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Pressure dependence of elastic constants and of shear mode instability for N13Sn
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The pressure dependence of the three single-crystal elastic constants of Nb3Sn has been mea-

sured by means of the ultrasonic pulse superposition method from about 13 to 300 K. The first
1

pressure derivative of the soft shear modulus —(c i&
—

~ &2) decreases almost rnonotonically with

decreasing temperature from +1.4 a$ 300 K to —
1 above the structural transformation tempera-

ture at 45 K. The pressure coefficient of the critical temperature corresponding to vanishing

shear modulus agrees approximately with the pressure coefficient of the structural transforma-

tion temperature, which is of opposite sign to that in V3Si. Above 100 K the Gruneisen param-

eter calculated from the elastic data in the anisotropic continuum approximation agrees well with

the thermal Gruneisen parameter, but below 80 K discrepancies occur which are attributed to

precursor effects of the transformation. The temperature variation of the pressure coefficient of
the soft shear modulus cannot be explained on the basis of the Labbe-Friedel model even if

pressure-induced interband charge transfer is included.

I. INTRODUCTION

The 315 compounds Nb3Sn and V3Si both have
high superconducting transition temperatures T, (18
and 17 K, respectively' ), and both exhibit elastic-
shear-mode softening associated with a structural
transformation from cubic to tetragonal symmetry at
a temperature TL (about 45 and 21 K, respectively').
However, the two compounds differ in that for
Nb3Sn the lattice constant ratio c/a in the tetragonal
phase is smaller than one, the pressure coefficient of
T, is negative, and the pressure coefficient of Ti is

positive, whereas for V3Si the lattice constant ratio is

larger than one, and the pressure coefficients of T,
and TI have signs opposite to Nb3Sn. Since all

these quantities are related to the third-order elastic
(TOE) constants these differences should be reflected
in the TOE constants and other anharmonic proper-
ties. Specifically, it follows from the Born stability
condition that the pressure coefficients of the
transformation temperature TL and of the soft shear

1

modulus cs ———, (c~~ —c,2) near TL should be of op-

posite sign. For transforming V3Si this is indeed the
case', however, the pressure coefficient of c& shows
unusual behavior' in that it exhibits two changes of
sign between TL and 300 K.

In order to compare the behavior of V3Si and
Nb3Sn we have measured the pressure derivatives of
the three single-crystal elastic constants of transform-
ing Nb3Sn as a function of temperature. The purpose
of the present paper is to report the results and to ap-

ply them to a study of the stability limit versus pres-
sure. In addition, the first and second Gruneisen
parameters are calculated from the elastic data and
compared with the available thermal data. Further-

more, the applicability of the Labbe-Friedel model,
earlier found adequate for the pressure coefficient of
the soft shear modulus in V3Si if pressure induced in-

terband charge transfer is included, ' is investigated
for Nb3Sn.

II. EXPERIMENTAL DETAILS

A. Crystal specimen

The single crystal of Nb3Sn used for the present
measurements was kindly supplied by Dr. L. J. Vie-
land, RCA Laboratories, Princeton. It had been
grown by an HC1-gas-transport method" and was

subsequently annealed for about 50 h at 1000'C in

vacuum. The crystal undergoes the cubic-tetragonal
structural transformation"" at about 45 K, and the
elastic properties measured at zero pressure are very
similar to those reported earlier' " for transforming
Nb3Sn. The density of the sample measured by the
liquid immersion method was found to be 8.849
g/cm at 23.20'C; less than the value of 8.87 g/cm'
reported before for a similar transforming sample, "
but larger than that for a nontransforming sample'
(8.83 g/cm').

The Nb3Sn crystal had the form of a 2.5-mm-thick
platelet with (110) faces and lateral dimensions of 3
to 4 mm. The crystal was oriented to within 0.5' by
means of the Laue back-reflection method. A pair of
parallel (110) faces was prepared and carefully pol-
ished with l-p, m diamond paste. A check of the fin-
ished surfaces against an optical flat under sodium
light showed flatness of better than —,A. over most of
the area. Initially the distance between the pair of
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(110) faces was 2.4663 mm, but after a corner was

chipped off in the course of the measurements the
platelet was reground to a thickness of 1.9260 mm.
Because of the irregular sample shape the lateral di-
mensions of one of the (110) faces were about 3

' mm, and those of the other face about 4 mm.

run. Transit-time measurements were made for de-
creasing pressure. Following each pressure decre-
ment a data point was taken after thermal equilibri-
um was restored at the particular set temperature of
the run.

B. Elastic-constant measurements III. EXPERIMENTAL RESULTS

The ultrasonic pulse superposition method" with
an automatic electronic peak finder' was used to
measure the transit time of 20-MHz longitudinal and
transverse sound waves in the [j10] direction, from
which the three independent elastic constants
c~~, c~~, and c44 can be obtained. The measurements
were made as a function of pressure at constant tem-
perature for a number of temperatures between about
13 K and room temperature. For the generation of
the longitudinal and transverse waves X and AC cut
quartz transducers with diameter of 3.1 mm were
used. It was found that in the entire temperature
range Nonaq stopcock grease was satisfactory for the
coupling of the transducer to the sample.

