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Critical heat capacity near the nematic —smectic-A transition
in octyloxycyanobiphenyl in the range 1—2000 bar
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An ac calorimetric technique has been used to study the nematic —smectic-A (N-S m A) and

nematic-isotropic (N-I) transitions in octyloxycyanobiphenyl (8OCB) along a series of isobars

between 1 atm and 2 kbar. The excess heat capacity b, C&(NA ) associated with the essentially

second-order N-SmA transition is found to diminish rapidly with pressure and is not observed

for p ) 1.5 kbar. The variation in h, C~(NA) with reduced temperature is not consistent with a

logarithmic singularity but can be characterized by a critical exponent n = 0.
' =0,25 +0.05 for all

the pressures studied. The excess heat capacity at the N-I transition is almost independent of
pressure; these data suggest but do not clearly establish quasitricritical behavior. Details of the

experimental method and the fitting procedures are given.

I. INTRODUCTION

Liquid crystals are large, highly anisotropic organic
molecules which melt in stages. Two of the more
common intermediate phases between the solid and
the isotropic (I) liquid are the orientationally ordered
nematic (N) phase and the layered smectic-A (SmA)
phase. The N-SmA phase transition has attracted
considerable attention since the prediction by McMil-
lan' that it could be second order in some cases.
McMillan's result was obtained with the mean-field
approximation; a more detailed treatment by de G-
ennes' placed the N-S m A transition in the d =3,
n =2 universality class. (The complex order parame-
ter p for the SmA phase involves the amplitude and .

the phase of a density wave; hence n =. 2 or XY
model. ) The short range of the intermolecular forces
in liquid crystals leads to the prediction that the N-

SmA transition should resemble the A. transition in

He more closely than the normal-superconducting
transition in metals. Ho~ever, coupling between
director fluctuations Sn and the smectic order param-
eter P are predicted to make the transition always

weakly first order. ' Recent analysis by Lubensky and
Chen has shown that the behavior may be more
complicated than that of a simple XY model with a
first-order instability. They showed that a large splay
elastic constant K~ could lead to anisotropic quasicrit-
ical behavior. On the basis of a postulated anisotro-
pic scaling form for the correlation functions, they
have developed a set of renormalization-group recur-
sion relations for a generalized de Gennes model hav-

ing an order parameter with —,n complex com-

ponents. For small values of n ((238.17) two fixed
points exist —a trivial Gaussian fixed point, in which
the order parameter P is completely decoupled from

Sn, and an n-component Heisenberg fixed point. For
larger values of n, two more fixed points come into
play. An isotropic superconducting fixed point corre-
sponding to Kt =0 and leading to XY behavior is

stable for n & 365.9. Another fixed point corre-
sponding to Kj = ~ exists for all n & 238.17 and
leads to extremely anisotropic critical behavior.
Furthermore, the transition at large n may be
second-order. Hence, crossover behavior from
mean-field to anisotropic-critical to isotropic-critical
to a first-order transition, or some subsequence of
the above, is possible. For n =2 it is suggested that
quasicritical behavior with the same types of cross-
over as for the large n case may occur until the inev-
itable first-order transition finally intervenes. Hence
the observed or "effective" critical exponents may be
nonuniversal and, in particular, there may be a physi-

cally accessible range dominated by quasicritical an-

isotropic behavior that is not the same as the XY
behavior of helium near its A. point.

Despite theoretical predictions of an intrinsically
first-order transition, there are several experimental
cases in which the N-SmA transition must be very
close to second order. Much early work was done on
p-cyanobenzilideneoctyloxyanilinc (CBOOA), a bi-

layer srnectic with a low N-SmA transition enthalpy
( (50 J mol ').'6 Careful examination of this transi-

tion by dilatometry' and by a variety of scattering
techniques' showed mo detectable first-order discon-
tinuities, despite a few earlier reports to the con-
trary. ' The scattering results were about evenly di-

vided between mean-field critical correlation ex-
ponents ( v =0.50) and heliumlike exponents
(v =0.67), with some evidence for anisotropic
behavior with v~~ & vq. A temperature-pulse
calorimetric technique' yielded o. = e' =0.15 for the
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specific-heat critical exponent, a result incompatible
with both the mean-field and the XY (n = a' ——

—0.026; almost logarithmic) model.
CBOOA is not an ideal material to study due to

chemical instability of the Schiff's base linkage. Oc-
tyloxycyanobiphenyl (SOCB), the biphenyl analog of
CBOOA, is a much more suitable material since it
has excellent stability and is available in high purity
from British Drug Houses Chemicals, Ltd. Detailed
experiments have also shown the N-SmA transition
in 8OCB to be second-order to within experimental
accuracy. " SOCB is a bilayer smectic" showing re-
entrant nematic behavior at high pressures. '

%e have carried out an ac calorimetric study of the
W-SmA transition in SOCB along a series of isobars
between 1 and 2000 bar (see Fig. 1). A summary of
these results has appeared elsewhere, '" but the exper-
imental method and detailed fitting procedures have
not been discussed previously. An earlier calorimet-
ric study of this material at 1 atm by Johnson and co-
workers" yielded results that were interpreted as be-
ing consistent with a logarithmic singularity in C~ at
the N-SmA transition. However, their sample had a
40-mK-wide two-phase coexistence region, and the
resulting uncertainty in the location of TN& lent an
undesirable amount of freedom to the fits. Our data
at 1 atm, while consistent with Johnson's outside of

the two-phase region, have a considerably sharper C~
peak and clearly require a positive exponent a in the
range 0.2—0.3. At higher pressures the C~ peak is
markedly diminished in magnitude but retairis basi-
cally the same shape.

