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Dynamic response of local magnons: Single-impurity limit in one-dimensional magnets
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The dynamic response of local magnon modes associated with a single-impurity spin in one-
dimensional ferro- and antiferromagnetic insulators is studied theoretically with the use of a

Green's-function formulation solved exactly, by transfer-matrix techniques, for zero tempera-
ture. The calculations are applied to the typical one-dimensional (1D) ferromagnet CsNiF3 and

the antiferromagnet (CH3)4NMnC13 (TMMC) as functions of the impurity parameters in a way

to allow the interpretation of possible future measurements of defect modes in these materials.
The theory also explains qualitatively recent measurements in the three-dimensional defect anti-
ferromagnets FeF2'. Mn +, CoF2.Mn +, and FeF2'.Co +,

I. INTRODUCTION

The effects of substitutional impurities on the
spin-wave modes in magnetic crystals have been
under study for many years. ' Many properties of
these systems have been investigated theoretically
and experimentally and are now well understood.
The systems mostly studied are antiferromagnetic in-
sulators in which the impurity modes lie far above
the spin-wave band. In this case the wave functions
are well localized around the defect and a number of
approximate theories describe satisfactorily the prop-
erties of the modes. On the other hand, when the
defect modes have frequencies very close to the mag-
non band, the localization of the wave functions is
weak and a number of interesting effects occur. Re-
cent far-infrared (FIR) laser experiments have shown
for example that the response of the so local modes
of Mn impurities in CoF2, and FeF2, whose fre-
quencies lie just below the spin-wave band, is largely
enhanced by the interaction with the excitations of
the host crystal. Similar experiments with Co impur-
ity modes in FeF2 show that the modes close to the
top of the band decrease in intensity as they move to
lower energies with increasing magnetic fields. The
behavior of the intensity in the first group of experi-
ments has been explained satisfactorily by a semiclas-
sical equations of motion approach, ' but a more re-
fined theory is needed to explain quantitatively the
experimental data.

In this paper we develop an exact Green's-function
calculation of the local mode response in one-
dimensional (ID) magnets in the single impurity lim-

it. Though the theory does not apply to the three-
dimensional crystals studied experimentally so far,
many results of the model can be used to explain the
experiments qualitatively.

The usual theoretical approach to the one-impurity
problem involves t-matrix techniques which require
explicit calculation of the pure host crystal Green's
function. ' Here we treat the problem of a magnetic
chain with one impurity within a transfer-function
formulation ' which does not involve knowledge of
the pure lattice Green's function, and turns out to be
much simpler than the usual treatments. " " In Sec.
II we consider the ferromagnetic case: the formalism
for the calculation of the Green's function is present-
ed and the local modes frequencies and wave func-
tions are calculated. The conditions for existence of
such modes are also obtained. In Sec. III we calcu-
late the dynamic response of the system for optical
excitation and neutron scattering at zero temperature.
The antiferromagnetic chain is considered in Sec. IV,
and our ct;nclusions are presented in Sec. V.

II. FERROMAGNETIC HOST

We consider a chain of spins S; described by the
Hami 1 tonian:

x =- XJ„s, s, - X&,e„'s;,

where y; = p, ag;; the host crystal magnetic ions have
spin S, nearest-neighbor ferromagnetic isotropic ex-
change constant J, and anisotropy field H& ~ The sin-
gle impurity at site i =0 has parameters S',J', and
Hg.

Let G;, be the Fourier transform of the double-
time Zubarev' Green's function for the defect lattice:

&;, = G (I;,i ~
) = (45,5, ) '~' (( 5,+,5,

The equation of motion for G;, at zero temperature is
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readily derived: to the impurity nearest neighbor is:

(ol odO) B (od) (olal)
B(ol) C(ol)

(14)

where

/= X 2t 'J ,S-, +. y,./J„'
IJ Jj wi

(4)
p;(ol) = —m 'ImG;;(ol) + XR;,"5(ol —ol„) (15)

The normalized local density of magnon states at site
i is given by'.

is the Ising frequency, and

is the- transverse coupling frequency.
We are interested in the trace of G, which is associ-

ated with the density of magnon modes. The equa-
tions related to the diagonal elemerit of the Green's
function relative to the defect site are:

pl|) GOO = 1 203O1G10

(ol —odl) G 10 plloG00 03TG20

(ol —oil) G20 03TG10 QITG30 (6)

2JST = ~n, n+&~0 =

This infinite set of coupled equations can be solved

by the introduction of the transfer function

T(03) = ', n ~2
Gn-l, 0

which is obtained by using Eq. (10) in Eq. (7):

(10)

T(o) =+(e2 —1)'i2 —e,
with

t = ( Ql Ql 1) /2 Ql T (12)