The room-temperature measurements were made
up to 1 GPa (10 kbar) in a conventional pressure
vessel. The pressure was measured by.means of a
Manganin resistance cell with an accuracy of 0.5%.
For the low-temperature runs a specially designed
beryllium-copper vessel was used, which was screwed
onto the controlled-temperature block of a Cryogenic
Associates model CT14 cryostat. " Helium gas was
used as a pressure medium, and pressure was read
with a Heise gauge with an accuracy of 3 & 10' Pa.
The maximum pressure was limited by the pressure
vessel, which had been designed for only 0.2 GPa in
order to reduce the heat capacity and facilitate more
rapid cooling, and below 20 K by the freezing pres-
sure of helium. Thus at 13 K, for example, the
highest pressure attained was only about 0.1 GPa,
and between 20 and 300 K a pressure range up to
0.18 GPa was used. Above 30 K the temperature
was controlled to about 0.01 K by means of a plati-
num resistance thermometer, and below 30 K with a
germanium resistance thermometer. In order to as- '

sess the absolute accuracy of the temperature mea-
surement, in addition to these two resistance ther-
mometers located at one end of the pressure vessel'
a Lakeshore Cryotronics silicon diode was attached to
the other end of the pressure vessel for a control run.
From the maximum recorded temperature difference
of 0.3 K between the two ends of the pressure vessel
it is estimated that the absolute accuracy of the tem-
perature measurement at the sample is better than
0.2 K.

For each low-temperature run the vessel with the
sample was first pressurized at room temperature to a
pressure some~hat larger than the desired pressure,
and then cooled to the temperature desired for the

A. Data analysis

co = poWo/3~'+ (po W')o

and"

(3.1a)

co = poWo~so +2(po W~)oso + (poW~)o (3 lb)

Here BT denotes the isothermal bulk modulus. The
quantities sp and sp' take into account the pressure-
induced dimensional change of the sample and can
for cubic symmetry be expressed in terms of the bulk
modulus BT and its isothermal first pressure deriva-
tive. 'o" All quantities in Eq. (3.1) are referred to
the temperature of the particular run. Because of the

The analysis of the ultrasonic data is carried out in
terms of the natural velocity defined by'o W'= 2lo/r,
~here lp is the distance between the parallel faces at
zero pressure ( = atmospheric pressure) and at tem-
perature T, referring to a particular run, and v is the
transit time of the ultrasonic wave at pressure p, also
at the same temperature T. The interplanar distance
IQ and the density p were corrected for thermal ex-
pansion by graphical interpolation of the lattice
parameter given by Mailfert et al. "at three tempera-
tures in the cubic phase. These data are compatible
with the thermal expansion data of Smith et al. For
the data analysis in the tetragonal phase the values of
Ip and p of the cubic phase immediately above the
transformation temp'erature were used.

Within the scatter of the experimental data the
dependence of pp 8" versus pressure p ~here pp
denotes the density at zero pressure was found to be
linear in the smaller pressure range from 0 to about
0.2 GPa used for the runs below room temperature,
but in the pressure range from 0 to 1 GPa used at
room temperature a small, but statistically significant
nonlinear pressure dependence was found. Conse-
quently, below room temperature the intercept
poWo —= (po W')~ o and the slope (poW')o
—= (po W')~ o were determined at each temperature
from a least-squares fit of pp8' to a linear relation in
p, and at room temperature the second pressure
derivative (po W')o' =—(po W')~" o was determined to-
gether with po Wj and (po W')o from a least-squares
fit of pp W' to a quadratic relation in p.

The isothermal first and second pressure deriva-
tives co = (t)c/BP)~ o and co' = (8'c/BPz)~ o of the
adiabatic effective elastic constant e can then be cal-
culated from'p
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FIG. 3. Comparison of directly measured shear modulus

c& with the value deduced from measured values of cL and

c44, and from B =1.712 && 10" N/m, assumed to be con-
stant below 100 K (dashed line).
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value. ~4 Following this procedure we have calculated
c~ from the measured values of the longitudinal
modulus cL and the shear modulus c44 in conjunction
with the assumption of a constant value of 1.712
& 10" N/m for the bulk modulus below 100 K. The
two values of c~ vs T are compared in Fig. 3. At and
above 100 K the two curves are identical. It is ap-
parent that the deduced value of c~ extrapolates to
zero at 45.0 K. This value is smaller than the struc-
tural transformation temperature TL of 45.2 K for the
present sample. " Therefore at TL the shear modulus
has a small, but finite value, as required for a weakly
first-order phase transition. On the other hand, the
temperature at which the directly measured c& extra-
polates to zero is almost 2 K above the value of TL

for the bulk of the sample. This seems to corro-
borate the above mentioned suggestion of Vieland
et al. that the deduced value of cq is more indica-
tive of the bulk properties than the directly measured
value. The proximity of the two temperatures at
which the deduced and the directly measured values
of cs extrapolate to zero (45.0 and 46.8 K, respective-
ly) may perhaps be taken as an indication that the
present sample is more homogeneous than the sam-
ple used by Vieland et al. ,

' for which these two tem-
peratures differ by 5 K.

