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Two-point correlations near the phase transition in a compressible magnet

J. Bruno* and J. Sak
Set'ijt Phvsics Laboratory, Rtttget's UItiversitv, New Bntttswi(. 'A, New JeIsev 08903

(Received 13 May 1980)

Leading order in e(=4 —d) solutions of renormalization-group recursion relations are used to
calculate the two-point correlation function in an»-component compressible magnet. The ef-
fect of finite compressibility on two-point correlations is studied and comparisons with the rigid

system are made.

I. INTRODUCTION where Do =1+0(e'),

One of the most useful tools in studying the
critical-point behavior of magnetic systems is elastic
neutron scattering. The coupling between the neu-
tron and electron magnetic moments leads to a
dependence of the differential scattering cross section
on the Fourier transform of the spin-spin correlation
function

and
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G(q, t)=pe '''"(S(R) S(0))

Here q is the momentum transfer which is related to
the scattering angle and r = (T —T, )/T, is the re-
duced temperature. In rigid magnetic systems for
wave vectors satisfying qa (( 1 where a is the lattice
constant G is expected to take on the asymptotic
form (as t 0)

G (q, r) = Cr 'D (q'(') (1.2)

where f is the amplitude of the second spatial mo-
ment of G(R, t) = (S(K) S(0)). The function
D (x') has been determined for both large and. small
values of its argument by Fisher and Aharony'
correct to 0 (e'). For x (( 1 (i.e., in the uncorrelat-
ed region) they obtain the Ornstein-Zernike form

D(x') = +O(e')
1 +x

(1.4)

while for x » 1 (i.e. , in the strongly correlated re-

gion) D (x~) can be written

Doo Doo D oo

In the above, C is the amplitude of the susceptibility
and g is the correlation length given by (as t 0)

(1.3)

Their calculations were done for T & T, and in the
absence of an external field. Combescot et al. ' then
extended these calculations to the case of nonzero
external field. Although these and other3 calculations
gave detailed information about the small- and large-
x behavior of D (x'), the properties of D (x') for in-
termediate values of x remained unknown until Nel-
son4 obtained results for D (x2) valid for all x which
properly reproduced the large- and small-x behavior.
Although these results only exponentiated singular
behavior to 0 (e), comparisons with high-temper-
ature series expansions were encouraging.

The purpose of this paper is to present calculations
of the two-point correlation function for an n-

component magnetic system coupled to an isotropic
elastic medium. The methods used are similar to
those employed by Nelson' for the rigid system. A

calculation including the effects of finite compressi-
'

bility is worthwhile since a coupling between elastic
and magnetic degrees of freedom can produce correc-
tions to sealing behavior affecting two-point correla-
tions and hence the analysis of scattering data. The
paper is organized as follows. In Sec. II we review
the model Hamiltonian and give solutions to
renormalization-group' (RG) recursion relations ob-
tained from it. Section III contains a calculation of
the correlation function with a discussion of the RG
matching conditions. The large and small qg
behavior of the function is obtained explicitly and
compared to the rigid system results. %e also
present results of numerical calculations which
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display the dependence of 6 on both t and the
strength of the magnetoelastic coupling. Section V
contains a summary of results.

II ~ MODEL AND RECURSION RELATION SOLUTIONS

A model Hamiltonian useful for describing an n-

component magnetic system coupled to an isotropic
elastic medium is given in wave-vector space by '

H L '
H, tr = —= X (r +k')S, -„S,

i, k

of the spatial rescaling factor associated with the RG
transformation. With these solutions at hand we now
proceed to a calculation of the two-point correlation
function.

III. CORRELATION FUNCTION AND RG MATCHING

The recursion relation method for calculating ther-
modynamic properties always involves making use of
a scaling relation satisfied by the quantity of interest.
In this case we use the relation

+uL '" $ S, -„S,-„S.-„i, k [ i, k
2 j, k

3ij; k&, k2' k3

tI
6(q, It, ) =exp 2/ — q(/')dl' 6(e'q, /L(/))

(3.1)
S. (k+k+k )

+ u L ' $S,. k S,.
i, k

(2.1)