This paper is organized as follows' . The theory of
the ac calorimetric method at atmospheric and high
pressures is reviewed in Sec. II, the experimental de-
tails and data-reduction procedures are described in
Sec. III, and the experimental results are presented in
Sec. IV. The least-squares fitting procedures and the
resulting critical exponents at the N-SmA transition
are discussed in Sec. V; a brief analysis of the N-I
transition appears in Sec. VI.

II. THEORY OF THE METHOD

The ac calorimetric technique has proven to be a
useful method for studying second-order phase transi-
tions' and to be particularly well suited to high-
pressure studies. ' In this section we review the
basic principles of the method as applied at atmos-
pheric and higher pressures and summarize its
strengths and weaknesses. The development is close-
ly related to that of Ref. 17, with substantial changes
in notation to improve clarity.

The simplest model for an ac calorimeter is one in
which a sample of heat capacity C~ is connected to a
bath at reference temperature To by a massless link
with thermal conductance A

AT„= (Q(t) )/A

and an ac temperature oscillation T(t) If the osc. illa-
tory part of the heat input has the simple form Qoe'"'
and the period 2e/e& is long compared with the time
scale for heat flow in the sample, then T(t) is given
by

UJ
K
(0
CO

~ l.0—
CL

T(t) = AT„e' "'+4'

~here

(Q /AT )'=(~C,)'+A',
tan@ = —&AC~/A

(2)

(3a)

(3b)
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It is experimentally convenient to define a quantity
C' by

C"=—Qo/at& T..
Then Eq. (3a) can be rewritten in the form

(C'/C, )'= I+(A/~C, )' .

(4)

FIG. 1. Phase diagram of SOCB. The dashed lines indi-
cate the ranges over which C& data were obtained, and the
triangles indicate the transition temperatures obtained in this
work. The solid phase lines are taken from Ref. 13. The
x's indicate the equilibrium melting point. of the solid phase.

At atmospheric pressure most experiments are
operated in a frequency regime such that A/a&C~« 1, so that O'= C~ is an excellent approximation.

In high-pressure ac calorimetry the sample is im-
mersed in a necessarily dense pressure-transmitting
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Using these quantities and including a term AI to
take into account any additional heat loss through
paths such as electrical leads, one finds for a slab of
finite area that Eq. (6) can be rewritten as

(C'/Cp)2=Za2, + [(Al/o)C~) —Z, ]' . (10)

The high-pressure analog of Eq. (3b) is found to be

tang = Za, /[Z[ (Al/Q)Cp) ]

The quantity C~ is the totaI heat capacity of the slab,
the quantity Qo appearing in the Eq. (4) definition of
C' is the total heat flux, and the parameters ZR, and

Z~ represent contributions to C' due to the pressure
medium (gas) surrounding the cell. Note that in the
limit of low gas density (F 0) and thin samples

(~n2i2~ ((1),we have Za, 1, Zt 0 and the
one-atmosphere results are recovered.

The ac technique has several advantages for study-

ing second-order or nearly second-order phase transi-
tions: (i) The steady-state nature of the measure-
ment permits one to remain at a given temperature
indefinitely so that attainment of thermodynamic

fluid which serves as the major source of heat loss.
In this case the assumption that the thermal link, A

has negligible heat capacity is no longer valid, and
one must take this fact into account. Finite thermal
conductivity (or diffusivity) effects in the sample also
become more important, due to the smaller thermal
impedance mismatch with the surroundings. A sim-

ple model in which both these effects are taken into
account is the following: A uniform slab of material
of thickness l~, density pq, specific heat cq, and
thermal-conductivity X~ is immersed in an infinite sea
of material with thermal parameters p~, c], and A. ]. A

heat flux density Qae'"'is applied to one face of the
sample (x =0) and the temperature is measured on
the opposite face (x = i2). If the lateral dimensions
of the sample are large compared to its thickness,
edge effects may be ignored and the problem may be,
treated as a one-dimensional heat conduction prob-
lem. In this case the temperature at the detector is

given by'

T(I2, r) = (Qo/a2it2) [(1+F') Stnhn2I2

+2F coshn2i2] 'e'"',
where

n,. —= (i cocci/Xi)' '

and

nl~1/n2l~2 = (pl~ll~l/p2&2i~2)

This result can be recast into a form similar to Eq.
(5) by defining C" as before and introducing a com-
plex quantity Z =ZR, +iZ& defined by

Z = [(1+F') Sinha2I2+2F COShn2i2]/n2i2 . (9)

equilibrium may be ensured even when relaxation
times become very long; (ii) since data may be taken
either on warming or cooling, hysteresis effects may
be examined; (iii) the periodic nature of the signal

permits the employment of sophisticated analog or di-

gital signal averaging techniques for noise rejection;
(iv) relatively small samples (1—100 mg) are required
so that expensive or hard-to-prepare materials can be
conveniently studied; and, finally, (v) the method
may be used in the kilobar range with only modest
corrections (30—50%) that are not sensitive functions
of the temperature.