The sign of the square root in Eq. (11) must be
chosen to satisfy lim + T(ol) =0, so that for
~e~ & 1, the sign is the same as the sign of s. For
~
a

~
& 1 the sign must be chosen so that the density of

states is positive in that range. Substituting Eq. (11)
into Eq. (6), we get:

Ql cdf+QITT B(ol)
Goo =

( ol —
Qlp ) ( Ql —cd f + cd T T ) —2 ( odp1 ) C ( cd )

(ol —oil) G„o ———03TG„1 o
—plTG„+1 o, n -2, (7)

where

I 4JSI = n» = +'Y+~

where the sum is over the poles of G;; and R;," is the
reSidue Of G;;(ol) at a pOle odl, . NOte that the tranSfer
function (11) is complex for ol in the interval
(oil —2olT, odl+2olT), or —1 & e & 1, which is the
frequency range of propagating spin waves, thus in

this range the density of states is a continuum. Lo-
calized impurity modes correspond to the poles of G;;.
Symmetric or s-like modes, i.e., modes with nonzero
amplitude at the impurity site, appear as poles of Goo,
while antisymmetric or p-like modes must be investi-
gated at a different i site, G~t for example.

From Eqs. (13) and (14), we conclude that the
zeros of C(ol) correspond to s-like mode frequen-
cies, while the zeros of B(ol) correspond to p-like
modes: these local mode frequencies are identical to
the results of White and Hogan" and Tonegawa. "
Conditions for the appearance of such modes above
and below the continuum may be easily investigated
frOm the analytiC eXpreSSiOnS fOr B(od) and C(ru).
These conditions are summarized in Table I, where
we introduce for convenience the parameters
ol = J'/J, p = S'/S, and 5 = (g'I2, s JJq —g12, sHq)/2JS;
explicit use is made of the fact that n & 0 and P & 0
in order to simplify some of the conditions.

In Fig. 1 the frequencies of the s and p modes as a
function of n are presented for several values of 8,
keeping P =2, which applies to Fe++ impurities in the
1D anisotropic ferromagnet CsNiF3. Note that for
negative values of the relative anisotropy parameter
8 an so mode appears below the magnon band.
Modes of this type have been observed in the 3D an-
tiferromagnets CoF2.Mn, '" and FeF2'.Mn. '" The s~

mode appears above the magnon band, s-like modes
have been observed in many 3D antiferromagnets, '

but only recently experiments were reported with
modes of this type very close to the top of the band.

TABLE I. Conditions for the existence of localized rnag-

non modes in a ferromagnetic chain with one impurity:
n = J'/J, P = S'/S, and 5 = ( y'Hz —pe ) /2 JS.

Above the continuum Below the continuum

(13)

Analogously we obtain any element of the Green's
function; in particular the diagonal element relative

s-like mode (4 —8)(o.p —2) ) 4o
p-like mode np) 2

h(0
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The wave function of the local modes may be easi-
ly obtained from the residues of the poles corre-
sponding to these modes for different elements of
the Green's function':

(y (i)f'=RP, (16)

l

CD

LIJ

0

-2—
0

So

a=JlJ

I

2

S=-i
-2

FIG. 1. Frequencies ~ = (~—0(1}/20(T of the s and p

modes for a ferromagnetic linear chain as functions of the

exchange constants for various values of the anisotropy

parameter 5 =.(y'H~ —y Hz }/2JS.

The spin deviation amplitudes, P&,(i), at the vicinity

of the impurity are plotted in Fig. 2 for a=1, P =2,
and different values of 5, Of course, only the values
corresponding to integer i are physically meaningful.
Notice that the so mode corresponds to an excitation
of the impurity spin in phase with its neighbors,
while in the s~ mode the impurity spin is in opposite
phase with respect to its neighbors. This symmetry
aspect is important in the dynamic excitation of these
modes treated in Sec. III.

From Fig. 2 it is clear that the modes nearer to the
band edges are less localized, and in this situation the
Ising approximation gives very poor description of
the local mode frequency. Modes with frequencies
far from the continuum become Ising-like and are
well localized at the impurity.

III. DYNAMIC RESPONSE

(t p (i)

ction

The response of the spin system to k =0 elec-
tromagnetic radiation such as used in Raman scatter-
ing or infrared-absorption experiments can be
described by the susceptibility, written in terms of the
Green's function as".

2(SS,)' '
X(~) = $ ' '

y, y, G„(~)
Ij

(18)

-3 -2

—b= l

--&= 0-- s=-I

0.

0.3

0 I

ii y (j)

&, —mode wove function
(o = I)

Due to the property of the Green's-function matrix
elements to be related to each other by powers of the
transfer function (except Gpp), the summation in Eq.
(18) can be grouped into geometric series, and there-
fore can be performed exactly. For frequencies near
a pole of G, i.e., near a local mode frequency co&, the
susceptibility is'.

