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The theory of quantum solids by Lowy and Woo employs a Hartree-jastrow wave function in

which the Hartree product, thus the wave function, is given its proper exchange symmetry.

Coupled integral equations were derived for the one-. and two-particle distribution functions,
which enter into the energy expression. On account of mathematical and computational compli-

cations, the two-particle distribution function was not obt &ined from actually solving the integral

equations. Instead, it was approximated by a product of two one-particle distribution functions

with the pair-correlation function for the lip«id. The latter lacks the proper lattice symmetry,

and is not anisotropic. In this paper, we take into account the effects of both lattice symmetry

and anisotropy on the pair-correlation function, solve the coupled integral equ &tions to higher

orders, and recalculate the energy curves. It is shown that lattice symmetry in the pair-correla-

tion function lowers the liquid-to-solid tr insition density by about 2"/&), while inisotropy r rises it

by about 7'/().

I. INTRODUCTION

The more successful treatments of the ground state
of quantum crystals have all employed variational
wave functions of the Hartree-Jastrow form, in which
the Hartree product (of single-particle orbitais) is

modified by a product of pair-correlating factors.
Earlier variational calculations" had shared two com-
mon pitfalls. First, the single-particle orbitals had

been taken as individually localized about lattice sites.
As a consequence the Hartree product, and thus the
wave function, failed to possess exchange symmetries
which are appropriate for quantum crystals. Second,
the energy expectation value had been evaluated with

the help of cluster expansion procedures. In each
case, mathematical complexities and computer limita-
tions had required that the cluster series be truncated
at a very low order, The mode of truncation was jus-
tified on the basis of physical insight which was less
than reliable.

In 1976, we advanced a new variational method for
treating the ground state of Bose solids. ' . In this
theory, the single-particle orbitals have the prescribed
lattice symmetry. Each is periodic and localized
about every lattice site. Thus the Hartree-Jastrow
wave function is symmetric with respect to particle
exchange. Also, the energy expectation value is ex-
pressed in terms one- and two-particle distribution
functions which are solutions of coupled integral
equations, Thus the theory abstains from cluster ex-
pansions. It describes a procedure which sums the
cluster series approximately to all orders.

In the actual solution of t-he coupled integral equa-
tions, a short cut was taken. The equation for the
two-particle distribution function was solved only in
the lowest order, rendering a liquidlike short-range
pair correlation. The latter was then entered into the
equation for the one-particle distribution function for
an accurate solution of the density distribution. It
was (and remains) our belief that for close-packed
structures the short-range pair correlations are indeed
liquidlike, and the approximation is highly reliable.
However, some questions were raised4 on the validity
of such an approximation. In the desire that our
theory, which has, we hope distinguished itself by the
use of a properly symmetrized wave function and its
abstention from cluster expansion procedures, not be
marred by an approximation introduced purely for
computational convenience, we conduct an investiga-
tion on the effects of the approximation. The equa-
tions for the one- and two-particle distribution func-
tion are solved to higher orders. The short-range
pair-correlation function is first given its proper lat-
tice symmetry in an isotropic approximation, and
then proper anisotropy is introduced, We are able to
demonstrate that at least for solid He the corrections
are not large.

II. GENERAL FORMALISM

For a system consisting of N molecules in volume
0 (such that the number density p equals /V/tt)
governed by pairwise, central interactions, the Hamil-
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tonian is given by

iV ~2 N

e=g v,'+ g .(.„),
i~1 2+ i &j ~1

space
(

y (r) = exp X r~o'o ' '
G

(

(3)

where r& ——
I r, —r, l. The Hartree-Jastrow wave func-

tion takes the form

(i((r, , . . . , r((, ) =+4(r, ) P e
j&k, 1

P(r) denotes a single-particle orbital, and e" ("'~'

represents a pair-correlating factor which goes to zero
when two strongly repulsive molecules overlap, and
to unity when they move too far apart to interact. In
Ref. 3, hereafter to be referred to as the Lowy-Woo
theory, $(r) is expanded in the reciprocal-lattice

where 6 denotes reciprocal-lattice vectors. The wave
'function (1( is thus symmetric with respect to particle
exchange. Equation (2) is not of the most general
form, but it is quite acceptable for describing a Bose
solid which possesses strong short-range pair corre-
lations. Where multiparticle correlations are impor-
tant, Eq. (2) can be modified to include higher-order
correlating factors. ' A particular advantage of such a
wave function is that it includes as a limiting case
(when to = 0 for all G A 0) a description'of the liquid

phase.
We define the n-particle distribution function as

(„) N! Jt I(i((r( ~ ~ ~ r(v) I d7„+(, . . . , d r»p("'(I, . . . , ») =
(N —»)!