The ac technique does have some limitations.
Though precision may be high, absolute accuracy is

usually no better than 5% and is often worse. The
method is time consuming, making it unattractive for
exploratory work. The most serious drawback is that
there is no reliable means of measuring latent heats
or even detecting them with certainty. We have,
however, found a close correlation between
anomalous phase shifts in the T„signal and suspect-
ed two-phase regions at known first-order transitions
in 8OCB and in other compounds. The phase shift
is always in a direction which corresponds to unusual-

ly rapid heat transfer within the sample. Such effects
have been observed repeatedly in 8OCB at the solid-
SmA and N-I transitions, but have never been seen
at the N-SmA transition.

III. EXPERIMENTAL PROCEDURES

The ac calorimeters used in this work were similar
to the one described in Ref. 17, with the addition of
a sample cell designed for liquids, a computerized
data-acquisition system, and a few smaller changes.
In terms of precision and ease of operation, the new

calorimeters were substantially better than the earlier
version. This section describes our calorimeters and
our method of collecting data. "

The sample cell was a specially constructed silver
cell designed to meet the requirements of chemical
inertness, low heat capacity, high thermal conductivi-

ty, and compatibility with high-pressure use. The
body of the cell was a cup 1 cm i.d. x 0.12 cm deep
pressed from 0.010-in. silver sheet. A lid of 0.001-in.
silver foil, soldered across the top of the cell, isolated
the sample from the surrounding pressure medium
but freely transmitted hydrostatic pressure. The ac
heat input was supplied by a 30-0 Chromel wire

resistance heater epoxied to the base of the cup, and
the temperature oscillations were detected by a small

bead thermistor (Fenwal No. GB 43L1) cemented
to the center of the lid. A carefully wound coil of
fine gold wire placed in the cup along with the sample
greatly increased the effective thermal conductivity of
the package.

The empty cell weighed -0.5 g and had a heat
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capacity which was a smooth function of temperature
over the range of the experiment (0—110'C). The
cell was filled under a dry nitrogen atmosphere by in-

jecting with a glass syringe 70—100 mg of liquid crys-
tal through a special filling port. This port was then
sealed with a low-melting (117 'C) In-Sn-Pb solder in
a manner such that the sample was kept cool
( &80'C) and isolated from the solder. The cell was
then suspended by two AWG No. 28 copper leads in
an outer sample holder which was mounted in one of
the constant-temperature baths. The loaded cell had
a heat capacity of 0.30—0.35 J K ', 50 to 60% of
which was due to the liquid crystal. The 8OCB was
used as received from BDH Chemicals since the
manufacturer's stated purity was 99.5% minimum.

Two different regulated temperature baths were
used in these experiments. The one-atmosphere runs
were carried out in a Lauda NBS circulating bath re-
gulated by a Tronac Model 40 temperature controller.
Short-term temperature stability was estimated to be
+3 mK in the bath but was considerably better (+I
mK over the duration of a 20 minute data point) at
the location of the sample cell due to an appropriate
amount of thermal isolation of the cell from the bath.
Temperature gradients across the cell due to the dc
component of the heat input have been estimated to
be &0.2 mK at 1 atm and (1 mK at 3 kbar. Abso-
lute temperatures were provided by a Leeds and
Northrup 8164-B platinum resistance thermometer
mounted in an aluminum block attached to the sam-
ple holder and were accurate to within +20 mK.

The high-pressure runs were carried out in a
separate calorimeter. In this case the sample cell was
mounted on a copper strut which was suspended in a
massive (23 kg) steel pressure vessel. The pressure
"bomb" was immersed in a large circulating oil bath
regulated by another Tronac controller. Temperature
stability was virtually identical with that of the one-
atmosphere calorimeter, both in the bath and at the
sample. Absolute temperatures were again provided
by an L and N 8164-B thermometer, which in this
case was mounted in the oil bath outside the pressure
bomb. Due to possible temperature gradients
between the inside and outside of the bomb, absolute
accuracy is estimated to be only +50 mK.

The pressure medium was Airco welding-grade ar-
gon, pumped to a maximum pressure of 3 kbar by a
two-stage Harwood gas compressor. Pressure was
measured with a calibrated manganin coil and could
be maintained constant to better than 5 bar over the
duration of a four-week long high-pressure run. The
readability and short-term stability were considerably
better, so that pressure stability during a one-day
scan through a phase transition was estimated to be
+0.3 bar. Absolute accuracy in the pressure values
was +30 bar.

Data collection was handled in the following
manner. A very stable low-frequency oscillator pro-

vided a sinusoidal heat input to the sample. The
resulting temperature oscillations, having a frequency
of 0.033 Hz (eo =0.207) and peak-to-peak amplitude
of 8—10 mK, were detected by the thermistor, which
comprised one arm of a sensitive ac resistance bridge.
This bridge was driven at -1050 Hz, and the tem-
perature oscillations in the sample created an imbal-
ance signal in the bridge, which was converted to a
slow sinusoidal variation in the output of the lock-in
amplifier that served as the null detector. This signal
was digitized and stored in the memory of an IMSAI
8080 microcomputer. Successive periods were over-
laid in memory until 40 periods (20 min) of data had
been collected. The amplitude and phase of the aver-
aged signal were then determined by performing
Fourier sine and cosine sums over the stored data.
Finally the average temperature and the effective
heat capacity C" were computed and these results
stored on a flexible disk for further analysis.