(2.2a)

where the S,, -„constitute a set of nN collective coor-
dinates, N being the number of spins in volume L
and the wave-vector sums are restricted to the interi-
or of a spherical Brillouin zone of unit radius. The
first two terms in Eq. (2.1) are the usual terms found
in the Ginzburg-Landau-Wilson (GLW) Hamiltoni-
an' for a rigid magnetic system while the last term is
a new mean-field-like interaction between the spins
mediated by k =0 phonons. The properties of Eq.
(2.1) under RG transformation in d = 4 —e have
been studied previously, and the results of these
works along with solutions to the differential RG re-
cursion relations are summarized in our earlier paper'
(hereafter referred to as 1). The thermodynamic
state of the system described by Eq. (2.1) is given by

the fields r, u, and v and the set of differential RG
recursion relations satisfied by these fields are given
in I. The solutions are

r(/) = / (I) ——'l (I)+ '
t (/)h (I) ln—[1+t(/) ]+0 (e )

where the set of fields p, = {r, u, u ] defines the ther-
modynamic state of the near-critical system and
/t. (I) = {r (l), u (I), v(/) ) corresponds to the thermo-
dynamic state zf a system onto which we map the
near-critical system. With a suitable choice for I, one
may be able to map onto a system whose two-point
correlation function is easily calcula. ted which means,
in practice, that perturbation theory is applicable.
One possible choice for I is a value, say I', which
makes r(l') =1. This would make a calculation of
G(l') possible. The problem however with this
choice is that, as pointed out by Nelson, 4 it leads to
technical difficulties because as T T, (i.e., as
t 0) I' grows very large (it is approximately given

by e' = t ") and since e'q must be bounded from
above by unity this particular choice for I would only
be useful for values of q & e ' = t'. This corre-
sponds to values of x =q( ( 1. Another possible
choice for I' is given by q'e" = 1. The difficulty
with this choice is that for wave vectors too small I'
will grow so large (e' = q ') that for a given bare t,
t (I ) will become larger than unity invalidating the
solutions given in Eqs. (2.2). Thus this I' is only
useful for values of x = q( ) l. ln order to have
results valid for any x we choose I' by Nelson's
compromise condition4

u (I) = ue "/Q (/) + 0 ( e') (2.21 )

(2.2c)

t(l')+e" q'=1 (3.2)

where t (I) —= te"/f (I), A (I) —= Au(/) +Bu(/), t = r
+ —A. , and the constants, A, 8, and C are given by A

= (n +2)/27r~, B = n/27r', and C = (n +8 )/27r2
The functions Q(I) and f (I) are

With this I' and ignoring ri since it is of 0 (e ) Eq.
(3.1) becomes

G(q, p, ) =e" G(e' q, /t, (I )) (3.3)

f ( I) = Q (/) "I [1 + 6 (Q (/) ' '" —1) ]

Q (/) = 1+ (Cu/e) (e"/ —1)

where 6 = Bu/Cu (1 —2A/C); A. , r, u, and v are the
/ =0 values of these quantities and t is the logarithm

We now need to calculate 6 (e' q, /t, (l')) which may
in fact be near critical depending on the values of p,

and q. We write the Dyson equation' for

G (e' q, p, (I')) which is shown graphically in Fig. l.
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I.IG. 1. Dyson equation for the two-point correlation
function in terms of fully renormalized propagators and ver-

tices. The broken line which carries no momentum is the
bare v vertex while the solid dot and square are, respective-

ly, the bare and fully renormalized four-point vertices u and

u~ (k], k2, k3, k 4„l ),

tions are less singular than those terms retained order
by order in perturbation theory. The integral in Eq.
(3.4) can be expressed in terms of the energy of a

system in the thermodynamic state p, (/')

E(p(l")) = — n — G(k, p, (/')) . (3.5)
d'/-

~ (2~)"

Since the energy of a compressible system was calcu-
lated in I we can carry over those results. Wc found
that

Analytically this reads

G '(e' q, p(l'))

) t 1 . F(tu)' '" —1E(r, u, v) = n—
8 u (4 —)1) 1+G(F(tu)) —2w/c 1)

(3.6)

=r(/')+e" q'+ G(k, p(l'))
(2m)~

(3.4)

where

F(t, u) =—1+(Cu/e)(t '/' —1) (3.7)

where we have omitted the 0 (e') terms in Eq. (3.4)
since the condition (3.2) ensures that their contribu-

Combining Eqs. (3.3)—(3.6) we find to leading order
in e

G ( t u+ v) e2( 1 + ~ ( / ( t [t (/4') —(c/2)(4 n)/(n+8—) 1]
4K4(4 —n ) u'

)

(3.S)

where we have set u'= u' for convenience (the fixed
point we are referring to here is F4 of I —the rigid

Heisenberg fixed point) .
In order to remove the explicit I' dependence from

Eq. (3.8) we note that condition (3.2) with u = u' be-

comes

e' =g, "(t)(x,y)

where x =—qpr
" and

(3.11)

