed below.

Definition Let F. 6 C (R x R") be an unfolding
of f 6 C»" (R ). Define the bifurcation, set of F in R"
as Xr = (u 6 R "( either (i) f„(x)= F (x, u) has a de-

generate global minimum y C R, or (ii) f„has two'
or more global minima).

Theorem. [Thom2 and Dubois, Dufour, and Stanek
(DDS)9]: Suppose F and G are universal unfoldings
of f C C (R ), then the pair (R", Xr) is diffeomor-
phic to the pair (R", XG).

Theorem (Thom2 a.nd DDS9): If F, G
C C (R +") are universal unfoldings off and g, ,

'

respectively, and if f —g then the pair (R", Xr) is

diffeomorphic to the pair (R", XG).
Theorem (Thorn' . and DDS9): Suppose f E C,

x (R ) and let F E C (R +") be a versal unfolding
of f, Suppose ip:8 C»" (R ) is one to one and
transverse to X, ,

and that &Ii(a) =f, where

a E B. Then there exists a neighborhood W of a in B
and a neighborhood U of 0 in R" for which the pair

(N, Xn Q N) is diffeomorphic to (U, Xr P U).
Mather's theorem applies only to functions

f 6 C, (R ) with a single, isolated global minimum.
How do we construct universal unfoldings of func-
tions with more than one isolated global minimum?
The answer has been supplied by Dubois, Dufour,
and Stanek.

Theorem (DDS~): Le.t f E C» (R ) be a function
with isolated absolute minima y', . . . , y'. For each i

such that 1 «i ~ r choose two open balls U; and V;

centered at y' such that U; C V; and such that y' f V;

for any j A i (Here V; de.notes the closure of V, ,

that is, the closed ball with the same radius as V;. )
Now, for each i choose a C function on R, e;(x),
the restriction of which is identically equal to 1 on U;

and 0 on R"—V, . [This is always possible; in fact,
we may assume that e;(x) ~ 1 for ali x 6 R; see
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Golubitsky and Guillemin". ] For each i, let
cod( f;) = s; and let

Dl(x, u') —= D, (x, u'I, u', , . . . , u,' )
I

=u';g'; (x)+ +u,'g,' (x)
I I

where
k 1

~k~k

s.u'=(uI, . . . , u,') CR'
I

and

g/ g/ g Coo(Rm)

are functions such that

Here,

1 1 I' I'
Ll = ( ,u.l. . , ~u/, uI, . . . , ug, . . . , uI, . . . , u )o

1 I'

eR r —1+s1+ ~ +s

(I). ((gi)), ;, , ((g.')), ;

are a basis for C, (R )/';(( f);). Then a univer-

sal unfolding of f'is given by

r

F(xu) f(x)+ X Ll/Ej(x)+ XE (/x)D/(x LI )

Let us elaborate on this statement a little. We en-
visage a global minimum of f' C Co (R ) as corre-
sponding to a phase. If at a point b E. B4, (b) =fb
has codimension 0, then fb will have exactly one
nondegenerate minimum and b will be a point in

Y —Q. If &P(b) = Ib has codimension I, then fb will

have exactly two distinct, nondegenerate global mini-
rna and b will be a point of two-phase coexistence.
Moreover, b will lie on the stratum of Q with codi-
mension 1. Similarly, if 4(b) = fb has three distinct
absolute minima, then b is a point of three-phase
coexistence and b will lie in the stratum of Q with

codimension 2.
We say that the points b E Q such that 4(b) has a

unique minimum are elementary. If the minimum is

degenerate, then b will be a critical point (possibly, a
higher-order critical point). By the theorems in sub-
section] F of the previous section, we can construct
a characteristic neighborhood of b by considering a
universal unfolding of 4(b). For example, suppose
that

&P(b)(x) -xI" +X22+ +x'

In order to minimize confusion, we shall frequently
denote the image of b under 4, which is a function in