C. First pressure derivatives of elastic constants
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I il I I I I I I I

0 IOO 200
TEMPERATURE (K)

I

300

I I I I
I

I I I I
)

I I I I
I

Nb Sn
1-

o I—

LLI

Q
w
CL

1LJ
K
M
M
ILJ
K
Q -I—

TL= 4

I I I I I I I I I I I I I I I

IOO 200 300
TEMPERATURE (K)

FIG. 4. Isothermal pressure derivatives of the effective
elastic moduli for the pure modes measured in [110] vs

temperature. Cubic phase: ~, k, ~; (interpolated);. . .
(extrapolated). Tetragonal phase:, 5; (interpolated);
. . . (extrapolated). Precursor and two-phase region:
S, k, ; ———(interpolated). (a) Adiabatic longitudinal
modulus cL and shear modulus c44', (b) shear modulus c~.

In Figs. 4(a) and 4(b) the pressure derivatives of
the effective elastic moduli for the three modes in
[110]as calculated from Eq. (3.1a) are plotted versus
temperature. Starting from a room-temperature
value of 6.75, between 300 and about 60 K the pres-
sure coefficient (BcL/Bp) r for the longitudinal mode
decreases by 10% and then drops rather sharply to an
almost constant value of 4.0 in the tetragonal phase.
Over the same temperature range (Bc44/Bp) r in-
creases by 10% from a value of 1.1 at 300 K and then
rises sharply to a weakly temperature-dependent

value of about 3.4 in the tetragonal phase. For both
modes the largest amount of the change occurs in an
interval of about 10 K centered at the structural tran-
sition temperature TL. The near constancy of
(Bc44/Bp) r is surprising because c44 shows a soften-
ing of 33% from 300 K to TL.

For the pressure coefficient of the soft shear
modulus c~ the temperature dependence is quite dif-
ferent. 'At 300 K its value is +1.4 and depends only
weakly on temperature, but with de'creasing T it de-
creases with continuously increasing rate and changes
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sign at about 96 K. At 56 K the smallest value of
—0.96 is measured. Between 57 and 50 K the curve
tends to rise again. However, this rise is attributed to
precursor effects of the structural phase transforma-
tion because, as will be shown in Sec. IV, the data of
the solid curve of Fig. 4(b) and its extrapolation to
TL (indicated by the dotted line) are more compatible
with the experimental data of Chu' for the pressure
dependence of T~ than the data attributed to precur-
sor effects (indicated by half-filled circles). Because
of the high ultrasonic attenuation no measurements
on this shear mode could be carried out below 50 K.

As for the soft shear modulus, but for reasons dis-
cussed below, in the vicinity of TI the values of
(BcL/Bp) r and (Bc44/Bp) r pertaining to the pure cu-
bic or tetragonal phase are more likely to be found by
extrapolation from the high-temperature cubic-phase
or from the low-temperature tetragonal-phase
behavior, as shown by the dotted lines in Fig. 4(a).
On the other hand, the directly measured data in the
transition region from about 35 to 65 K (shown by
half-filled symbols) probably indicate precursor ef-
fects and (in a smaller temperature interval) the 'pres-

ence of both cubic and tetragonal domains. Precur-
sor effects and a two-phase region have also been ob-
served in x-ray studies.

Figure 5 shows the squared natural velocity ratio
( W/ Wo) versus pressure for the soft shear mode
for eight different runs, where Wo is the intercept of
the H ' vs p plot. It indicates the drastic change in

slope with temperature displayed in Fig. 4(b). It
should be noted, however, that the slopes at lower
temperatures are grossly enlarged since Wo in the
denominator becomes very small. Figure 5 illustrates
the number of data points taken at different pres-
sures for constant temperature, and the low scatter of
these data. For the three lowest temperatures only
the first few data points at low pressure are included
in Fig. 5 because of the large negative slope.

The pressure derivatives (Bcf~ /Bp) r, (Bcf2/Bp) r,
and (BBs//Bp) r calculated from the smoothed curves
in Figs. 4(a) and 4(b) are shown in Fig. 6. The solid
curves in Fig. 6 refer to the cubic phase. The dotted
lines were calculated from the data in Figs. 4(a) and
4(b) extrapolated from the cubic phase in the region
where precursors of the phase transformation begin
to appear. The dashed curves in Fig. 6 were calculat-
ed from the actual measured data in the precursor re-
gion. It is apparent that from 300 to 80 K the pres-
sure coefficient of the bulk modulus is virtually in-
dependent of temperature. Below 80 K the dashed
curve shows a conspicuous temperature dependence,
but the dotted curve extends the constant behavior of
(BB /Bp) r to lower temperature. Since the bulk
modulus itself is virtually constant above TI, and
since the volume change associated with the structur-
al transformation is very small ' it is plausible to
assume that (BBs/Bp) r should also remain constant

1.004

1,000

0, 995

(wow, )
2

0.990

0,985

0.0 0.1

PRESSURE (GPa)
0.2

FIG. 5. Squared natural velocity ratio ( H'j H'o) vs pres-
sure for transverse mode in [110] with polarization in [110]
for eight selected temperatures.

immediately above TL, Thus it would follow that the
dashed curve in Figs. 6 and 4(a) do not refer to the
pure cubic phase, but are affected by the presence of
precursor phenomena.