Making use of these results in Eq. (3.9) along with

the substitution

A. I
te '

(1 —G ) [1+Ge " /(1 —G ) ]

+e" @2=1

(3.9)

y =—n [(n +8)/27r'(4 —n ) ]g.g,
" (y„=vX„=n)

we obtain an equation satisfied by the function
(1)(x,y)

g, =t/(1 —G), u/e
1 —G

(3.10)

This expression is more conveniently given in terms
of the nonlinear scaling fields appropriate to this

A, I
problem. With the definitions g((l) =g, e ' and

)„I
g„(l) =g„e " we find that [cf. Eqs. (5.17) of 1]

(p(x ) '
+ x'(P (x,y)' = 1

1+y(t)(x,y) "
(3.1 2)

Assuming that this equation can be solved for the
function (t) we can now use Eq. (3.11) in the expres-
sion for G to obtain correct to 0 (e)

r

n+2 [1+[6y/(n+2)]C) "] @&(G q, t, u', v =g, 4 1+
4 —n (1+ Cu) 2

' -(e/2) (4-n)/(n+8)

(3.13)

Writing G in the form

G(q, t, u', v)—= g, &D(xy)

and realizing that y = 2v + 0 ( e') we obtain for D (x,y)

(3.14)
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n+2 (1+[6/(n+2)]y&b ") @)(D xy =d)'1+
4 —n (I+ d) v)

f

1+y4"

' —(a/2) (4—n)/(n+S )

(3.15)

We can now examine the small- and large-x behavior of D (x,y). In doing this we will initially assume that n & 4
to avoid complications associated with a first-order transition (see I). In this case y is positive since g„ is negative
(the only physically admissible values of v are negative ones). Furthermore, since a ( 0 for n & 4, y will go to
zero with g, . Using Eq. (3.12) we obtain an expansion of the function &0 in x for x (( 1 of the form

(

(I)(xy) =d)0(xy) 1+— e, q)0(xy) in')0(xy)+O(e )
+2 (1+[6/(n+2)ly ) 2 2

2 n+8 1+y ' (3.16)

where

d)o(x,y) = [x'+1/(1+y)] '/'

Substituting into Eq. (3.15) we obtain for x (( 1

1
I

1 n +2 (1+ [6/(n +2) ].v ) ln(1+y)
x2+1/(1+y) 2 n +8 (1+y)' [x'+1/(1+y) ]

(3.17)

(3.18)

In the case when v 0 (y 0) this reduces to the
rigid system result. Similarly when x is set to zero in

this expression one obtains the scaling function for
the susceptibility. ' In the other extreme limit when
x » I (deep within the critical region) the expan-
sion of the function 4 is implemented by first writing

((I(wz) '

(((( w, z) '+
[I +z(()(w, z) "]

(3.20)

where w =x ' " and z =—yx ". The equation for (f( is

d)(x,y) = (I/x)((I(w, z) (3.19) which can be expanded for small w (large x) to obtain

r

( ) ( ) I+ E n+2 w(1+[6/(n+2)]z)
( )21, ( )+O(

2 n+8 1+z ' (3.21)

where

(f)0(w, z) —= [1+w/(1+z)] '/'

Substituting these results into Eq. (3.15) we obtain for x » 1

1 1 [6/(4 —n) ]y [6/(4 —n) ] (1 —y)
2

1 + X
—a/v 2+( I+a)/v 2+I/v

')

(n + 2)/(4 —n)
X2+( t-a)/v

(3.22)

(3.23)

This expression can be studied in two different re-
gimes. The variable y can be written

[ (v/v3 )/( 1 —v/v2 ) ]g, where v2 is the value of v
at fixed point F3 of I. In the limit of stiff lattice
and/or weak spin-lattice coupling we have v/v2 (( 1

and y &( l. In this case the system's critical behavior
is controlled for all g, by the rigid Heisenberg fixed
point (F4 of I) and Eq. (3.23) becomes

1 [6/(4 —n) ]y . [6/(4 —n) ] (I —y )
X2 X2+( I+a)/v 2+1/v

where we have ignored yx "compared to unity.
The second term above is due entirely to the lattice
coupling and since o. & 0 it constitutes the leading
correction to scaling. Note that when y is set to zero
in Eq. (3.24) we recover the rigid system results of
Fisher and Aharony' [neglecting the absence of'7)
which is O(e2)] with amplitudes correct to leading
order in e. The other regime is characterized by the
inequality [(v/v,")/(1 —v/v2) ]g, » l. In this case
the systems behavior is governed by fixed point F3
of I and Eq. (3.23) becomes

+ (n +2)/(4 —n)
X2+( [—a)/v (3.24)

1 6/(4 —n) + 6/(4 —n)
2 X2+ [/v ~2+( 1 a)/v
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D (x,y) = —,+1 6/(4- n)

X2+1/v

This has the same form as that given by Eq. (3.24)
with y set to zero. This is to be expected since the
short-distance expansion makes no reference to a
specific fixed point.

