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Ising gauge theory at negative temperatures and spin-glasses
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We study the Z(2) coupled spin-gauge theory at negative gauge coupling. We find two frus-

trated phases and a disordered phase in both three and four dimensions. All critical lines are of
first order in four dimensions. In three dimensions, the frustration frustr ~tion transition &s

well as one of the frustration disorder lines appear to be of second order. We find that the
contour in the coupling parameter space along which the unit W'ilson loop vanishes intersects a

transition line only ~t infinite negative gauge coupling ~nd infinite spin-spin coupling. This indi-

cates that, contrary to I recent conjecture, this contour cannot describe ~ transition in spin-

glasses.

I. INTRODUCTION

A popular model for spin-glasses' is a system of Is-
ing spins S; on lattice sites interacting via random in-

teractions {U„"}distributed with a probability law

P( {U&}). The total free energy is obtained by

averaging the free energy for a given distribution

{U;,} of bonds over all possible distributions. This is

called the quenched sum.
An approximation that is often used is to treat the

U„"'s as dynamical gauge variables and thermally
average over the spins and U;, 's simultaneously. In
this thermal average the gauge-invariant coupling of
Wegner and Wilson is included in the Hamiltonian.
This procedure, which is simpler to implement in

practice, is called the annealed sum. The system is
characterized by two coupling constants, h represent-
ing the spin-spin interaction through the bonds U;,
and P representing the pure gauge theory coupling.
These will be defined more precisely in Sec. II.

The annealed sum is known to underestimate the
effect of frustrations because of correlations between
the U,J's. Indeed, the expectation value of the pro-
duct of four U„"'s around an elementary plaquette on
the lattice (also called the unit Wilson loop' ) which
vanishes identically in the quenched theory (because
the U;, 's are random), is in general nonvanishing in

the annealed theory. The authors of Ref. 1 suggest
that the quenched sum may be better approximated
by augmenting the annealed sum with a condition re-
quiring that the unit Wilson loop vanish identically.
The system then becomes a coupled Z (2) spin-gauge
theory evaluated on the contour C, in the two-
dimensional coupling-constant space, along which the
unit Wilson loop vanishes. This contour is reached
only for negative gauge coupling P. This modified
annealed model would have a transition only if this
contour C intersects a transition line in the full phase
diagram of the theory.

With this motivation, we have studied the Z (2)

spin-gauge theory both in three and four dimensions
for negative gauge coupling P and positive Ising cou-
pling h via Monte Carlo computer simulations. We
find that for negative gauge coupling, this theory has
three distinct phases. There is a disordered phase for
small P and two frustrated phases for P (( 0. In
four dimensions, all observed transitions are first or-
der. In three dimensions, only one of the transition
lines representing a frustration disorder transition
is clearly first order. The other two lines appear to be
of second order,

In both three and four dimensions, the contour in
the (P, h) plane, along which the unit Wilson loop
vanishes, intersects a critical line only at

P = —~ and h = ~. This indicates that the modified
annealed system has no critical point for finite cou-
pling in either three or four dimensions and is there-
fore incapable of describing spin-glass transitions,

In Sec. 11, we define. the Z(2) spin-gauge model
and our order parameters. We also construct the lat-
tice configurations that characterize the two frustrat-
ed phases we observe. Section III contains the
results of our computer simulations and our conclu-
sions,

II. MODEL

and the partition function

(2.2)Z(P, h) = X exp[ —S(P,h)]
1U,sl

The U's and the S's are Ising variables on the links

The coupled spin-gauge theory at positive gauge
coupling was discussed in Refs. 4—6. Therefore, we
will be brief and concentrate on the new features ap-
pearing at negative P.

The theory is defined by the action

S(P, h) =P $ (I —
Up ) +h $(l —SUS) (2. 1)
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and sites, respectively, of a d-dimensional hypercubi-
cal lattice. U~4 is a shorthand notation for the product
of four U's around a unit plaquette. The first sum in

Eq. (2.1) is over all such plaquettes while the second
sum is over all links.

Two useful order parameters are the average link L
and plaquette P defined by 2d(d —1)fN ~ —,d(d —1)N (2.6)

of N sites is dN. Therefore, the number of pla-
quettes frustrated by flipping fdN links must be less
than or equal to 2d(d —1)fN. Hence, a fully frus-
trated lattice, where all —,d(d —1)N plaquettes have

value (—1), satisfies

= (1-SUS)91nz
N(BA

(2.3)
i.e., f)—', L =Ox(1 —f)+2x f)—,

' (2.7)
and

P=8 =(1—U)
N, aP

(2.4)

We denote by F2 the following realization of this
bound in three and four dimensions. These config-
urations have P =2 and L =0.5.

The constant 1 in Eq. (2.4) is added to agree with the
definition in Ref. 6. The unit Wilson loop is just
1 —P, and thus the contour of vanishing Wilson loop
is the contour P =1.

For h = 0, the phase diagram of the theory must be
symmetric around P =0. This is because, given a
configuration of links, we can change the sign of
every Uya term in Eq. (2.1) by the following transfor-
mation.

Let y = (x,y, z, t, . . . , ) label a lattice site and

p, = (1, 2, . . . , d) label the d directions in our space.
A link variable can be labeled as U- . The required
transformation is

U
I U„ I, U z (—1)"U 2,

( 1 )x+yU
(2.S)

etc. Every link configuration at negative P is mapped
by this transformation into a configuration at positive

P and vice versa. The phase diagram of Z(2) gauge
theory for P & 0 is known. ' Hence we know all the
critical points for h =0.