Since the soft shear mode could not be measured
below 50 K, and since the crystal available was too
small for the measurement of modes other than
those in [110j it is not possible to determine the
pressure derivatives of the individual single-crystal
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FIG. 6. Isothermal pressure derivatives of adiabatic elastic
constants vs temperature: from interpolated cubic-phase
data; ———from interpolated precursor data; from data
extrapolated from cubic phase.
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elastic moduli in the tetragonal phase from the two
measured derivatives (BcLIBp) r and (Bc44/Bp) r
Moreover, these two quantities represent averages
over the different orientations of the domains in the
tetragonal phase. " Actually, according to the model
calculations of Rehwald et al. " the second-order elas-
tic moduli in the tetragonal phase of Nb3Sn do not
differ greatly from the conditions for cubic sym-
metry, viz. , c11 c33 c12 c23 and from the moduli
deduced from the measured data in conjunction with
the assumption that the bulk modulus remains con-
stant through the phase transformation. However, as
will be shown in the following, for the corresponding
pressure derivatives much larger deviations from the
conditions for cubic symmetry and from the mea-
sured data may be expected 'in the tetragonal phase.
Assuming, for example, that the values of (BB/Bp) r
in the cubic and in the tetragonal phase are approxi-
mately equal one obtains from the measured values
of (BcL/Bp) & and (Bc44/Bp) r a large negative average
value of (Bcs/Bp) r = —13.8, and average values of
(Bc~~/Bp)r = —13.8 and (Bc~2/Bp)r =+14.3 in the
tetragonal phase. These values are unlikely since
they would imply negative thermal expansion, and a

positive pressure coefficient (BT,/Bp) of the super-
conducting transition temperature in the tetragonal
phase, contrary to the experimental facts." On the
other hand, assuming a positive value of (Bcs/Bp) r
in the tetragonal phase, as suggested by the rise asso-
ciated with the precursor phenomena in Fig. 4(b) and
as would be compatible with the thermal expansion
data and the negative value of (BT,/Bp), a value of
(BB/Bp) r smaller than 0.55 would follow from the
values of (BcL/Bp) r and (Bc44/Bp) r in the tetragonal
phase. However, a large change of (BB/Bp) r from a
value of 5.3 in the cubic phase to a value of 0.55 in
the tetragonal phase is very unlikely. One must
therefore conclude that the pressure derivatives of
the elastic moduli in the tetragonal phase exhibit
larger deviations from the conditions for cubic sym-
metry than the elastic moduli themselves, and/or that
the measured pressure derivatives contain a contribu-
tion from domain reorientation under pressure. In
order to substantiate these suggestions further mea-
surements on single crystals sufficiently large for
velocity measurements along different propagation
directions and on uniaxially stressed single-domain
crystals without domain-wall motion are necessary.

TABLE I. Elastic moduli (in 10' N/m ) and their isothermal pressure derivatives (dimensionless) for selected temperatures
1 g 1T (K). c& = —(F11—c12); B =

3 (c11+2c12). Values of c~ shown in parentheses are smoothed values calculated from
1

cL =
2 (c11+c12)+c44, c44, and B =17.12 && 10' N/m . Values of (Bc/Bp) shown in parentheses are obtained by extrapolation

from pure cubic phase, neglecting precursor effects.

Cg ~44 Bs pcs

Bp y.

/C44

Bp y

1

gBs
Bp y.

300 6.931
+ 0.003

4.013
+ 0.014

16.82
+ 0.09

1.41
+ 0.03

1.08
+ 0.02

5.30
+ 0.27

250
200
150
100

6.56
5.85
4, 81
3.01

3,86
3.65
3.40
3.08

16.95
17.05
17.10
17.12

1.33
1.15
0.77
0.08

1.08
1.09
1.10
1.15

5.26
5.21
5.18
5 ~ 13

80 1.97
(2.04)

2.95 17.14 —0.29 1.18 5.12

60 0.76
(o.s7)

2.82 17.16 —0.78
(-o.7s)

1.31
(1.20)

4.99
(5.13)

50

47

0.19
(o.27)

0.01
(0.12)

2.74

2.71

17.15

17.15

—0.65
(—1.09)

I

(—1.18)

1.53
(1.23)

1.68
(1.24)

4.37
(5.13)

(5.12)

40
30
20
13

2.56
2.45
2.39
2.37

3 ~ 15
3.35
3.4
3,4
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I

TABLE II. Isothermal second pressure derivatives of elastic moduli at 298 K {in units of 10 '

m'/N).