One additional step in the data-acquisition process
is worth noting. When the ac temperature signal was
analyzed as described above, the largest source of
scatter in the data was slow drifts in the bath tem-
perature associated with imperfect temperature con-
trol. These random drifts, while small (&1 mK),
still correspond to a variation that was -10% of the
ac amplitude. Their effect could be practically elim-
inated, however, by computing the average tempera-
ture during each period of the ac oscillation, recon-
structing the bath temperature drift from these aver-
ages and correcting the Fourier amplitude for the
drift. When analyzed in this manner, the scatter in
our C' values was -0.06%. The one-atmosphere
data are easily converted to C~ values using Eq. (5).
We tested the validity of this equation for our system
by measuring the frequency dependence of 5T„. A
plot of (Q«/d. T„) vs co~ was linear for 0.06 & «p

& 0.3, which implies that the data are well described
by Eqs. (3a) or (5) over this range. The parameter A

can be determined from the cv =0 intercept of the
above plot or calculated directly from the length and
cross section of the heater leads. The same result,
A =0.008+0.001 watt K ', was obtained using both
methods. Thus A/AC~ & 0.13 at «&=0.207 (our
standard operating frequency) and C~ differs from C'
by less than 0.8%.

Reduction of the high-pressure data is not quite as
straightforward. Clearly the actual geometry of the
sample cell and its surroundings are more complex
than that of the model presented in Sec. II. The
sample is not a uniform slab of a single material and
is too thick for the one-dimensional heat-floe model
to be strictly applicable. Rather than developing a
complex model (which might involve more parame-
ters than could be uniquely determined), we have
used the model represented by Eqs. (6)—(11) with
the simplifying assumption that the noncritical (back-
ground) heat capacity of the sample plus the con-
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tainer is independent of pressure. AI and the sample
thickness I~ can be measured directly, and the high-
pressure thermal properties of argon (p~, c~, X~) are
well known. ' %e find, away from the vicinity of
transition points, that the observed values of C' over
wide ranges in pressure and frequency can be well
represented by using an effective cell thermal con-.
ductivity ) ~ and an effective cell density p~ that are
independent of pressure and temperature. For the
range0&p &2kbar, 55& T&105 C, and0. 1&co
& 0.9, we used X~=0.0113 Wcm 'K ' and p&=2.28

gem '. These values are quite consistent with the
high-frequency rolloff of the (Qo/4T„)' vs -co' -plot at
1 atm and yield high-pressure C~ values that are in-
dependent of pressure (within +5%) when the sam-

ple is not close to any phase transition. The above
values of A~ and p~ were then used in conjunction
with Eqs. (9) and (10) to reduce high-pressure C"
values to C~ values [C~ = mqcq( T), where mq is the
mass of the loaded cell and cq( T) is its average
specific heat at temperature T]

One troublesome feature of the data should be
pointed out. Several of the runs contained one or
two abrupt systematic changes of 0.3—0.8'/o in the C'
values, well above the normal scatter of 0.06%. In
each case the C' values at temperatures above and
below the break followed parallel curves which could
be superimposed by making a small additive correc-
tion. We believe these breaks were caused by either
a change in the domain pattern (and hence, the ef-
fective thermal conductivity) of the sample or a
mechanical instability in the thin foil lid to which the
thermistor was attached. The data shown below have
been corrected for such effects.

sample remained isolated from the argon pressure
medium throughout the experiment.

The location of the phase boundary between the
smectic-A and nematic phases at high pressures has
been found to be sample dependent. ' The curve
shown in Fig. 1 corresponds to the sample in Ref. 13
with the largest region of smectic stability, which was

believed to be the purest of those studied. Our sam-

ple gave transition temperatures for p «1000 bar
that were very close to this curve, suggesting that the
transition temperatures should be similar at higher
pressures as well. However, as shown below, no
thermal anomaly associated with the N-SmA transi-
tion could be detected at 1500 or 2000 bar. It was

also not possible to study the re-entrant nematic por-
tion of the phase diagram due to spontaneous crystal-
lization of the supercooled smectic-A phase over the

long time scale of our measurements.
In terms of integrated enthalpy, the N-l transition

is much larger than the N-SmA transition. Figure 2

shows the variation in C~ associated with the N-I
transition at 1 atm and at 500 bar. The shape and

magnitude of this peak are insensitive to small

amounts of impurity (data are shown at 1 atm for
both the investigated sample and a less pure sample
with a lower T~l value) and are almost independent
of pressure. The small differences observed when

T —T~i & —10 K may be due to the increase in the
nematic order parameter S (and a corresponding de-

crease in its fluctuations) upon cooling through the
N-SmA transition at 1 atm. The heat capacity in the
vicinity of the N-SmA transition is sho~n in Fig. 3.
This C~ peak diminishes rapidly with increasing pres-
sure and is not detectable at 1.5 kbar and above. The

IV. RESULTS

We have measured the heat capacity of 8OCB
along five isobars over the temperature ranges shown
in Fig. 1. These measurements were carried out in

order of ascending pressure, with a second 1-atm run
being made after the high-pressure runs. Data were
taken on warming and on cooling, with no discern-
able differerice between the two sets. The N-SmA

transition temperature did not change between the in-
itial and final 1-atm runs (a period of more than 4
months); however, a small shift of -20 mK was ob-
served over a two-week period during the final run.
Since data very near the transition were always taken
during a 1 —2 day period, this drift had a negligible
effect on the results. At 500 and 1000 bar the N-