We now define two fully frustrated lattice config-
urations that are useful in characterizing the two
new phases we find at h A 0. First, for P = —~,
h =0, the lattice finds itself (apart from gauge
transformations) in a configuration with random
spins and the U's defined by applying Eq. (2.5) to a
fully ordered set of gauge variables. We call this con-
figuration F1. It is characterized by the values
P =2, and L = 1 of the order parameters.

As h grows at P = —~, the theory approaches a
critical point to a preferred configuration with
P =2 and L as small as possible. The lattice likes to
have neighboring spins aligned if they interact fer-
romagnetically (U = 1) and antialigned if they in-
teract antiferromagnetically ( U = —1). This cannot
be done perfectly and it is easy to show that a lower
bound on L in any number of dimensions for a fully
frustrated lattice is 0.5. This is seen as follows:

In unitary gauge, where the gauge freedom is used
to set all S; to +1, suppose we flip a fraction f of the
links. A flipped link has U = —1. Each link is in
2(d —1) plaquettes. The number of links on a lattice

zt t
1 )(zz+(y —l)(z-1)(t 1)—

( 1 )x(t 1)z+(x—1)t(z——I )

y. 2

1 ) tx(y —I )+(t 1)(x—1)y—

1 )t(t (z —I )+(x—I ) (y —1)z
y, 4 t

(2.8)

and 5 =1 on all sites. The configuration F2 in three
dimensions is obtained by setting t = 0 in Eq. (2.8)
and omitting the link Uy 4 We do not know whether
the bound L =0.5 when P = 2 can be realized in arbi-
trary dimensions.

Finally, we note that for h = ~ and any finite P,
both P and L must vanish. This implies that the lim-
its h ~ and P —~ do not commute and suggests
a possible phase boundary extending to P = —~
and h =~. We will see that this is indeed the case.

III. PHASE STRUCTURE
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FIG. 1. Hysteresis cycles at 18=—~ and P= —0.7 on a 6
lattice, 10 iterations per point. The initial lattice was F l at
A =0.

The phase diagrams for positive gauge coupling for
d = 3 and d = 4 are known. "We use Monte Carlo
methods to study the theory for negative P. The data
here were obtained using the heat-bath method as
described in Ref. 6. Both site and link variables were
varied in the algorithm.
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FIG. 2. Contours of constant P on 64 lattice.

A. d=4

Figure 1 shows hysteresis cycles in L and P at

P = —~ and P = —0.7. It is clear from this figure that
for p = —~, there is one transition that separates a

phase with L =0.5 from one where L & 0.5. On
both sides of this transition, the lattice is totally frus-
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FIG; 5. Iterations fro'm F 1 and F2 near a point on the
frustration frustration transition line.FIG. 3. Contours of constant L on 64 lattice.

trated (,P =2). For finite negative p, there are two
transitions —one which is seen in both L and P and
another which is seen only in L. The first of these is

a frustration disorder transition. The second is

analogous to the frustration frustration transition at

Figures 2 and 3 are contours of constant P and L,
respectively. The transition lines are clearly defined
as a piling up of the contours. Note that just as in

Fig. I, the disorder frustration transition is seen in

both P and L, while the frustration frustration tran-
sition shows up as a singularity in L alone,

In Fig. 4 we plot P as a function of the number of
iterations at two critical points along the disorder~ frustration line. The first-order nature of the tran-
sition is evidenced by the appearance of two distinct
stable phases.

Figure 5 is a similar plot of L versus the number of
iterations at a critical point on the frustration frus-
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FIG. 7. Phase di ~gram for d =3 Z(2) spin-gauge theory.

FIG. 6. Phase diagram for d =4Z(2) spin-gauge theory.

tration transition. The critical parameters are identi-
fied as p= —0.55 and L =0.55. The other two graphs
in this figure show the decay of the false ground state
into the true ground state on either side of the critical
point. It is evident from Fig. 5 that the
frustration frustration transition is also first order.
A similar analysis shows that the p = —~ transition is

first order as well.
Figure 6 is our estimate of the phase structure of

the four-dimensional theory. For completeness, we

have also included the results of the analysis of Ref.
6 for positive P.6 We see that the contour for P = 1

intersects the critical line only at h —~ and p = —~.
The negative p triple point has coordinates

P =—0.46+ 0.01 and h = 0.56+ 0.01.

B. d 3

In three dimensions, a similar study leads to the
phase diagram of Fig. 7.

Just as in four dimensions, there are two frustrated
phases which we generically call F1 and F2 (see Fig.
7). However, unlike the case of four dimensions,
these two phases are separated by an apparently
second-order line. This line begins at (P = —~, h
= 1.25 + 0.05) and terminates in a triple point at
(p= —0.79+0.01, h =1.3+0.05). For small h, there
is also a second-order line separating F1 from a

disordered phase. This line extends from

(P = —0.7613. h =0) to the triple point. Finally,

there is a first-order line separating F2 from the
disordered phase. This line originates in the triple
point and extends to (p= —~, h = ~). The P =1
contour intersects a critical line only for infinite h and
infinite negative p.

IV. CONCLUSION

We have uncovered a rich phase structure in the
coupled Z2 spin-gauge system at negative gauge tem-
perature. This structure, however, avoids the con-
tour suggested in Ref. 1 as an approximate model of
spin-glasses. Hence, that model will not exhibit a
spin-glass transition in three or four dimensions.
Note, however, that in going from three to four di-
mensions the P = 1 contour, i.e., vanishing unit Wil-
son loop, moves closer to the disorder —F2 phase
transition line. Indeed, in four dimensions this con-
tour appears asymptotically tangent to that line. This
suggests that four dimensions may be critical and that
with higher dimensionality this contour may indeed
disappear beneath the corresponding first-order tran-
sition line.
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