C44

{8 '/ep )7- —7+7 —0.75+ 0.3 —1+0.8 —7+7 —5+7 —6+7

4.IQ

4.08—

I l l
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I l I /I
/o

Nb~Sn //0
T Il (ll03
P II Eooll /0

II

OJ
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O
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I

I

I
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/
/

/
P

II

I
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8I
I

4.02 —PII
(

In Table I the smoothed values of the elastic
moduli c&, c44, and 8 and their isothermal pressure
derivatives are compiled for selected temperatures.
Included in parentheses are the values of c~ deduced
from the assumption 8 = const below 100 K, and the
values of (Bc/Bp) r in the cubic phase without pre-
cursor effects. For the two shear modes the standard
errors shown at 300 K were obtained from a least-
squares fit of po8 ' to a quadratic relation in pres-
sure. For the bulk modulus and its pressure deriva-

tive the standard errors were obtained by means of
the Gaussian error-propagation law.

D. Second pressure derivatives of elastic constants

IV. PRESSURE DEPENDENCE OF STABILITY LIMIT

For 315 compounds the elastic stability limit is
given by the vanishing of the soft shear modulus

1c = —,(c„—c„)and corresponds to the temperature

T, = T, (p) below which the cubic phase is mechani-
cally unstable. By expanding c(T„p)=0 in powers
of T, and p, T, can be expressed in terms of p. Up
to second order, one obtains the truncated expansion

T, =T, +T,'p+ —, T, p

where

(4.1)

For the measurements at room temperature a pres-
sure range of about 1 Gpa was attained, and a small
curvature in the plot of poW' versus pressure was ob-
served for all three modes. For the shear mode asso-
ciated with the modulus c44 the quantity p08" is plot-
ted in Fig. 7 as a function of pressure in order to il-

lustrate the magnitude. of the curvature. In Table II
the room-temperature values of the second pressure
derivatives of the elastic moduli as calculated from
Eq. (3.1b) are given. The standard errors for cL, c44,
and e~ were obtained from the least-squares fit of
p08" to a quadratic relation in pressure, and those
for cia, ci2, and 8 from the Gaussian error-prop-
agation law. For all modes, except c44, the errors are
rather large because the data in the poH" vs p plot
show larger scatter than in Fig. 7. Hence these data
should only be regarded as tentative. For the shear
moduli c44 and c~ the dimensionless quantities
B (6'c/Bp') are of the same order of magnitude as
for alkali halides„' but for the other moduli they
are about ten times larger.

4'000 l I l I I l I I I

0.5 I.Q
PRESSURE (GPO)

c(T0, 0) =0

T~ = cp/cr

(4.2a)

(4.2b)

FIG. 7. p08' vs pressure for transverse mode in [110]
with polarization in [001] at 298 K, The dashed line indi-
cates the initial tangent at zero pressure.

T~ = I —cd(cr) + 2cprcpcr crr(cp) I/(cr)

(4.2c)
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The subscripts p and T denote partial derivatives tak-
en at T, = T, and p =0.

For the numerical application of Eqs. (4.2a) to
(4.2c) the value of T,o= 45 K as determined from
Fig. 3 for the bulk of the crystal, will be used. For
the remaining quantities one obtains then from the
data in Figs. 3 and 4(b) and in Tables I and II the
following values:

50

49—

48—

I I
I

I I I I

Nb~Sn

cr=(59+02) x 10 Nm K '

,» —(p+5) x lp6 Nm-'K-2

c~ = —1.2+ 0.2

c„=( —1 + 0.8) & 10 "m'/N .

c~r = (0.029+0.008) K '

(4.3a)

(4.3b)

(4.3c)

(4.3d)

(4.3e)

LIJ
K

46-
K
lU

&, (p)

(Chu, 1974)
The errors for c~ and c~~ are estimates based on the
uncertainty arising from extrapolation of c~ as shown
by the dotted curve in Fig. 4(b). For c» and its
standard error the room-temperature values have
been used. With the above values one obtains

T,'= (2.0+0.4) KGPa '

T,"=(—0.03+0.35) KGPa '
(4.4a)

(4.4b)
420 I.Q

PRESSURE (GPo)

2.0

T = (3.0+0.2) KGPa '

TL'= ( —0.9+0.3) KGPa '
(4.5a)

(4.5b)

Clearly, for both the first and the second derivatives
of TL the discrepancy with the derivatives of T, is
larger than the combined experimental error.

Actually, the pressure dependencies of T, and TL

need not be exactly the same, because T, is defined
by the vanishing of the soft shear modulus, and TL

by the thermodynamic equilibrium between the cubic
and the tetragonal phase. However, because of the
nearly second-order character of this phase transfor-
mation they should be nearly identical and the
discrepancy should be attributed to as yet unaccount-
ed errors in either of the two sets of data.

The second pressure derivative of T, turns out to be
zero within experimental error because the first and
second term in Eq. (4.2c) almost cancel. The large
error of T,

" arises mostly from the error of c».
In Fig. 8 the pressure dependence of the stability

limit according to Eqs. (4.1) and (4.4) is compared
with the pressure dependence of the structural
transformation temperature TL measured by Chu. '
For p ) 0.5 GPa the pressure dependence of TL is al-
most linear with a slope of 2.0 KGPa ' in perfect
agreement with the slope of T,

'
according to Eq.