SmA transition temperature obtained from several
runs at each pressure was reproducible to better than
20 mK (corresponding to a pressure stability of -2
bar). This stability in the transition temperature plus
the fact that the cell was depressurized from 2 kbar
without damage provide convincing evidence that the

1 atm, TNg = 80.24 C

o 500 bar, T&i =96.24 C

Cp
R

125—

100—

75—
g q, ccats& ~ ~+ +»~+~++ +

-40
J J

—20 o 0 20T- Thiy (Kj

FIG. 2. Heat capacity of 8OCB (MW =307.44) in the vi-

cinity of the N -I transition at 1 atm and 500 bar. A detailed
view of Cz over the ranges indicated by the horizontal lines

is shown in Fig. 3. TNI denotes the observed temperature
of the weakly first-order transition. Data points close to the
N-SmA transitions have been omitted for clarity.
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FIG. 3. Heat capacity of 8OCB in the vicinity of the N-

SmA transition for the five isobars shown in Fig. 1. The
data at 500, 1000, 1500, and 2000 bar are shifted down by 5,
10, 15, and 20 units, respectively. The background C&

curves used in the power-law fits are indicated by dashed
lines.

same behavior has been observed in several other
samples of 8OCB and in the related material octyl-
cyanobiphenyl (SCB),~ a bilayer smectic which does
not exhibit re-entrant behavior. The trend in the ex-
cess entropy SS~~ for 8OCB" is qualitatively similar
to the decrease in transition entropy with decreasing
TNAl Tltll predicted by mean-field theory, ' particularly
in the version of Lee et al. However, it should be
stressed that our results do not correspond to a de-
crease in the latent heat but rather to a decrease in
the pretransitional entropy associated with the N-SmA
transition. A possible explanation of this effect of
pressure would be that the excess N-SmA entropy is
mainly due to nematic order parameter fluctuations,
which are expected to decrease with increasing Tgr
—TN&. A similar argument has been presented by
Brisbin et al. "to explain the size of the C~ peaks at
the N-SmA transition in the homologous series nS.5.

The dashed curves shown in Fig. 3 are smooth in-

terpolations of the N-I heat-capacity peak through
the region of the N-SmA transition. The critical heat
capacity AC~(NA ) associated with the N SmA transi--
tion is the difference between the observed data and
the noncritical background curve. This choice of
background is both physically plausible and consistent
with a power-law variation for hC~.

Before discussing the details of the fitting pro-
cedure, we present in Fig. 4 a comparison of the 1-

FIG. 4. Heat capacity of 8OCB near the N-SmA transition
at 1 atm. The present data have been normalized to agree
with Ref. 15 by multiplying by the factor 1.236. The tem-
peratures of the data represented by 0 and + have been
shifted 23 mK to compensate for a change in T&z between
the first warming run and the cooling run. The solid curve
accurately describes the data presented in Ref. 15.

atm data near T» with the earlier results of Johnson
et al. " Aside from the existence of a 40-mK-wide
coexistence region in Johnson's data and a fairly sub-
stantial (24%) difference in absolute values, the vari-
ations in C~ are very similar. A recent reinvestiga-
tion by Johnson of a high-purity 8OCB sample con-
firms the rapid variation in C~ near T~& reported

Another comparison of interest is to the results of
differential scanning calorimetry (DSC), which yields
values of 25 —60 J mol ' for the heat of the N-SmA
transition in 8OCB.' It is common practice to quote
such DSC enthalpies as latent heats although the
DSC method cannot distinguish truly discontinuous
changes in enthalpy H from rapid but continuous
variations. The DSC method is also subject to diffi-
culties associated with equilibrium near a transition
(typical scanning rates are 2.5—5 K/min) and choice
of base line. As a result, DSC heats are mainly of
qualitative value. The ac method yields good equili-
brium values of the excess heat capacity hC» but can-
not measure latent heats. However, anomalous shifts
in the phase $ of the T„signal can provide an indi-
cation of the coexistence of two phases. We see
such two-phase behavior close to the weakly first-
order N-I transition, but there are no indications of
phase coexistence at the N-SmA transition. The ex-

cess enthalpy SH =— EC~dT due to pretransitional
(critical) contributions is 100 J mol ' at 1 atm. If
there is any very weak first-order character at the N-

SmA transition, we anticipate that the latent heat will
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be less than 5 J mol ' (thus hS & 0.0018R for the
corresponding discontinuous entropy change).