J I (r r )

In particular, the one-particle distribution function

(4)

r((() I d72. . . d7(((

, 7((() I d7(, . . . , d7(((

gives the density distribution. It describes long-range order in broken symmetry. The two-particle distribution
function

p"'(1, 2) =N(N —1)"„' =p"'(1)p'"(2)g(1, 2)
I (I(( r, , . . . , r» ) I'd r 3, . . .1, d r (v

J le(7(, , 7»)l'dr(. . . drN

gives additional information on pair correlations. In liquid phase, p"'(1) reduces to p, and g (1, 2) to the radial
distribution function go(r„). In this paper, we shall also need the three-particle distribution function

p' '(1, 2, 3) = N (N —1)(N —2) "„
„' ly( r, , . . . , r, )l'dr, , . . . , dr,

=—p
' (1)p ' (2)p ' (3)g3(1, 2, 3)

In the Kirkwood superposition approximation (KSA),
g3 ( 1, 2, 3 ) takes the form

g3(1, 2, 3) =g (I, 2)g (2, 3)g(3, I )

In terms of these distribution functions, the energy
expectation value is given by

Let us employ the center-of-mass coordinate sys-
tem and introduce the variables

s =-,' ( r(+ r2)

r=r&-r1 (12)

First we expand the density in the reciprocal-lattice
space, in t~o ways for later convenience:

i G ~ r1p(()(1) $p e' "( (13)

where

+ —, Jfp"'(1, 2)u(r(2) d 7(d r 2

and

1 iG r1p"'(I) = —exp XIIoe
G

t

(14)

u ( r ) = u (r ) —(g'/4m ) '7'u (r ) (10) where X is a normalization constant, Next, we apply
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lattice symmetry to p'"'(I, . . . , n ):
p" (l, tt):—p

" (r r„)
=p'"'(r, +R, . . . , r„+R), (15)

we write for later convenience also the expansion
t

1
g ( I, 2) =—exp Xyo ( r )e'o '

p,

where [R } denotes the set of lattice vectors, and

realize that

g(1, 2)=—g(r, , r, )=g(r, +R, r2+R)

permits g ( I, 2) to be expanded in the reciprocal-
lattice space in the position coordinates s and r:

g(1, 2) = /gal( r)e'

(16)

(17)

Finally we note that the KSA, Eq. (8), is consistent
with the lattice symmetry condition (15).

We are now ready to derive equations for the dis-
tribution functions.

First, differentiate Eq. (5) with respect to r i and
introduce Eq. (6). We find

'7,p'''( I ) =p"'( I)'7, !n@'( r, )

+ J/p"'(1, 2)7, u(r 12) dr~

Again, with p, in the role of a normalizati. on constant, or

'7, 1np"'(I) ='7, In@'( r t) +zl p"'( r, )g ( I, 2)'7iu (ri2) d r~ {20)

With the help of Eqs. (3), (11)—(14), and (17), we reduce it to a relation between the quantities IIo, p~o, and

go( r ), for given to and u (r):
~ t

IIo —2to =i P XP, , u'(r)g, ( r )e'o o ""d rG G G G' 62
G

(21)

Next, differentiate Eq. (6) with respect to the relative coordinate r and introduce Eq. (7). We obtain

'7p"'(1, 2) =p"'(!,2) ['7!ng'( r t) + '7 in/'(r2) + V u (rt2) ] + „p'3'( I, 2, 3) ['7u (rt3) +'7u (r») ] d r3'
(22)

In the KSA it reduces to

'7 1np ' "( I ) + '7 In p
"' (2 ) + '7 I ng ( I, 2 )= '7 In @2( r i ) + '7 In d

' ( r 2 ) + '7 u ( r t 2 )

(])+q p"'(3)g(1, 3)g(2, 3)['7u(rt3) +'7u(r23)] d r3 (23)

With the help of Eqs. (3), (11)—(14), (17), and (18), we then find a second relation between the quantities II„,
po, yo ( r ), and g-„, ( r ) for given to and u (r):

'7yo ( r ) =tu'(r )5p 0+0(I!o—2to ) sin —,G r

t t

+p $ po o, „J~ r u'(r')g, ( r )g „( r —r )cos G — r — r dr6 +0 ~ G—G
~I ~ I I

(ag'I

In the case where only G =0 components survive, this relation reduces to the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) equation for liquids, as expected.