(

/t
I

l
I

I

f l

I(

GO
—

OJg
'

1+ T(cu) [1 —2Rpp ] +4R i"p

1 —T(o))

2R

l 1 —T(~) )', (19)

( I

/

-0.6 "

FIG. 2. Spin-deviation amplitudes around the impurity

site (i =0} for the so and s~ local magnon modes for o. =1
and P =2.

where A =2Sy'/ V; use was made of the sum rule

R,P =1 and for simplicity it was assumed$2 $2
Notice that X;,= A /(co —co„) is the susceptibility

of one isolated impurity spin; therefore the lattice-

impurity spin interaction may change drastically the

response of the local mode to the external field.
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TABLE II. Reduced energy ~ = (co —co&)/2coT of the so and s& local modes, relative k =0 dynamic

response g = X„(co)/Ximp and neutron scattering form factor $ =S„(m/a, co)/Simp as a function of 5

for u =1 and P =2.

Sp
—1
—0.2
—0.1

—1.54
—1.20
—1.01
—1.004

3.65
5.84

21.86
41.54

1.82
1.60
0.74
0.45

S)

—10
—8
—6

0
6

1.04
1.05
1.08
1.41
3.35

0.17
0.18
0.19
0.05
0.27

13.12
10.96
8.74
1.71
0.14

Since the value of the transfer function (11) at the
uniform mode (k =0 magnon frequency) is

T(~k~) =1, the response of the local mode is large-

ly enhanced by its proximity to the bottom of the
magnon band. Local mode enhancements of the or-
der of 100 have been observed in CoF2'.Mn (Ref. 2)
and in FeF2.Mn (Ref. 3), where the Mn mode fre-
quency is just below the magnon band. This effect
makes the impurity mode as intense as the uniform
resonance mode for Mn concentrations of the order
of 0.1'/p. The ratio g = X~/X;, for the sp and st
modes calculated from Eq. (19) are presented in

Table II. Notice that while the so mode is enhanced
by the impurity-lattice interaction, the s~ mode is

greatly weakened as it approaches the magnon band,
as observed in FeF2'.Co. This effect can be under-
stood as resulting from the action of the transverse
exchange field of the neighbors at the impurity spin'.

the so mode is in phase with the k =0 extended
mode, while the s~ mode is not, so that the excitation
of the neighbors at sites +1 by the uniform external
field partly cancels the excitation of the impurity
mode with s~ symmetry.

While the so mode response is enhanced as its fre-
quency approaches the k =0 magnon frequency, it is
not as large as it would be for a 3D spin system with
the same local mode frequency relative to the mag-
non band and same exchange constants. This is in
part due to the smaller number of neighbors and con-
sequently smaller exchange field of the 1D system.

The inelastic neutron scattering cross section by
one spin-wave excitation in the chain is related to the
dynamic structure factor':

S(k, pp) = —X (S;S&)' 'b;bg ek" "G,J(pp), (20)
IJ

where a is the lattice parameter and b; is an interac-

tion constant. Assuming for simplicity S'b' = Sb',
expression (20) may be evaluated in the same way as
Eq. (18); for frequencies near a local mode frequency
co& we get:

I + T(pp) (I —2Rp"p ) e'"'+4R ]"p

S~ kco = Re
1 —T(co) e'"'

eika
+2R") )

I —T(o))e'"'

IV. ANTIFERROMAGNETIC HOST

The calculations of the previous sections can be
readily extended to an antiferromagnetic linear chain
with one impurity. We assume a Hamiltonian
describing the system as.'

H = $ J,,S; S) —Xy; H„'n;S,'
ij i

(22)

where n; =1 if S; belongs to the "up" sublattice and
o.; = —1 if S; belongs to the "down" sublattice. The

(21)

which for k =0 is analogous to Eq. (19). The form
factor for one isolated impurity spin is S; p=8/
(cu —u&„). Values of the ratio g„(k) =S~(k, ru)/S;,
with k = rr/a for the sp and s~ modes are given in
Table II. Notice that the ratio $, ~(7r/a) is enhanced
for ~, t approaching the top of the magnon band.

While in light scattering experiments the response
of local modes with symmetry other than so is always
weakened, the present results encourage the observa-
tion of such modes in neutron scattering experi-
ments, even at very low concentrations.
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other parameters are as defined in Sec. II (notice that
the exchange coupling constant is positive here).
The one-magnon Green's functions are defined
as 1, 10.

transfer functions:

( )
GJJ (Ql)

G(' (),j(~)

G,/I'(Ql) = G a(i,j ~
c )

= (-1)"-»'(4S, S/)-)/2 ((S'( ),Sj-(P) )). ,

(cu —«l/) + [(Ql —cdj)(cu —
Qly +4«ly)]

2«ly (CU +

cd/�)

(25)

(23)

where. the notation indicates that S; belongs to sub-
lattice c2 and S, belongs to sublattice p.