V. DISCUSSION

A. Fitting procedure

t

A ltl +8 for T ) Ttvq

DC'/R ='
A'ltl +8' for T & Ttt„

1

(12a)

(»b)

where t = ( T —TN„)/T». The quality of a fit is
specified in terms of the reduced X square

8

X'„=—X, l y;(obs) —y;(calc) ]', (13)

The Marquardt algorithm' has been used to fit the
data to functions of the form

where y denotes t}i'/R and v = n —p is the number
of degrees of freedom (n being the number of data
points and p the number of adjustable parameters).
Our data were found to be consistent with a constant
standard deviation a; =0.12 (equal weights) for
l t l ) 3 x 10 ', s' which is the smallest t value for
which the data are only weakly affected by possible
systematic errors due to the finite amplitude of the
temperature oscillations. "

Table I shows the results of fitting separately the
data above and below Ttv„ to Eq. (12) over three dif-
ferent ranges of reduced temperature. Corrections-
to-scaling terms have not been included in Eq. (12)
since good fits may be obtained without them, but
the effect of such terms will be discussed later. The
error bounds for cx given in Table I and subsequent
tables are 95% confidence limits based on the F test.
They were determined by fixing a at several values
different from the optimum (na), minimizing X„at
the new n value (at), calculating the ratio X„(nt)/X„

TABLE I. Critical parameters obtained from separate fits with Eqs. (12a) and (12b) to the data
above and below the N SmA transit-ion. The reduced temperature ranges are: (1) 1 x 10 s & l

t l

&1 x10 2, (2) 3-x10 s & ltl & 3 x10 3, (3) 3 x10 & it) & 1 x10 . A bracket indicates that
the parameter was held fixed at the indicated value.

Data
set

Temp
range

TNA

(TNA) X„2

1 atm

T& TN„

86
68'

67

55
81
66

65

57
80
65

1.20
1.17

1.26

1.11
2.37
3.14

11.76

1.82
0.89
0.97

0.27 + 0.03
0.27 + 0.04

() 26)+0.13
—0.11

0.27 + 0.07
0.20 + 0.06
0.18+0.06

0 09)
+0.1 7
—0;06

0.22 + 0.11
0.27
0.26

—3.82
—3,72
—3.93
—3.48
—5.61
—6.64

-17.76
—3.96
—1,57
—1.41

[67.116]
[67.116]

67.116

[67.116]
[67.116]
[67.116]

67.111

[67.116]
[67,116]
[67.116]

1.09
1.15

1.16

1.25
4.70
1.60

1.38

1.42
3 09a

1 31a

500 bar
T& TN„

T & TNA

53
40

39

27
44
35

34

25

0.345
0.290

0.678

0.118
0.247
0.267

0.273

0.245

0.28 + 0.07
0.29 + 0.11

0 22}+0.32
—0.20

0.37 + 0.12
0.31 + 0.09
0.30 + 0.14

0 29}—0.28
0.30 + 0.23

—1.19
—1.03
—1.86
—0.23
—0.93
—0.88
—0.89
—0.75

[74.615]
[74.615]
74.618

[74.615]
[74.615]
[74.615]

74.615

[74.615]

0.76
0.58

0.55

0.31
1.60
0.99

1.02

0.76

1000 bar
T& TNA

T& TN„

15
13

1.06
0.224

0.14+0.22

0.26 + 0.58

—2.26
—0.74

[80.442]
[80.442]

0.38
1.35

'Different choice of background (F.' =202 for range 1, 360 for range 2); see text for details.
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(aa), and comparing this with the limiting value of
F(v, v). This procedure yields error bounds several
times larger than the standard parameter errors ob-
tained directly from the least-squares fitting routine.
The rather large bounds at 1000 bar reflect the fact
that this very small C~ peak was close to the limits of
our experimental resolution.

For most of the fits in Table I, TN~ and TN~ have
been fixed at T, the temperature of the C~ max-
imum. These fits are stable to range shrinking and
yield parameters that are roughly consistent with the
scaling requ'irements a = a' and 8 =8'. The largest
discrepancy occurs at 1 atm, where 0,

'
is smaller than

cr and the fit over the full three decades in r (range
1) is very poor for the SmA phase. Deviation plots
show substantial systematic deviations in the SmA

phase at I atm when ~r ~
& 3 x 10 s. It would be

tempting to suggest that this may be a consequence
of the finite T„amplitude; but such an effect is not
seen in the N phase.

One variation of the fitting procedure is to allow

TN~ and TN& to be adjustable parameters in the
least-squares fit with Eq. (12). The resulting critical
parameters are shown in Table I for 1 atm and 500
bar data. (Fits at 1000 bar are unstable when Tr~
and Trrq are free parameters. ) The fit improves only
for the SmA phase at 1 atm, where TN& assumes a
value 4.5 mK below T . Although the SmA devia-
tions are reduced at both ends of the

~
r

~
range, we

believe this fit is artificial since the resulting ex-
ponents clearly violate scaling and the low value
n'=0.09 deviates from the values obtained at high
pressures. The fact that the shifts in TN& and TN&

relative to T are very small and show no systematic
pattern indicates that any two-phase region or first-
order "gap" Trr~-T must be insignificant (&3 rnK).
For all the remaining fits, we will neglect the possibil-
ity of a very weak first-order character and will use
TNA = TN

A second variation of the fitting procedure is to
consider a different choice for the background heat
capacity. This can be accomplished in an equivalent

ACv/R =

r,

(I+0)rl'")+B for» &gg

(14a)
(I+D'lrlt")+B for I'& &N~ .