Now, through the definitions (13) and (14) and (17) and (18), we have two more relations

and

p-= exp /II, e'o '" e 'o'" d r
Nz G

G

r

go( r )=
q exPgy, ( r )e'o ' e 'o''ds

Ap, " ~/
G

(25)

(26)

Equations (21) and (24) —(26) are to be solved simultaneously for IIo, po, yo ( r ), and go ( r ), and in turn
p'"(I) and g(1, 2).

The energy expression (9) reduces to

F. =N $ potoG + —,pgpop, JJ u(r)g, ( r )e" + t""dr
G ~ t

G

(27)



THEORY OF QUANTUM SOLIDS: EFFECT OF LATTICE SYMMETRY. . . 3233

III. g(1, 2) WITH PROPER LATTICE SYMMETRY

(28)

In this section we would like to investigate the effect of imposing on g (1, 2) its proper spatial symmetry. We
shall assume, however, that g (1, 2) is dominated by its isotropic part. In other words, we write

g(1, 2) =gt(1, 2) +5g (1, 2)
and assume 5g (I, 2) small compared to gt (1, 2), where

gt(1, 2) = Xgo(r&~)e' (29)

=1= —exp Xyo(r&, )e'o''
p

(30)

The assumption is introduced to simplify the numerical work in Sec. IV. What we have now is a situation under
which the short-range correlation between a pair of molecules depends on where the pair sits in the unit cell, but
not on the orientation of the pair axis. In Sec. V we shall investigate the effect of introducing anisotropy into g ( I, 2

We might reexamine the equations for p"' and g (I, 2). For g (1, 2) we could have started with a differentia-
tion with respect to r &, as in Ref. 3. There, Eq. (20) gives

P'&p"&(], 2) =p' &(1, 2) [P'& in''( r &) +Q&u(r&q)]+ Jfp' '(1, 2, 3)&&u(r&3)d r&

or, as in Eq. (30) of Ref. 3, now with gt(1, 2) replacing g (1, 2):

7& lng((1, 2) =V&u(r&p)+~ p'"(3)g((1, 3)[gt(2, 3) —1]V I&t( r&3) d r 3

In place of Eqs. (21) and (24) we now have

l ~ I

IIo —2to =i P XP,„,u'(r )g, (r )e'o " I""d r

(31)

(32)

(33)

and

—i (G/2)yd(r ) +ry'o (r ) —ru'(r )5o o=i G (Hp —2to)e '

+p X p -r —I'[(G-G )/2l f
6-G-

~Gt gt t

x J r u'(r')g, (r')g „([r—r '))e" ' + ' "'" dr . (34)
G

Our next task is to reduce them to manageable forms.
Equation (33) is easy to handle. The integral

I = „G ru'(r )g, (r )e' &' ' d7
G

reduces to
. —4I =' (G G&) u'(r)g, (r) (G&r cosG&r —sinG&r ) dr

G ~J G

where

G&—= G —G/2

This can be seen with the aid of Fig. 1. Thus, Eq. (33) becomes

(35)

(36)

(37)
1 G „„, t

Ho —2to =47rp Xp,
&

G — (G G )
&

u'(r)g, (r)(G&r cosG, r —sinG, r) drG-G' GG3 G

Equation (34) requires more work. We take its inner product with r and integr"ate over the direction of r", ob-
taining in the end

y-(r) =u (r)5- — (H- —2t-) Gr cos Gr —sin —G—r +—„$p, „Jt t 4 1 I p
G G, O r 2 G G 2 2 2 4 G-G -GGf 7T ~t ~ttG, G

with the integral J given by
I

J = Ji dr" Jl d r (r" i )u'(r')g, (r')g „(( r —r ))e" 'o + 'I'&" e

(38)

d r u'(r')g, (r')e ' „dr" (r" r" )g „(~ r = r ])e (39)
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where