Although Eqs. (3.18) and (3.24) correctly describe,
respectively, the small and large x behavior of D (x,y)
for y « 1 it is more interesting to solve Eq. (3.12)
numerically for intermediate values of x interpolating
between the analytical results. In these calculations
we have taken e = 1 and n = 5. Setting n = 5 we en-
sure that o, ( 0: an assumption we have made
throughout. The results are given in Fig. 2 where we
plot G(q, t(0), u', v) for different values of v/v3 as a
function of t(0). Here t(0) = [T—T, (0)]/T, (0) is
the temperature scale reduced with respect to T, of
the rigid system. Each curve is labeled by its respec-
tive value of v/u3 and since the lattice coupling raises
T, from T, (0) the curves corresponding to succes-
sively larger values of v/v3 begin at higher values of
t (0). It is interesting to compare the compressible
system with the rigid system at fixed r(0) ) 0. Two
point correlations are enhariced in the compressible
system relative to those in the rigid system. Further-
more the relative enhancement appears to increase as
q 0. These results are plausible since the presence'
of the lattice coupling tends to favor long-range or-
der. The insets of Figs. 2(a) and 2(b) give an ex-
panded view of the maxima appearing at finite t (0)
in the function G. These maxima which occur due to
a competition between the second and third terms in
the short-distance expansion [which in the rigid sys-
tem are proportional to t(0) and t(0)' ] are qualita-
tively similar to the maxima appearing in the high-
temperature series expansion results of Ritchie and
Fisher" for the Heisenberg model. Although the po-
sitions of the maxima at fixed angle will depend on v
we have only given an expanded view of the rigid
system maximum since all the maxima are qualita-
tively similar in appearance.

6/(4 —n)
(3 26)

X2+(1—a )/v

IV. SUMMARY

We have calculated the two-point correlation func-
tion with singularities exponentiated to 0 (e) in an

where we have retained only terms which survive the

y ~ limit. This form for D will dominate for all

gg ) [(v/v3)/(I —v/v3) ] . Since in the y ~ limit
the critical behavior is governed by fixed point F3 of
I it is more appropriate to write the exponents in Eq.
(3.25) (which are the exponents associated with the
rigid Heisenberg fixed point) in terms of the ex-
ponents at fixed point F3. Making use of the rela-
tions' n = n'/(n' —I ) and v = v'/( I —n') where the
primed exponents are associated with fixed point F3
we obtain
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FIG. 2. Plot of 6 (q, &(0),«, v) 1s a function of /(0) for
various values of v/v3 with (a) q =0.06 and (b) q =0.08.
Here ((0) is the temperature reduced with respect to T, of
the rigid system. Insets display expanded view of the maxi-
ma occurring in the rigid system curves for (a) q =0.06 and
(b) 6/ =0.08.

isotropic n-component compressible magnet for
T ) T, (u) and in the absence of an external field.
We find that for n ) 4 the lattice coupling produces a
new correction to scaling in G(q, t) which is more
singular [it goes like I/q"+ '~" ] than the leading

'

correction to scaling in the rigid system (which is pro-
portional to I/q' "). The amplitude of this new
correction to scaling is linear in [ T —T, (v ) ] and the
lattice coupling v. Although we have not explicitly
given attention to the behavior of D when n ( 4 and
o. ) 0, we believe that the analytical results given
above can nevertheless be carried over. The only re-
striction on their use would be to exclude from con-
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sideration values of t & t, where t, is the temperature
at which a first-order transition occurs. In the Ising

model, for example, we find t, = —K4u'e '

x (4(v(/3u')' (see I). A simplification in our
analysis involved setting u = u' which was not neces-
sary. Letting u be arbitrarily small, for instance,
would allow for a calculation of the Gaussian to
Heisenberg crossover scaling function for two-point
correlations. " We have also omitted a detailed study

of the crossover behavior associated with the systems
bare u being close to u3 (but still within the domain
of attraction of the rigid Heisenberg fixed point).
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