CP (R ) by C&b instead of 4(b). By Mather's
theorem a universal unfolding of 4(b) is given by

@b(XI,LLI, L/2) =XI +L/IXI +L/2XI+X2+ ' ' ' +Xm
4 2 2

cod, ( f) =r —I+sI+ ' ' ' +s~

(in agreement, with Sergeraert's theorem), and

F6C (R ' ).
The above theorem is not as complicated as it

looks. If we think of f+ 8; as a "local" universal
unfolding of f' in a neighborhood of y', then the
theorem says that a universal unfolding of f is given
by combining the local universal unfoldings at each
isolated absolute minimum and adding the term

,'u;e;(x) which has the effect of separating the

values that f takes at each minimum. An example
will be given in the next paragraph.

(a) (b) Il Uy

+U3

where x=(xI, . . . , x ) and uI and u, are coordi-
nates in thermodynamic field space with b as the ori-
gin (in particular dim Y =2). We find that X@ is

just the half line u]«0, u2=0. Hence, by the
theorems of Thorn quoted in Sec. IV F, a neighbor-
hood of b in (Y,Q) is diffeomorphic to a neighbor-
hood of O in (R', X~ ) (see Fig. 8).

V. GENERIC PHASE DIAGRAMS
=U2 U2

We now draw some conclusions about phase di-

agrams subject to the assumption that the model out-
lined above is valid and that the system is generic.
The first observation is that genericity implies that a

point b E Y of the phase diagram lies on a stratum of
codimension equal to cod [4&(b) ]. We shall classify
points on the phase diagram by the topological type
of the corresponding function 4&(b).

4(X1, , X~) =X1 +X + '
'.

' +X

(b) The bifurcation set of a versal unfolding of 4 with
three parameters u1, u2, u3.

FIG. 8. (a) Bifurcation set of the universal unfolding of'
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In the case that dim Y = n & 2, Mather's theorem
tells us that

U3

cib(x, u/, . . . , uy) =x[ +u]x] +u2xi

+x + . +x2 m - U2

is a versal unfolding. Again, a- neighborhood of b in

( Y, Q) is diffeomorphic to a neighborhood of 0 in
(R", X~ ). If n =3, X~ is just the closed half plane

(ui ~0, u&=0, u3 arbitrary) in R'. We have
sketched this situation in Fig. 8. In this case, we
have constructed a characteristic cylinder. It is clear
from the results of Sec. IV that, if b is an elementary
point and if cod 4b ( dim Y, then, in Griffiths's
terms, b will lie on a characteristic cylinder of the en-
tity corresponding to b. Moreover, our construction
of the characteristic cylinder gives the same results as
6riffiths's construction.

A point 6 C Q such that C&b has two or more dis-

tinct, isolated, global minima will be called a compo-
site point. The characteristic neighborhood of b in

( Y, Q) is diffeomorphic to a neighborhood of 0 in
(R", X~ ), where iIib is the universal unfolding of

4b. This latter characteristic neighborhood is called a
composite entity. As shown in Sec. IV F, C b can be
regarded as having been constructed from the univer-
sal unfoldings of the germs of 4b at each distinct glo-
bal minimum of 4b. In this sense, a composite enti-
ty may be regarded as made up of elementary enti-
ties.

We give an example. Suppose 4b has two global
isolated minima at y and y' in R . Suppose further
that

+by -xi" +x + ' ' ' +x

and

iIiby' —(xi ,
—I )'+x22 + +x', a

where a = (1, 0, . . . , 0). Then from the theorem of
Dubois, Dufour, and Stanek, a universal unfolding
4b of 4b is given by

C&b (x, u },u 2, u 3 )

= eo(x) (xl + u (xi + pu+2xu3+x2 + ' ' ' +x~)

+e, (x)[(xi —1)'+x2 + +x']

where eo(x) is a C function which is identically

equal to 1 on a small open ball, U, centered at
0= (0, . . . , 0) and identically equal to 0 on R —V

where V is an open ball centered at 0 containing U
but not a. We can take e, (x) =1 —eo(x). Comput-
ing Xq, , we find that it has the shape sketched in Fig.

b

9. The computations are given in DDS. Hence, b

has a typical neighborhood in ( Y, Q) (dim Y = 3) dif-
feomorphic to (R', X~ ).