P„-=P—(0 +G )/2,
63 —=(0 —0 )/2

In Appendix A, we show how J can be further simplified to yield

8m2J=, $(2I+1)j, (G3r) J 0 „(rr')u'(r')y, ((f')P((Gq G3)j((Gqr') dr'
I-0 G G

(42)

where

~+ r +r —z

2 I'r
t

g „(z)(('+r' —z')zdz
G

Consequently Eq. (38) reduces to the final form (for 6 =O)

p oo I'™ I"o+' s' —(t —ro)'—
J~ dyo(r) =u(ro) —

harp Jl ds u'(s)go(s)
"Idt t[ g(o[t() —1]

rp 0 6rp s Ip

P "o+* s' —(t —( )'—vrp g 'w, p-, JI ds u'(s)g, (s) jo J' df tgo((f()
t G'}

fj (G'r/2) " . . . , G', '
—2mp g 'w, p, $(2I+1)„dr' „~ dr'r'u'(( ')j( 'go(r')

l~Gt)
I-P 0

r +r ).2+ ), 2 —Z2 ).2+ . 2 2

, dz z, PI, g, (z)" ilr-r'i 2) I' 2r)
'

For 6 AO,
f

4 1 Gr G) . Grdy-(r) =—(II- —2t-) ~ dr cos ——sin"'p G "'p r2 2 2 2

(44)

I

dr . Gr—2mppo $(2I+1) Jl
—j( J dr'r'u'(r')go(r')j((Gr')

I 0 '0 r 2

t'r+r ' + r' —z I'~+ I'' —zxJ, dzz, P, , go(z)
lr-r'I 2 I'I' 2 I'r

f 1 II

—2mp $(2I+1) $ P-, P(, „, J( I(—x +y t'" d) . G'r

I 0 (1+x'+xy)'I' "o r
'

2

x ' d(''r'u'(r')go(r') j - (1+x +2xy)(i

~r+r I 2+ r'2 —z2
dz z

~ lr —r'[ 2 I I'

f

2 '2 g, (z )2n'

I
OO 1 ——xy—2mp X(2I+1) X'p -,P(

I 0
tG), 4

(1+—'x' —xy ) '"

t

x JJ' —j( dr'r'u'(r') g-. (r') j((Gr'(1+ —x' —xy) ' )
(

f

fr —r'f 2rr' 2rr'
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and (30) in the forms

gt(1, 2)=go(rl2) + X go(r12)e'
CNO

(49)

=—e"'"' exp X yo(r„)e'o '
p VNO

(50)

and declares gp(r~&) dominant over the sum and
~p'i2'

p " dominant over the product. It is tantamount
to saying that an isotropic, liquidlikP description of
g (1, 2), not unlike that of Lowy and Woo, is basical-

ly sound, and will need only minor corrections. The
validity of this statement, at least for solid He, will

be demonstrated numerically in the next section.
Developing the same thoughts further, -we write

from Eq. (49)
FIG. 1. Coordinate system for evaluating the integral I in

Eq. (33). gt(1, 2) =gp(r&2) 1 + g e
g~p gp r

(51)

where

x = G'/G (46)

and from Eq. (50)

g((1, 2) =—e ' " 1+ X yo (r)2)e'o '
p GAP

(52)

y=G G (47)

and the symbol $, represents a summation over(G'}
shells in the reciprocal space, each shell containing

, reciprocal-lattice points. The prime indicates the
G —tl

omission of G =0 from the sum. A four-
dimensional integral form that appears repeatedly in

the derivation has in the process been transformed
into a simple two-dimensional integral, thus

d r (r r ) U( ) I'(Ir —r I)
4rp

goo "o+*s' (t ro) ', --
=m ds U(s) dt t

'
1 (Itl)Jp ~J rp —s rp

(48)

Note that a simplifying assumption has entered the
derivation that leads to Eqs. (44) and (45). The as-

sumption is that for all GW 0 g o (r) is very small

compared to gp(r). This has enabled us to keep only
terms which are linear in g o (r ), G A 0. In writing

out the double sum of Eq. (38), we omit terms which
have simultaneously 6 &0 and G & 0. Thus such
terms do not appear in Eqs. (44) and (45). That
such an assumption is valid must be demonstrated
numerically. In the meantime, we wish to point out
that the assumption is not related to our isotropic ap-
proximation. The isotropic approximation —which

neglects Sg(1, 2) in Eq. (28) —leaves g(1, 2) in the
form of gt(1, 2), which is isotropic but nevertheless
varies with the center-of-mass position of the pair in

the unit cell. The present assumption casts Eqs. (29)

