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Measurements of the acoustic attenuation and the dispersion are reported for two 3He-*He
mixtures, along the critical isochore near the liquid-vapor critical point. At the frequencies of 1,
3, and S MHz used in the experiments, these properties showed no difference from those of
pure 3He or *He. The results are discussed in terms of the two energy dissipation mechanisms,
thermal diffusion and mass diffusion, and the approach suggested by the postulate of Griffiths

and Wheeler for mixtures.

I. INTRODUCTION

This paper is concerned with experiments on the
critical acoustic propagation for two *He-*He mixtures
near their liquid-vapor critical point. Besides the
sound energy dissipation from thermal diffusion (as
in a pure fluid), such mixtures are expected to show
additional energy losses from concentration diffusion.
Therefore we expected an increase in the critical at-
tenuation and dispersion amplitudes over those in the
pure *He and *He fluids. However, our experiments
showed no pronounced difference between the pure
fluids and the mixtures.

In Sec. II, the dissipation mechanisms in mixtures
are discussed. Section III presents the experimental
method and the procedures in calculating the zero
freqnency sound velocity. In Sec. IV, the results are
presented, followed by a short discussion.

II. SHORT REVIEW

Experiments!™ on sound attenuation and disper-
sion near the liquid-vapor critical point have been re-
ported for several pure fluids along the critical iso-
chore, p=p., and have been interpreted in terms of
the theory by Kawasaki,® as extended by Mistura.'
Likewise, the critical acoustic properties have been
measured for liquid mixtures near their consolute
critical point, and Kawasaki’s theory has been applied
to analyze these data.”™®

For pure fluids, the large acoustic attenuation near
the liquid-vapor critical point is caused by a hysteresis
loss from heat diffusion induced by density fluctua-
tions. The effective bulk viscosity of the fluid in-
creases as the characteristic decay rate of the fluctua-
tions, 77!, slows down. The attenuation then reaches
a sharp, finite peak at the critical point. The density
fluctuations are coupled to spontaneous entropy fluc-
tuations, and these determine the characteristic rate

77!, Let us restrict the following discussion to the

hydrodvnamic regime, o < T;l, where w is the sound
frequency and®

x| = XK? (1a)
with

Xx=A/pC, (Ib)
and

A=Ay + Aging - (lc)

Here « is the inverse correlation length, A is the
thermal conductivity, p is the mass density, and C, is
the specific heat per gram at constant pressure. The
subscripts “‘reg’’ and ‘‘sing’’ denote the regular and
singular contributions. In terms of the reduced tem-
perature, t, the quantities of interest have the follow-
ing asymptotic behavior along the critical isochore:

Asing‘x, XI\’ Xy=v ,
(2)

Cyoect™, kat”

where t = (T —T,)/T,, T. being the critical tempera-
ture, and where y = 1.24 and v = 0.63 are the well-
known critical exponents. Hence the characteristic
fluctuation rate has a reduced temperature depen-
dence of 73'=A41"*? + Br’* where 4 and B are con-
stants. Close enough to 7, the second term is the
leading one, and the first one the correction. In the
following discussion, we set for simplicity’s sake
y=2v.

By contrast, in liquid mixtures near the consolute
critical point, the density fluctuations caused by mass
concentration gradients couple more weakly with
sound waves. Therefore, at a given w and ¢, the criti-
cal attenuation and dispersion are considerably small-
er than near the pure fluid liquid-vapor critical point.
Here the analysis of the data® is again based on
Kawasaki’s theory, where now the entropy fluctua-
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tions are replaced by concentration fluctuations with
a rate 75' = D«?, where D = D o + Dy, is the mass
diffusion. Since in a binary liquid mixture'®

Dgng < k, 75" has the same singularity as 7x! in the

pure fluids.