UL &0

FIG. 9. Typical neighborhood of the bifurcation set of a
function with two global minima, one nondegenerate and
the other having codimension 2.

Sergeraert's theorem gives us the codimension of a
composite point in terms of the codimension of the
elementary entities which comprise it. In fact, it
shows that Griffiths's conjecture regarding the codi-
mension of a composite entity is correct. Sergeraert's
theorem also gives a general form of the Gibbs phase
rule. %'e shall return to this point later.

It is clear from the above remarks and the
theorems of the last paragraph that, in order to get a
complete local classification of phase diagrams, we
need only produce a list of inequivalent functions
with a single global minimum. In fact, it clearly suf-
fices to produce a list of inequivalent germs of func-
tions, f, which have an absolute minimum at 0 E R
and satisfy f(0) =0. This classification has been car-
ried out by Arnol'd for all functions of codimension
less than or equal to 16. We will state the required
definitions and results below.

VI. CLASSIFICATION

According to the remarks made at the end of Sec.
V, the classification of pairs of topological spaces
(U, U P Q) where U is a sufficiently small neigh-

borhood of b E. Q C Y in a phase diagram ( Y, Q)
reduces to the classification of elementary points and,
hence, to the classification of functions f C C, (R )
with a single isolated, global minimum. -By a transla-
tion in R we may assume that the minimum is the
origin 0 6 R . Moreover, by translating coordinates
in R we may assume that f (0) =0. In this para-

graph, we give the classification of such functions
and use it to get a generalized version of the Gibbs
phase rule. We start with a definition:

Definition Let f E CP (R ), f. (0) =0 a minimum
of f at 0. The corank of f at 0 is the number m —r
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where r is the rank of the matrix of second deriva-
tives of,f evaluated at 0

Then

/(x), 0 —g(x(,x2)+x3 + +xm, 0
02/

r =rk
Bx, c)x~

Notice that 0 is a nondegenerate minimum of f if
and only if corank f =0. A very basic theorem,
which generalizes the theorem of Morse mentioned
in Sec. IV D, is the following:

Theorem. (Generalized Morse lemma): Let
f E CP (R ), f (0) = 0 a minimum of f. Suppose
corank f =p. Then

f, 0 —g (x ~, . . . , xv ) + x~'+
~
+ +x~, 0

where g contains no terms of degree less than 4 (that
is ./ (g)o=0)

The variables x], . . . , xp are often called the esset1-

rial variables of f. It is important to realize that they
are only defined with respect to a given coordinate
system. The generalized Morse lemma is also re-
ferred to as the theorem of the residual singularity.

Notice that cod, ( f ) p
= cod (g ) o [example (iv),

Sec. IV C]. It is, in fact, true that cod (f) o

=cod (g)o (see Arnol'd'). We can get an estimate
on the codimension of f in terms of the corank of f
as follows. If the corank of f at 0 is equal to p «0
and g is as above, then cod, f «{/v', }+{W,}+{lV3},
where the N 's represent the number of missing
linear, quadratic, and cubic terms in Ao((g)o),
respectively. Thus

cod,f «p + —,p(p+ I) + —,'p(p +1)(p + 2)

= —(p'+6p'+ lip)

With a little more work we can get an estimate on
cod f in terms of p. The corank of f has a simple
physical interpretation. It equals the number of order
parameters needed to describe the phase transition.
Before discussing this, we give the classification
theorem:

Theorem (Arnol'd). Let f 6 CP (R ) have a
minimum at 0 C R, f(0) =0. Suppose cod, f ~10.

and

+cod, (X9) +4=2+8+4=14

cod (A tA3X9) =13

In view of the above, we propose the following sys-
tem for classifying points on a generic phase diagram

( Y, Q). If b E Q, we say that the type of b is the type
of 4~ We set cod b = cod 4b The Gibbs phase
rule now takes the form:

Gibbs phase rule Let ( Y, Q. ) be a generic phase di-

agram. Then b E Q only if cod b ~ dim Y. If cod b

= r and b E Q, then b lies on a submanifold of Y of
codimension r which consists entirely of points of the
same type as b.

The above follows from the properties of bifurca-
tion sets of versal unfoldings. This version of the
phase rule easily implies the usual Gibbs phase rule,
where (dim Y) —r is the number of thermodynamic
degrees of freedom.

As we have already mentioned, the corank of 4b
equals the number of order parameters needed to
describe the transition. Since we have an estimate
for cod 4b in terms of the corank, we get an estimate

where g (x~,x2) is one of the functions listed in Table I.
To determine the characteristic neighborhood cor-

responding to any type of function listed in Table I,
we merely find the bifurcation set of the universal
unfolding of the function in the question. This is

constructed, using Mather's theorem, from the list of
monomials given in the last column of the table.

To list all composite singularities and their codi-
mensions we use Sergeraert's theorem. In an obvi-
ous notation, A ]'A3X9 refers to a function with five
isolated absolute minima, three of which are nonde-
generate (of type A ~), one of which is of type A3,
and one of which is of type J9. By Sergeraert's
theorem applied repeatedly:

cod, (A ~'A 359) = 3 cod, (A, ) + cod, (A 3 )

TABLE I. A list of representatives, g (x,y) C CP (R ), of all inequivalent functions having a
unique global minimum at 0 C R2 of smooth codimension less than or equal to 10.

Type g(x,y) cod~g cod g

Monomials needed to construct
universal unfolding

~2k —1

X9
X„

x2k+y2 (k ~ 1)
x +ax y +y, la{~2
x4+x'y'+ay', a ) 0

2k —2

. 8

10

2k —2

7

9
x x2 y y

2 xy x2y xy~ x2y 2

x,x', x',y,y', . . . , y', xy, x'y'
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TABLE Il. A list of representatives, g(x,y) 6 CP (R ), of all inequivalent functions having a

unique global minimum at 0 6 R with finite codimension (functions listed in Table I are not re-
peated).

Type p(x,y) codsg cod Ay

1

~2r, 2s

k
~2r, 2s

~'i, 4q -2

x4+2r + gx2y2 +y4+2s

0&a (2
[Ix+(~o+ ' ' ' +~k 2y" )y"]
+(b+'''+byk2)y2(/c+s))

&& (&2++2(k+r) )
1 «2s «2r,

apAO, bp&0, k & 1

+y') + (~p+ ~ iy)~ y + '
q &0, ap&0

8+ 2I' + 25

12k —4+2(r + s)

12+4q

7+ 21' + 2$

9k —2+2(I +3)

10+4q

on the number of thermodynamic parameters needed
to observe a transition with any given number of or-
der parameters. This number increases sharply with

the corank.
Arnol'd has, in fact, classified all germs of func-

tions with finite codimension having corank less than
or equal to 2. A complete list of those with a global
minimum at the origin can be culled from Arnol'd's
list. Table II together with Table I gives a complete
list of all g 6 C (R') such that f(x) C CP (R ) has
a minimum at 0 E R, f (0) =0, and

f (x), 0 —g (xi,x2) +x,' + +x', 0

Finally, we remark that the characteristic graph of
an entity (in the sense of Griffiths) can be calculated

by looking at a neighborhood in CP(R ) of the
function corresponding to the entity and checking the
incidence relations of the various components of the
strata of the stratification of CP (R ). These in-

cidence relations have been largely worked out by
Arnol'd. ' Using this observation and some elementa-

ry Morse theory, Raghavan' works out the charac-
teristic graph of the entity X9(D2 in Griffiths's nota-
tion).