Equation (52) is consistent with keeping only linear
G AO terms. From Eqs. (51) and (52), we obtain

lngp(r ) = yp(r ) lnp. or

—lngp(r ) = yp(r —)d d
dr df

(53)

and

gg(r)/go(r) =y-„(r ) (54)

Finally, in summary, we focus on Eqs. (13), (14),
(37), (53), (54), (44), and (45) as a closed set of in-

tegral equations. Given a variational wave function,
i.e., a set of t~ and u (r ), Eq. (37) is the first gen-

eralized BBGKY equation, which relates (IIo ) to

(pp). It requires information about (go (r) ).
Equations (44) and (45) form the second generalized
BBGKY equation, which relates (yo(r) ) to

(go (r ) }. It in turn requires information about

(IIo ) and (po ). Equations (13) and (14) give us a

defining relation between (IIo ) and (po ), while

Eqs. (53) and (54) give us defining relations between

(yo (r) ) and (go (r ) }. The solution of this set of
coupled integral equations yields the one- and two-
particle distribution functions: the density distribu-
tion and the short-range pair-correlation function.
When the solution is substituted into Eq. (27), we
obtain the energy expectation value E(to, u(r)). At

every number density p, or specific volume 1/p, E is
to be minimized with respect to the variational
parameters to and the parameters in u (r).
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IV. APPLICATION TO SOLID 4He

In this section, we apply the isotropic approxima-
tion g ( I, 2) gt (1, 2) to the ground-state caiculation
for solid He. This represents a step beyond the
Lowy-Woo theory, which employed a liquid approxi-
mation on g ( I, 2), i.e.,

g (I, 2) gt(1 2) go(t'(2) gliq (d("12)

u(r) = —(j&~/r)', (56)

The model consists of a Lennard-Jones pairwise
potential

'12 ' '6'

u(r ) =4m (55)f f

where e = 10.22 K and a. =2.556 A at zero tempera-
ture and number density p = 0.030 A ' (or I/p = 33.3
V), the value identified as the solidification density

in the Lowy-Woo calculation. ' The variational wave
function contains a one-parameter u (r)

where 6 = 1.15, again from Ref. 3. For t-, in keep-

ing with the experience gained in Ref. 3, only two
shells are taken; i.e., we retain only t(~) and t(&)', and

t(q), being insensitive in the actual numerical work, is

fixed at the Ref. 3 value of 0.04. All this has been
necessary since the solution of the set of coupled in-

tegral equations is an exceedingly expensive venture.
The ground state of solid 4He is fcc, and thus the

reciprocal lattice bcc. In all the reciprocal-lattice
sums we keep just two shells: G()& =2.13 A ' (half
the body diagonal), and G(„——2.46 4 ' (edge of a
unit ceil). The corresponding weights are &v(() =8
and w(p) =6.

In Eq. (47), we realize that a combination of two
G(~)'s can yield 0 or a G(g), both of which we retain;
it can also yield a G(3) which we discard. Combina-
tions of G(1) and G(&) or two G(~)'s, can lead to ei-
ther 0 or other G(~)'s and G(q)'s, which-we keep, as
well as G(;), i ~3, which we discard. In other words,
we demand consistency in keeping only two shells in

all the sums. Equation (44) now reads (for G =0)

lngo(r) = u (r) —vrP „ ds u'(s )g()(s ) ~

~r+s 2 (I ,.)2
dt t[go(ItI) —ll

t t 'I

G(2)$ &" s —(I—I )—
2rp& ds u'(s) gp()&g())(s) jo

'
+6p(2)g(2&(s)to 'l dt tgo(III)

r

OO II
—27rp $(2/+ I) 8P()) J „j,

I 0 f

I!
(~) ~ I I I I I . (I)

J0
) ( )

f &+f & —z& i '&+i & —z&

2f f 2/ f
g(1) (2)