(14b)

since the inclusion of corrections-to-scaling terms can
have an effect on the 0, values. The results of these
fits, where TN~ = TN& is not constrained to equal T,
are shown in Table II. It is obvious that the correc-
tion terms play an important role only at 1 atm,
where the X2 surface for fits with Eqs. (14) is very
flat and a values ranging from 0.25 to 0.45 would be
as goad as the u = o,

' =0.3 value shown. In addition

way by adding the terms Et to Eq. (12a) and E't to
Eq. (12b). In the nematic phase, the least-squares fit
rejects the addition of such a term in Eq. (12a) at 1

atm and at 500 bar. Indeed, the nematic fits cannot
be significantly improved by any change in the back-
ground. In the smectic phase, a change in back-
ground causes only an insignificant change in a' at
500 bar but a marked change at 1 atm. Significant
improvements in the quality of the fits, and n' values
in accord with scaling, can be achieved at 1 atm by
using E'=300 (see Table I). Although this pro-
cedure is rather ad hoc, it is consistent with the hy-
pothesis that apparent deviations from scaling at 1

atm are due to complications in the SmA behavior
when the N-I transition is close to the N-SmA transi-
tion. In this case, there are large variations of the
nematic order parameter S in the SmA phase near
TN~ that do not occur when TNI-TN~ is large and S is
almost saturated prior to smectic ordering. '

For a better test of the compatibility of our data
with scaling, data above and below TN& were fitted
simultaneously using the constraints a = a' and
B = B'. The temperature range 3 x 10 5 &

~
t

~
& 3

x 10 ' was chosen as being least susceptible to sys-
tematic errors at either very large or very small

~
t

~

yet still large enough to yield a meaningful result. In
addition to the simple power-law form given by Eq.
(12), we have also tested the form

TABLE II. Critical parameters obtained on simultaneously fitting data above and below the N-

SmA transition with the constraints n = a' and 8 =8'. The range of the fits is 3 & 10 s &
~

t
~

&3x10 3.

P(bar) DID' TNA X2

500

1000

2.446
0.656
0,286
0.277
0.409
0.862

1.016
0.925
1.013
0,975
1.015
0.969

0.20+ 0.05
[0.30]

0,29 + 0.10
0.30

0.21 + 0.27
0.17

—6.04
1.50

—0.98
—0.92
—1.18
—2..40

—17.43/ —14.07

—0.83/0. 45

2.40/3. 97

67.119
67.117
74.616
74.615
80.440
80.438

2.09
1.50
0;76
0.77
0.80
0.80
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to the modest improvement in X'„, there are two oth-
er attractive aspects of using Eqs. (14) rather than
Eqs. (12) at 1 atm: the least-squares value of T~~ is
much closer to T, and the o. value agrees better
with the n values at high pressures. One should also
note that the unconstrained values of D and D' come
close to satisfying the universal ratio of unity expect-
ed for correction-to-scaling amplitudes. "

As a final test of the data we wish to determine
how we11 a single exponent o. can describe the data at
all three pressures. A simple power law, Eqs. (12), is

used at high pressures and a form with corrections-
to-scaling terms, Eqs. (14), is used for the 1-atm
data. Table III gives the results of these fits. %hen
all three data sets are considered, it is evident that
the optimum cx lies somewhere in the range
0.20—0.30. For comparative purposes we have in-

cluded a fit with an Ising exponent and one for an
exponent near the XY value. We conclude that the
data at all three pressures are generally consistent
with n = n' =0.25 + 0.05 but are not consistent with
the nearly 1ogarithmic singularity associated with the
XY model; Furthermore the data show no indication
of crossover behavior in the 10 '—3 x 10 ' range ex-
cept perhaps for the ordered phase at 1 atm where
there are complications not yet understood. 2 —O. = &ll+ 2&i (15)

critical point somewhere along the W-SmA transition
line (perhaps at a negative pressure for 8OCB). In
this case an effective n =0.25 might represent cross-
over from tricritical behavior (a =0.50) to asymptot-
ic XYbehavior (a= —0.026). Brisbin er al. proposed
such an interpretation for the behavior of C~ in

9S.5. However, ee see no direct evidence for cross-
over behavior in 8OCB, either on range shrinking the
data at a given pressure or on examining the trend in
o. with increasing pressure. It is, of course, conceiv-
able that there is some complicated crossover se-
quence that eludes observation; but we will make a
case below for considering n =0.25 as a single quasi-
critical exponent.

In the Lubensky-Chen model, crossover is predict-
ed from quasicritical anisotropic to quasicritical iso-
tropic to first order as ~t ~

0. However, numerical
calculations suggest that an extensive range of quasi-
critical anisotropic behavior can exist, and our data
suggest that any eventual crossover to isotropic XY
behavior must occur extremely close to TN&. Thus
we will consider the behavior expected from the an-
isotropic fixed point. The modified version of hyper-
scaling associated with this fixed point

8. Interpretation

One possible interpretation of the n values cited
above is that the data are being influenced by a tri-

provides a link between the heat-capacity exponent
and the critical exponents for the longitudinal and
transverse correlation lengths. Thus a large value of
0. implies that the scattering data should also show

TABLE III. Result of fitting the data at the N-SIA transition at all three pressures with the
same critical exponent a. The range of the data used in these fits is 3 x 10 ' &

~
r

~
& 3 x 10 '.