(4.4a). However, below 0.5 GPa the TL vs p curve
rises more steeply. From a fit of Chu's data for TL
to a quadratic relation in p we obtain for the deriva-
tives

FIG. 8. Comparison of pressure dependence of stability
limit, defined by c~(T,p) =0, with pressure dependence of
structural transformation temperature TL (p) as measured by
Chu (Ref. 3). The error bars shown for c&(T,p) =0 are cal-
culated from the errors of T,

'
and T,

"
according to Eqs.

(4.4a) and (4,4b).

Although there is no quantitative agreement
between the two sets of data their comparison in Fig.
8 shows at least good qualitative agreement. Espe-
cially the positive sign of the pressure coefficient of
TL is justified and correlates well with the negative
pressure coefficient of the soft shear modulus at TL.
Moreover, this comparison provides some justifica-
tion for the extrapolation of the data for (Bcs/Bp)
from the cubic phase as shown by the dotted line in
Fig. 4(b) and attributing the half-filled circles in Fig.
4(b) to precursor phenomena. If, on the other hand,
the slope T,

' were calculated from these precursor
values a much smaller value would result and the
discrepancy with TL would be increased considerably.

Finally, the difference between the values of
T, = 45 K and TL = 42.5 K should be attributed to
differences in the samples. ' The crystal for which
TL (p) was measured by Chu~ was part of the larger
RCA crystal for which TL =43 K has been mea-
sured. ' The value of TL =45.2 K measured for the
present sample agrees well with the value of 45 K
measured on a similar crystal. '4
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V. FIRST AND SECOND GRUNEISEN PARAMETERS

A. Definitions

average"

(= pc, y,
' $c, —D, (5.6a)

The microscopic first and second GrQneisen param-
eters (mode y's) are defined in terms of the first and
second volume derivatives of the lattice vibrational
frequencies according to

where

D=$ ' —I c;(y; —y)' $c;
I

(5.6b)

Vi
M]

$QJ I

() V
(S.la)

V2
Vl

0)(

Ct) /

g V2
(5.1b)

The macroscopic first (or thermal) Gruneisen
parameter defined by

pBs
y=

Pcp
(5.2)

(P is the volume thermal-expansion coefficient; c~,
the specific heat) is in the quasiharmonic approxima-
tion (QHA) given by the mode average3'

y=Xcy, Xc, , (s.3)

I

y
Bp

Bp

the Anderson-Gruneisen parameter""

(S.4a)

1 98s
pB BT

and the parameter introduced by Davis and Parke

(5.4b)

I BBs
pc„BT (5.4c)

(c„ is the specific heat for constant volume). The
three second Gruneisen parameters are interrelated
through thermodynamic identities according to"'

y = (( —y[y+ I + (By/B lnT)~]]/R (s.sa)

I BBs~s= — +-
yR R 9p

(5.5b)

where R = Bs/Br= I + yPT. The first term on the
right-hand side of Eq. (s.sb) represents the contribu-
tion to the temperature coefficient of the bulk
modulus at constant volume, and the second term
describes the effect of the volume change arising
from thermal expansion.

In the QHA the parameter g is given by the mode

where c; denotes the Einstein specific heat of the ith
mode.

The three macroscopic second Gruneisen parame-
ters to be considered below are the dimensionless
pressure coefficients of the first Gruneisen parameter

is a weighted mean-square deviation of the first
Gruneisen parameter. e; denotes the energy of the
ith mode.

If optic modes and dispersion of acoustic modes
are neglected ("anisotropic elastic continuum model" )
the first and second mode y's y; and y may be
evaluated from the first and second pressure deriva-
tives of the elastic constants, respectively, and the
mode averages according to Eqs. (5.3) and (5.6)
reduce to directional averages over the propagation
directions of the long-wavelength acoustic
modes. "' " Although the anisotropic elastic con-
tinuum model is (in the QHA) exact, only in the
low-temperature limit T 0, it also often gives good
results in the high-temperature limit T )& OD (Oo is

the Debye temperature), both for the macroscopic
first and second Gruneisen parameters. ""Such
behavior might be expected whenever the direction
dependence of the mode y's is larger than their
dispersion and their variation among optical and
acoustic branches.

8. Results for first GrQneisen parameter

In Figs. 9(a) and 9(b) the three effective elastic
constants c~ and the three elastic mode y's y„(k
= I, 2, 3) are plotted for two temperatures as a func-
tion of direction between the three principal sym-
metry directions. It is apparent that the absolute
magnitude of the angular variation is only moderate
at 300 K, both for the c& and y)„and at 50 K for the
c&. However, at 50 K because of the shear mode
softening the y], for the two transverse modes are
strongly direction dependent and show minima of
—33 and —5 in [110] and near [111],respectively.
In the vicinity of [111]both shear mode y's are neg-
ative. The large negative-mode gammas should give
rise to negative thermal expansion below about 50 K
in the cubic phase.