+6p(2& ) '„jt ' „dr'r'u'(r')I;o(r')jt
(

(

/r" —r'/ 2)~ f 2f f

(s7)
For G ~0, we note that another approximation should be made for the sake of consistency. By normalizing
p'"(I) in Eq. (13), we find po= l. All other po's are small compared to po. Hence it is reasonable to keep p-„.

only where there are no other G A 0 factors. Thus Eq. (45) reduces to

4 1 Gf ' G).', Gr'g-(r ) =go(r) —(II- —2t- ) dr', cos —sinG G G G

—2rp ds u ($)go(s)jo Jl dt t go(~t~)Gs I"+' s' —(t —r )'
J0 r —s f

( t
OO f oo d

II
G

II goo G
I

—22rp X (2j + 1)„„jt "
J dr'r'u'(r') g- (r'o) jt +p ogo(r')Jt(Gr')

l 0
r f" '

2 0
I

t p"+q' t. 2 + t. '2 Z2 I''2 + t. '2 2 t

xJ, dz z, „Pt,„go(z)Jr"—r'f 2f f 2f 'l
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with

G =6(]), or G{p) (58)

i»

I .4-

l. 2—

Note that in this mode g(»(r) and giq&(r) become
decoupled.

If in Eq. (57) one considers only the first two
terms on the right, go(r) will reduce to g&;,„;d(r) of
Lowy and Woo. Equation (57) shows that there will

actually be correction terms even for the isotropic,
liquidlike part of g (1, 2).

Equation (37) now reads

IIo —2tg = poap+Pp, G = Gt&& or G(g&, (59)

where

n- = dr u'(r) (Gr cosGr —sinGr )go(r ) (60)4mp
G G3 JP

and

Py= „dr u'(r) cos —sin go(r)16mp " Gr Gr . Gr
G dp

(61)

The computational procedure begins with solving
the liquid 4He equation for g&;,„;d(r). Using that as
go(r) and setting g o (r) to zero for the moment, we
solve Eqs. (59)—(61) with Eqs. (13) and (14) itera-
tively for II~ and po. Table 1(a) shows how well the
iteration procedure converges in a typical case. Using
these 11d, Po, go(r), and g o (r) we next solve Eqs.
(57) and (58) with Eqs. (53) and (54) for a new set
of go(r) and go (r). These are then entered in Eqs.
(59)—(61) for a new iterative solution for IIo and

I.O-

0.4-

0.2-

' '2.0-
0.2-

4.0

5.0 6.0 7.0

r(A')

I

8.0

FIG. 2. gp(1') and gG(r) for p=0.030 A at f{~)=0.07,
I(&) =0.04, and b.=1.15. gp(r); ———10 x g(&)(I');

10xg (I)

l.0

po. Table I(b) shows intermediate results from this
new round of calculations. This continues until con-
vergence is attained.

Figure 2 shows a typical set of go(r), g&»(r), and
giq&(r). Note that g&»(r) and giq&(r) are indeed
small compared to go(r). [In the figure, gi»(r) and
giq&(r) have been amplified by a factor of 10.] Figure
3 shows the new density distribution at p =0.030 A 3.

TABLE I. Iterative procedure for p =0,030 A 3 at
(())=0.07, t(p) =0.04, and b =1.15.

n(2)

0.192
0.218
0.232
0.240
0.245

First iterative calculation

(a)
0. 1 1 1

0.124
0.131
0.134
0.136

0.178
0.198
0.210
0.216
0.220
0.222

Second iterative calculation
(b)

0.127
0.144
0, 150
0.153
0.154
0.155

0.5 I.O, I.5
r (A)

2.0

FIG. 3. Density distribution at p=0.030 A

present calculation; ———Lowy and Woo (Ref. 3).
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1 1

LW
pe po

~LW
Esolid Esolid

N N
liquid

d(t/p) A

(62)

We fitted E ;„;iq(1d/p), as given in Table 1 of Ref. 3,
to a cubic formula, and obtained

liquid/

It appears slightly more localized than that obtained
by Lowy and Woo (LW).' Figure 4 shows the energy
expectation value as f(~~ varies from 0.0 to 0.09, We
learn that the minimum remains at t&l) =0.07, but
the energy decreases by 0.16 K.