Assuming the Neel ground state, the equations of
motion for zero temperature are:

( ~cd/)Gap 8 + Q( I)()+n)/2 T Gap
I IJ IJ IJ JJ

, I
J

(24)

where cc —c=c and Ql, cu;, are defined in Eqs. (4) and
(5). Equation (24) may be solved by defining two

G;,
+ («l)

G(y )),j—(cd)

Ql +Cd/

Cd
—QJ J

(26)

Notice that the transfer functions, and therefore G,
are complex for cv in the interval

[ ( 2 4~2)1/2 ]

which is the frequency band of antiferromagnetic
magnons. We solve Eq. (24) for the diagonal ele-
ments of the Green's function at the impurity site
and at its nearest neighbor:

cu+cuf+cuy T2(c )
GOO cd = GOO

( cd cu() ) [ cu + cu f + cu y T2 ( cd ) ] + 2 ( cu )p )
(27)

+ (cd+ Qlp) (Ql Qlf Qly ) T((«l) + (QJ(o)
G(( Ql = G(( —Ql

(QJ Qlf Qly ) T) (Ql) [ (Ql + cUp) (cU cUf ply T) ) + 2(cd)o) ]
(28)

The local density of states is obtained from Eq.
(15) with G;;(cu) taken as [G;++(cu) +G;, (cu)]. The
conditions for existence and symmetry of the local-
ized magnon modes are easily obtained from Eqs.
(27) and (28); the results are summarized in Table
III.

Figure 3 sho~s the frequencies of the local modes
as a function of u= J'/J for P=S'/S equal to 1/2. 5

and to 2/2. 5 for various values of the impurity aniso-
tropy parameter 8'=y'H„'/2JS The results app. ly to
the typical linear chain antiferromagnet
(CH2)4NMnC12 (TMMC), for which the anisotropy

I

energy is small (we have taken II„=O), and the two
values of the spin considered apply to Ni++ or Fe++
ions substituting a Mn++ ion.

The dynamic response of the antiferromagnetic
system is calculated in the same way as the ferromag-
netic one, and the same qualitative behavior is ob-
tained. Since the anisotropy of TMMC is very small,
the magnon gap is small and no localized so mode is
expected to exist, therefore no enhancement effect is
expected to be observed for this mode. However an
enhancement in the neutron scattering by s],modes
just above the band is expected to occur.

TABLE III. Conditions for the existence of localized magnon modes in an antiferromagnetic
chain with one impurity: a = J'/J, P = S'/S, 5' = y'0„'/2JS. y = eo, /eoT.

Above the continuum Below the continuum

s-like mode

p-like mode

~-» —(s-s )
t I

2

or

( p —1)(2+a+v') & 2

ap) 1

.p(, -s') — (s+&) & —,(~'-~)(~+~)
or

p(s'+&) -~(~-s) & —,(~'+y)(~-~)

5(1 —np) ) A p'
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Cf)

CU

3 2

2
a= J/J

FIG. 3. Frequencies of the s& and p local modes in an an-

tiferromagnetic linear chain as functions of the exchange
constants and impurity anisotropy 5' = y'Hz/2JS, for two

values of the impurity spin. The anisotropy of the host
spins is taken to be zero.

that impurity-impurity interactions can not be
neglected, the formalism may be extended in the al-
loy transfer-matrix approximation. ' " Such a calcu-
lation is in progress, and information about line posi-
tion, shape, and widths may be obtained.

The observation of local magnon modes in one-
dimensional ferro- and antiferromagnetic materials
should not be much more difficult than in the 3D
materials extensively explored. All the techniques
used to study magnetic defects, Raman and neutron
scattering, far infrared laser spectroscopy, and NMR
are appropriate for these observations. The feasabili-
ty of the preparation of 1D systems with magnetic
impurities has been reported for TMMC crystals
doped with Cu, Co, and Ni. ' These systems would
be strong candidates for the suggested observation.
The fact that the ordering temperature of these sys-
tems is low presents some complications, but these
are not major ones. In fact, these measurements
should be possible even at temperatures above the
ordering temperature, as long as the spin-spin corre-
lation length is larger than the spread of the local
mode. Since this spread accounts for only a few lat-
tice spacings, depending on the proximity to the mag-
non band, local magnons may exist in TMMC at
temperatures as high as 10 K.

V. CONCLUSIONS

In this work we have presented a transfer-function
treatment for the one-impurity problem in one-
dimensional magnetic systems, which is very suitable
for the calculation of the local mode energies and
dynamic response. For impurity concentrations such
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