P (bar) A'/A D/D' TNA X„2

1

500
1000

0.656
0.258
0.145

0.925
1.013
1.023

[0.30]
[0.30]
[0.30]

1.50
—0.89
—0.54

—17.43/ —14.07 67.»7
74.616
80.440

1.51
0.76
0.84

1

500
1000

1.276
0,471
0.262

0.972
1.010
1.018

[0,25]
[0.25]
[0.25]

—2.»
—1.49
—0.86

-5.40/-3. 20 67.118
74.616
80.440

1.57
0.81
0.78

1

500
1000

2.671
0.890
0.487

0.979
1.007
1.021

[0.20]
[0.20]
[0.20]

—6.92
—2.38
—1.33

0.30/1.93 67.118
74.616
80.441

1.63
1.06
0.77

500
1000

11.61
3.34
1.81

1.000
1.008
1.014

[0.11]
[0.»]
[0.11]

-22.78
—5.99
—3.24

2.21/2. 59 67.119
74.617
80.442

1.95
1.93
0.86

1

500
1000

-220.16
-51.52
-27.21

0.9&9
0.998
0.997

[—0.02]
[-0.02]
[—0.02]

191.96
46.06
24.33

-0.574/-0. 581 67.120
74.618
80.444

3.03
4.13
1.23
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TABLE IV. Results of separate fits above and below the N-I transition. TNI and TNI are the "critical" temperatures deter-
mined from the power-law fits. The observed first-order transition temperatures TNOI are 80.24'C at 1 atm and 96.24'C at 500
bar.

P
(bar)

Temp
range

TNI ('C)
(TNI) Xv

T+ TNI

T( TN(

4.5 x 10~
3.8 x 10~

3.1 x10 ~

2.9 x10
2.257
1.739

0.31 + 0.09
0.48 + 0.13

—0.598
—3.24

80.106
80.283

0.40
9.23

500 T+ TNI

T& TNI

5.4 x 10~
5.4 x 1Q

2.0x10 ~

5.3 x 10

0.986

1.715

0 42 +Qe27
—0.18

0.49 + 0,04

—1.35
—2.99

96.039

96.338

.1,14

1.48

deviations from helium (XY) behavior. The general
pattern of light scattering and x-ray scattering results
in three bilayer smectics (8CB, 8OCB, and CBOOA)
is vq & v~~

= vH, . ' Unfortunately, the value of v~~ ls
better determined experimentally, but we are more
interested in vq. The best available values of vq are
0.58+0.04 for SOCB, 0.51+0.04 for 8CB, and
0.62+0.05 for CBOOA, all based on fits over the
range 10 ( ~r ~

( 10 . If we assume a =0.25
+0.05 and use vs= v„,=0.675, Eq. (15) would yield
v~=0.538 +0.025, which is reasonably close to the
experimental values. Further progress will depend on
a detailed development of the theory for parameters
appropriate to the case of 8OCB.

As a final point, one can consider the implications
of the dramatic pressure dependence of ACv(WA ) in

terms of two-scale-factor universality. " By analogy
with isotropic systems, one would expect the quantity
A $~(p(jp to have the same constant value at every
pressure. Since the amplitude A of the critical heat
capacity decreases markedly with pressure, coeffi-
cients of the correlation lengths should increase. It
would be interesting to test the universality of
A f(~Q(J Qb'y carrying out scattering determinations of
pat high pressures. This would be a valuable test in

view of the apparent nonuniversality of A gp3 along
the X line in 4He, where gp is independent of pres-
sure but A decreases as the pressure increases. '

VI. N-I TRANSITION

On the basis of the Landau model of de Gennes"
the 1-I transition is expected to be weakly first or-
der, as observed experimentally. Keyes" has sug-
gested, however, that effective tricritical exponents
should be observed due to the presence of a nearby
tricritical point under an applied field when the aniso-
tropy in either the electric or magnetic susceptibility
of the liquid crystal is negative. A recent experi-
mental study of the gap exponent in p-methoxy

benzylidene p-butylaniline (MBBA) seems to support
this conjecture.

The data shown in Fig. 2 show pronounced pre-
transitional effects in the isotropic phase, which al-

ready demonstrates the inadequacy of a purely
rriean-field description of this transition. To test the
compatibility of the data with quasitricritical behavior,
we have separately fit the data above and below the

Itransition to E-q. (12). A linear background heat
capacity C~(bkgd)/R =a +0.075 T, where a =75.48
at 1 atm and 70.55 at 500 bar was subtracted from
the data to obtain hC~/R. Since the transition is

weakly first order, the constraints 8 =8' and

TNI = TNI were not enforced and the effective critical
temperatures differed from TNI, the observed first-
order temperature (at which C~ is a maximum).

Table IV shows the results of these W-I least-
squares fits. The data in the nematic phase yield fits
which are quite consistent with a' = —, at both 1 atm

and 500 bar. However, the values of X~ are high (re-
lative to those at the W-SmA transition) due to sys-
tematic trends in the deviations over the entire range
of t. The data in the isotropic phase yield fits charac-
terized by extremely broad X„minima, making a de-
finitive determination of n impossible. ' If one car-
ries out fits with n = o.

' fixed at ~, the resulting am-

plitude ratio A'/A is found to be 2.72 at 1 atm and
2.88 at 500 bar. These values are quite different
from the ratio A '/A = 8 observed at the tricritical
point in the 3He-4He system. ~ In view of the A'/A

values and the fact that free fits in the isotropic phase

give a values somewhat lower than —,, quasitricritical

behavior cannot be clearly established from these
heat-capacity data.
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