We were not in the position of carrying out numer-
ical computation at more than one density. The new
solidification density had to be estimated, In Ref. 3,
the solidification density had been determined by a
Maxwell construction. Figure 2 in Ref. 3 is too small
to show an inflection at 1/pPw =33.3 4 ', defined as
the point at which E„l;d = Eliq id Let us exaggerate it
in the plot of Fig. 5. Let the dashed curve labeled
E„~;,/N represent the Lowy-Woo solid energy, and
the solid curve labeled E„i;d//s/ the result of our
present calculation, even though only one point—
shown as the solid circle —has actually been calculat-
ed. Since El;q„;d is unaffected by present work, the
"solidification density" simply shifts from the inter-
section of Esoiid with Eliqu~d to that of Esolld with Eliquid.
i.e., from 1/p, to 1/p, . Geometrical construction
shows that BC equals AB times the slope of AC, or

E/N
LW

lE„„,/N

Eiiqoid/N

solid/

I

I I

pLW p
C C

FIG. S. Liquid to solid transition: an illustration,

The slope at 33.3 A' is then —0.22 K A '. Since
) E„iid /W —Esoi;„//V i

= 0. 16 K, 1/P, = 1/P, + 0.73
4' = 34.03 A'. p„, the new solidification density,
equals 0.0294 4 ', a mere 2"/o below the Lowy-Woo
value of 0.030 4 '.

V ANISOTROPIC g (1 2)

In this section we investigate the effect of introduc-
ing anisotropy into the pair-correlation function.

Let us return to Eqs. (21) and (24) —(26) in Sec.
II, which make a complete set of.equations for II-„.,
p-„, y~( r ), and p-,, ( r ). Along with the defining
relations (17) and (18), Eq. (24) relates yo ( r ) to

= —0.93 + 1.3 x 10 —+ 2.5 x 10
1 4 1P, P

. (63)

-55—

N
(&)

E

i ii

O. I 2—

0.08—

0.04—

-60—

liquid

—6.5—

0.04 0.08

-0.04—

—0.08—

—0, I2-

I IG. 4. Energy expectation value as function of the varia-
tional parameter t(l). I(&& =0.04 and b =1.15. present
calculation; ———Lowy and %'oo (Ref. 3).

I IG. 6. G(l) (I ), obtained after one iteration for
p =0.030 A 3.
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go( r ). We wish to solve these equations simul-

taneously, given to, u(r), pg, and IIg. The solu-

tions are then entered into Eqs. (21) and (25) for a

new set of p~ and II~. The iterative process contin-

ues until self-consistency is achieved. This, of
course, is the same program as pursued in Secs. III
and IV. The only difference is that we now wish to
consider g (1, 2) anisotropic. Accordingly, we expand
g (1, 2) further, taking

and

g-o(7 ) = Q G o( r) Y t (&, @)
I, m

yo( r ) = XI'o(r) Y, (t), y)
I, m

(64)

(65)

Only even I need be retained on account of the inver-
sion symmetry of go( r ) and yg( r ).

Substitution of Eqs. (64) and (65) into Eqs. (21)
and (24) leads to

IIo —2to =i p gap, dr u'(r)G'o (r) J dr" e' ~ ' Yt~(g, P)
I

and

—I"'o(r) =(47r)' 'u'(r)5to5d 0+(IIo —2to) z dr(G r ) sin Yt'(H, P)r

+ p X- g 'p- - or Jtdr"Yt" (tj, @)J d r r" r" u'(r') G', (r')
~ I PII II I III II

,m , , m

~ I —t/I

xG' „(i r —r i)cos G — r

(66)

G —G
r

2

x Y, (tt', 0') Y," (tt", 0") (67)
/

where 8" and @"denote the polar and azimuthal angles of ( r —r ).
The iteration procedure reads as follows. We start with the liquid correlation function, i.e. , all Go (r) =Oex-

cept Gooo (r ) =go(r). Using Eqs. (66) and (25) we find IIp and po. Then Eq. (67) gives us I'o (r), and Eq.
(26) gives us Gp (r). In this step Eq. (67) is simplified to read

I'o (r)= —2m[(2j + 1)7r)' ppo5 0 X (2I'+1) Jl K„,(r')M, , (r') dr'
I J

I

where

f 1rt, (r') = dxP/(x)Pi(x) Re(l' e ' '" ')
II J-i I

1

foo ~+~ f +f —Z f +f —Z
M, , (r') =& dr"u'(r")j, (Gr")go(r") Jl „P, , „[go(z)—1 izdzJp Ir'-r" l 2f ' ' 2f 'f"

(68)

(6&)

(70)

0.08—
0,0

0.04- -5.5

0.00

-0.04—

-0.08—

—O. I 2—

L ~
-6.0—

1.19

E liquid

I

0.04
I

0.08

FIG. 7. G(2i (r), obtained after one iteration for

p=. 0.030 A 3.