VII. FURTHER REMARKS, NONGENERIC SYSTEMS,
AND ALTERNATIVE MODELS

(i) The generalized Morse lemma, quoted in Sec.
VI, is an important conceptual result. It states that
even if the number of microscopic variables is large,
we can change variables, so that the nature of the
singularity is entirely described by very few variables.
We believe that this is the ultimate explanation of the
fact that frequently few macroscopic parameters suf-
fice to describe a system which depends on a very

large number of microscopic parameters.
It is worth noting that the essential variables need

not be related diffeomorphically to the order parame-
ters, in fact there is no reason to assume that such a

relationship holds. Hence our model makes no pre-
dictions with regard to critical-point exponents. This
has been emphasized by Schulman' and O' Shea. "
See, however, Vendrik, ' Of course, if we knew the
map 4& precisely and exactly how CP (R~) param-
etrizes the microstates of the system we would be
in a strong position to make definite predictions.

(ii) A complete phenomenological theory would

also have to take account of nongeneric systems.
Such systems can arise when some symmetry forces
the image of 4 to meet strata of codimension greater
than dim B. One way of incorporating this into our
model would be to express the symmetry in terms of
a group operating on the space of microstates. We
would then posit that the image of 4 be restricted to
functions which are invariant under the symmetry
group, and so, would replace CP (R ) by the space
of such functions. We could then consider unfold-
ings invariant under the action of the group.
Developing a theory of bifurcation of such unfoldings
would then give a classification of phase diagrams
with various symmetries. Recently, efforts to
develop such a theory of unfoldings have been made

by several mathematicians, notably Golubitsky and
Schaeffer. "

(iii) In our model, the theorems of Thorn imply

that, for critical-point behavior at a point 6 C B, the
two most important factors are the dimension of the
parameter space, B, and the corank of 4&b (that is,
the number of order parameters). This is strongly
reminiscent of the hypothesis of critical-point univer-
sality. All this suggests that the techniques of dif-
ferential topology, some of which we have introduced
here, could be highly useful, or even indispensable,
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for an understanding of critical-point phenomena.
While we are speculating, let us note that quantum

electrodynamics seems to require 32 order parame-
ters. Modeling this as we have suggested would re-
quire that the image of 4 meet strata of codimension
greater than 6544. Such a system would be highly
nongeneric.

(iv) We chose the space X = C» (R ) and relation
—in our model for two main reasons: (a) the
results give good agreement with experiment, and (b)
the space C»" (R ) under the relation —is relatively
well-understood mathematically. Such reasons are,
of course, not definitive. It would be a major
achievement if someone explicitly associated such a
model with an exactly soluble system, such as the Is-
ing model. That is, if to each microstate (or statisti-
cal distribution of microstates) one managed to asso-
ciate an element of C» (R ) such that a global
minimum of the element determines the phase. We
do not have a great deal of confidence that this can

be done. We do, however, believe that there might
well be some topological space A' with an equivalence
relation —,which would provide an exact model.
The analogs of the Thorn and Morse theorems in this
setting would then provide a link between the micro-
scopic and macroscopic worlds.

In the general context of this type of modeling,
Thorn has suggested various candidates for the space
A' and relation —which might serve to specify a mac-
rostate. Among them are X equal to the space of
smooth vector fields on a manifold M, with —refer-
ring to the topological equivalence of attractors. For
further details, see Thorn

(v) The classification we have achieved is purely
local. It would be nice to have a theory which yield-
ed some global rules. For example, if we let Y be the
space of all realizable (in principle) values of the
thermodynamic field variables, we would like to be
able to deduce that Q is connected and 8Y Q BQ is

not empty.
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