In Fig. 10 the thermal Gruneisen parameter y'"
from dilatornetric measurements on sintered poly-

crystals by Smith et aj'. is compared with the high-
and low-temperature limits (T &) OD and T=O,
respectively) of the elastic Griineisen parameter y",
which was evaluated according to Eq. (5.3) by nu-

merical integration over all mode directions. For
about T & 100 K the high- and low-temperature lim-

its agree closely with each other and with the thermal
value. However, for T & 80 K both yo' and y" de-
crease, and y'" increases sharply with decreasing T.
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C. Results for second Griineisen parameters

In Table III the room-temperature values of the
three second Griineisen parameters defined in Eqs.
(5.4a) to (5.4c) are compared with the values calcu-
lated from the elastic data of Tables I and II accord-
ing to Eqs. (5.5) and (5.6) in the anisotropic continu-

TABLE III. Comparison of thermal and elastic second
Gruneisen parameters for Nb3Sn. Thermal values are
evaluated at 300 K, elastic values refer to the high-

temperature limit.

Thermal Elastic

—8.75
7.62

—4.15

—26.9
15.8

—21.0

ing the pressure coefficient of TL with the discon-
tinuities of P and c~. Second, the negative pressure
coefficient of the superconducting transition tempera-
ture implies a positive Gruneisen parameter in the
tetragonal low-temperature phase. Third, if y" is
calculated from the actually measured pressure
derivatives of the elastic constants, which include the
precursor effects [cf. half-filled symbols in Figs. 4(a)
and 4(b) j, y" shows a minimum near 50 K and
remains positive at all T, thereby reducing the
discrepancy between y'" and y".

Precursor effects up to 10 K above the structural
transformation in Nb3Sn occur also in the thermal
strain as observed with x-rays. In V3Si single crys-
tals dilatometric thermal-expansion measurements
show precursor strains up to 40 K above the structur-
al transformation temperature of about 20 K.
The temperature range over which the precursor ef-
fects are observed is independent of the residual
resistance ratio, " but the anisotropy and the sign of
the precursor strain is affected by external stress. '
For V3Si there appears to be a correlation between
these precursor phenomena and d-spacing fluctua-
tions which show up in x-ray line broadening, but not
in neutron scattering linewidths, and which have
therefore been attributed to effects within a surface
layer of the crystal.

Assuming that the precursor effects observed in

V3Si are also indicative of the behavior of Nb3Sn one
may therefore tentatively attribute the discrepancy
between y'" and y" in the cubic phase to the pres-
ence of precursor effects in y'". For a quantitative
comparison of y'" and y" both thermal-expansion
and elastic-constant measurements on single crystals
in a single-domain state of the tetragonal phase
would be required.

um approximation and in the high-temperature limit.
The elastic values are several times larger than the
thermal values, probably because of the large experi-
mental errors of the second pressure derivatives of
the elastic constants in Table II. Thus one may con-
clude from the comparison of the data in Table III
that most of the second pressure derivatives in Table
II, especially (B'cL/Bp') r and (B'B/Bp') r, may be
several times smaller than reported there. Electronic
contributions to 5s should be small compared with

anharmonic contributions. '
From the thermal data in Table III one concludes

that the first and the second terms on the right-hand
side of Eq. (5.5b) amount to 31 and 69% of h~; i.e. ,
the temperature variation of the bulk modulus arises
mostly via the thermal-expansion volume effect.

Vl. MODEL CALCULATION OF (Bcs/Bp) r

Several theoretical calculations ' ' have been
made for the temperature dependence of the pressure
coefficient (Bcs/Bp) r of the soft shear modulus of
V3Si. They are based on the linear-chain model of
Weger" and Labbe and Friedel4' (WLF) or on the
coupled chain model of Gor'kov. The first attempt
by Schuster, based on the WLF model, succeeded
in explaining the then-available data" between 77
and 300 K, but at the expense of using different
model parameters for the temperature variation of cs
and (Bcs/Bp) r. Furthermore, Schuster's model
could not explain later experimental data of
(Bcs/Bp) r below 77 K for transforming or non-
transforming samples. '" The minimum and the
second sign reversal of (Bcs/Bp) r observed' in

transforming V3Si below 77 K could be explained by

Ting and Ganguli and by Barsch and Rogowski' by
including pressure-induced interband charge transfer
between the d and the s band in the WLF model.
However, the qualitatively different behavior and the
large negative value of (Bcs/Bp) r = —5 measured" at
13.5 K for nontransforming V3Si could not be ex-
plained on the basis of this model. ' While Noolan-
di and Varma'4 have invoked the effect of defect-
induced strains of tetragonal symmetry in order to
explain this behavior, Ting' has shown that the
behavior of both transforming and nontransforming
V3Si can be explained with the Gor'kov density of
states (which is equivalent to a special case of the
model of Lee et al. 44 4') if different values for the
number of d electrons are used for the two types of
crystals.