FIG. 8. Energy expectation values including anisotropic
effects. present calculations; ———Lowy and Woo
(Ref. 3).
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It can be seen that at this point only the m =0 com-
ponents survive. In other words, we have only
G@o (r). Entering G@o (r) into the right side of Eqs.
(66) and (67) leads to a new set of IIo and Go (r).
This process will be repeated until convergence is

reached. The approach to convergence is expected to
be exceedingly rapid for solid 4He since anisotropic
effects are known to be small. In other words, we

expect that for nonzero 6, I, and m, Go (r) be very

small compared to Go (r).
Numerical results shown in Figs. 6 and 7 bear this

out. GIII (r) at GII& and G'IqI (r) at GI» all turn out
small. The amplitudes are all less than 0.15, while

Go (r) —the liquid correlation function, or go(r) as
shown in Fig. 2 —reaches a peak of 1.3. Practicality
does not permit us to go beyond one iteration. It is,
however, easy to see that only minute changes are
expected in the energy calculation even if we were to
proceed further.

Figure 8 shows the variational energies obtained at

density p=0.030 A '. We see that the effect of tak-

ing into consideration anisotropy in the two-particle

distribution function is to shift the energy curve up-

ward. Using the same method that determined the
solidification density in Sec. IV, the transition density

is found to have increased from 0.030 to 0.032 A '.
This is unfortunate since the experimental value lies

below 0.030 A '. Nevertheless, we have succeeded to

show that the shift, at ( 7%, is not large, and that
the approximation made on g (I, 2) in Ref. 3 is ac-

ceptable. The discrepancy with experiment can no
doubt be made smaller by a more thorough search of
the variational wave-function space. We intend to do
it if and when demands on computer expenditure can
be met.
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APPENDIX A.

Let the directional integral in Eq. (39) be denoted

by v'.

fO
r -iG3 rr= J dr (i r"")g „([r —r ()e

G
(A I)

Using the Rayleigh expansion formula:

and the coordinate system shown in Fig. 9, we find

oo I

e ' '=4m X $ (i) YI (aI) YI (az)jI(aIap) (A2)
I Om —I

oo 2n t 1

T= X $ 4 r(7i)'j~(G r3) J dIII&l dppg „((r +r'~ —2rr'p, )' ~)jY (iI~i ) YI~( —0, r)"
I-0 m —I

2(+1=Srr' g (i )'jI(G3r )P&( —G3 i ) J dppg „((r +r' —2rr'p)' ')PI(p)
I~0 IT

(A3)

where p, =—cosH.

Gp

FIG, 9. Coordinate system for expansion, Eq. (A3). FIG. 10. Coordinate system for expansion, Eq. (A6).
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Let
r l

H' „(r,r') = J dying „((r2+r' —2rr'p, )'~')PI(p, )
G

(A4)

[Same definition as in Eq. (43)] J becomes

OO /

J =2' X (2l +1)(i)IJ'1(G3r )—J dr'dr" u'(r')g, (r')e H' „(rr')Pl( —G3 r" )
I 0 1' G G

Now, with the help of Fig. 10
A r (1 I

J
dr" PI( —G3 r" )e = (—I)'~ dr" PI(G3 r" )e 2

' = ( —I )'2mPI(G3 G2)
& dye PI(p, )

(AS)

We obtain finally

4m . A A

, JI (G&r')Pl(G3'G2)
I

(A6)

OO fO

J = X (2I +1)j~(G3r ) dr'u'(r')g, (r')PI(G3 Gq)jI(G, r')H' „(r,r')
I 0

4 G G
(A7)
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Note that the "coefficients" are now functions of I l2, not

rl2. We keep the subscript as G, however. Writing it as

G would lead to the unfortunate implication that

p G (r) =p, (r) and y G (r) =y, (r) as long as G = G',

even when RG A G (R being a rotational operator with

the rotational symmetry of the reciprocal lattice).