It is the purpose of the present section to show that
the experimental (Bc&/Bp) z vs T data for transform-
ing Nb3Sn reported in Fig. 4(b) cannot be explained
with the WLF density of states in the same manner
as for V3Si, even if interband charge transfer is in-

cluded.
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The parameters which enter the WLF mode14' are
the nearest-neighbor (NN) transition-metal (TM)
overlap integral J =2F. (E is the bandwidth of the
d band), the Slater parameter qo of the d-electron
wave functions, the number of electrons Qd per TM
atom in the d band, the NN TM distance a, and the
temperature-independent contribution cq to the soft
shear modulus arising from the s electrons. For
Nb3Sn the following values have been proposed" for
a sample with a transformation temperature of 45 K:
J = 8.7 eV, qo= 3.4 nm ', Qq =0.043 electrons per
Nb atom, a =0.268 nm, and, based on the elastic-
constant data of Keller and Hanak, '

cq = 8.49 x 10'
N m '. As the elastic-constant data of Fig. 1 differ
somewhat from those of Keller and Hanak" we find
it necessary to use instead the values qo= 3.47 nm '

and cq = 9.13 x 10' N rn ' in order to get a better fit
of the c~ vs T data to the theoretical expression of
Barisic and Labbe. 42

In Fig. 11 the experimental values of (Bcs/Bp) r vs
T are compared with theoretical curves calculated
from the expression pertaining to the %LF density of
states'0 for temperature independent Qd. Two
theoretical curves based on two sets of values for the
charge transfer parameter P = —(BlnQd/B lna) r and
for (Bcso/Bp)r are shown. For P =0 only a weakly
temperature-dependent behavior is obtained. For a
value of P = 112 the initial decrease of (Bcs/Bp) r
with decreasing temperature is qualitatively repro-
duced, but the theoretical curve shows a minimum
near 85 K not present in the experimental data.
Since for V3Si the value of P was also found to be
positive'0 the sign of P does not correlate with the

sign of (BTL/Bp). By varying the parameters (especially
Qd) a better fit can be obtained for both cq and
(Bcs/Bp) r, but at the expense of worsening the
agreement for other experimentally available quanti-
ties, especially the lattice constant ratio c/a in the
tetragonal phase. Thus the comparison of the
theoretical result with the experimental data in Fig.
11 does little more than to demonstrate the probable
importance of pressure-induced charge transfer in
Nb3Sn, previously noted ' for V3Si, and to further
illustrate the well-known limitations of the WLF
model. """

Of the various microscopic models of A15 com-
pounds proposed ' the R-point model of
Lee et al. 44 4' stands out because of its best overall
agreement for both Nb3Sn and V3Si with the ob-
served temperature variation of the soft shear
modulus, of its magnetic field dependence (for V3Si),
and of the magnetic susceptibility. Moreover, first-
principles frozen-phonon calculations for Nb3Ge by
Pickett et al. ' qualitatively substantiate the model of
Lee et al. ,

44 4' but indicate a splitting and lowering of
the energy levels at both the M and the R point as a
result of the optic-mode dimerization of the Nb
atoms along a chain direction and could therefore not
quantitatively be fitted to this model. Moreover, it
has been shown that, at least for V3Si, a strong
enhancement of the electronically driven mode insta-
bility may result from anharmonic phonon-phonon
interactions. Thus, a comprehensive theory of A15
compounds, including the pressure dependence of
the soft shear modulus, with band-structure effects
and all interactions among electrons and phonons
properly included, still remains a challenging task.
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FIG. 11, Comparison of experimental temperature varia-
tions of {Bc&/Bp)T with theoretical results obtained from
Labbe-Friedel model without and with pressure-induced in-

terband charge transfer [P =0, {Bc&/Bp)T =4.67, and

P = 112, {Oc& /8p) T
= 0.6, respectively].

VII. SUMMARY AND CONCLUSIONS

The first pressure derivatives of the bulk modulus
and of the shear modulus c44 of transforming Nb3Sn
were found to be virtually independent of tempera-
ture in the cubic phase from 45 to 300 K. However,
the first pressure derivative of the soft shear modulus
cq increases with increasing temperature from —1.2
at 45 K to + 1.4 at 300 K.

The magnitude and the negative sign of (Bcq/Bp) r
at 45 K are consistent with measurements of the
pressure dependence of the structural transformation
temperature' and lead to large negative elastic-mode
y's in [110] and [ill]. In the temperature range
from about 80 to 300 K the elastic Gruneisen param-
eter agrees well with the thermal Gruneisen parame-
ter, but below 80 K the elastic Gruneisen parameter
decreases, and the thermal Gruneisen parameter in-

creases with decreasing temperature as the structural
transformation temperature of 45 K is approached.
This discrepancy is attributed mostly to precursor ef-
fects of the phase transition which are present in the
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thermal-expansion data pertaining to the cubic phase.
Such precursor effects are also observed in the pres-
sure coefficients of all three elastic moduli.

For the second pressure derivatives of the elastic
moduli estimates are obtained which are very roughly
consistent with the thermal values of the second
Gruneisen parameters.

Unlike for V3Si, the strong monotonical tempera-
ture variation of (tie~/Bp) r cannot be explained on
the basis of the %LF density of states with physically

plausible values of the parameters, even if pressure
induced interband charge transfer is included.
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