The liquid-vapor binary system combines critical
fluctuations in both entropy (of the same order of
magnitude as in pure fluids) and concentration (as in
binary liquid-liquid mixtures). The critical static
properties of this system have been studied in detail
for 3He-*He mixtures, both experimentally'!~!3 and
theoretically'* and also for other mixtures.!> As can
be deduced from the postulates of Griffiths and
Wheeler,'® several of the static properties at constant
composition X in mixtures have a different critical
behavior from that in a pure fluid. For instance, the
specific heat, C, x, is predicted in the limit 7. —0 to
diverge only weakly.'"* However, experiments'! '3
and theory'* indicate that for + > r*(X) [where
T*(X) is a crossover temperature] the compressibili-
ty, and hence C, x, should diverge strongly just as for
a pure fluid.

Mistura!” predicted the asymptotic behavior of the
transport properties for a fluid multicomponent sys-
tem and obtained

Asing,X kBT

) pCpx 67

K, 3)

Xsing =

where 7 is the bulk viscosity, and where k « ¥ along
the critical isochore. Furthermore the mass diffusion
D was found to be'’

LI EA @)
6mm

o

D=4
dc

p

where A4 is a nonsingular factor, (d¢/du)7p is the
concentration susceptibility which is proportional to
k72, u is the chemical potential difference, and c is
the *He mass concentration, related to the *He mole
fraction X by

c=XM[XM3+ (1 =X)IM,]17" . (%)
Both X and D then have the same form, namely,

X=By’+ (kgT/67m)k , (6a)

D =Bpk*+ (kgT/6mm)k . (6b)

Since n has only a weak singularity (see Ref. 18) it
follows that along the critical isochore, the asymptotic
singularities for t — 0 are

D =Xgpgoc 1 (1—0) . 7N

It is well known that in a binary fluid the dynamic
time-dependent behavior is governed by two coupled
differential diffusion equations'® that give the disper-
sion relation®®

I/q>=+5(Dr+D +[(Dr+D)*—4Dx1"?} .(8a)

Here ¢ is the wave vector,

, (8b)

and

A=A+

du| kiDp
dc ]P,T r (8c)

Mistura!” predicts that the singular part of the ther-
mal diffusion ratio, kr,gpn,, is identically zero and that
kr=kr g k~'. Remembering that (8u/dc )7 p o k2,
it follows that the second term on the right-hand side
of Eq. (8¢c) has the same singular behavior as D.

This second term will become negligible with respect
to Ay = A as T, is approached. Thus A = A, suffi-
ciently close to 7,. Then the two solutions of Eq.
(8a) are given by Egs. (6a) and (6b) and they be-
come identical close enough to 7.

In the hydrodynamic regime, let us assume the
critical acoustic attenuation « to be the sum from the
two dissipation contributions, the thermal and con-
centration fluctuations, respectively. They will be ex-
pressed in terms of the two characteristic frequencies,
wp =2D«k? and wy=2Xk?2, namely,

ap(w) =ay(w, wy) +ap (o, wD)v )

and a similar equation for the dispersion. (For a
pure liquid and a liquid-liquid binary system, the
complete expressions for the critical attenuation and
dispersion are given in Ref. 9, Sec. VIII.) Along the
critical isochore, and in the hydrodynamic regime, we
then expect both contributions, ay and ap, to have
the form

cayp x 0 /wyp « 0 (Cypt™ +EY)! | (10)

which is the same as for pure fluids, and where C
and E are nonsingular factors of 7. At present, there
are no predictions on the magnitudes of the two con-
tributions ay and ap in such mixtures.

We mention here the related light scattering exper-
iments for a 10% mixture of propylene in CO, near
the liquid-vapor critical point.2! While theory?®
predicts that the central Rayleigh line is made up of
two Lorentzians, one due to the concentration diffu-
sion D and one due to thermal diffusion, only one
line was observed, and it was very similar in width
and intensity to that of pure CO,. The authors?! con-

‘cluded that there was only one observable diffusivity

and it was similar to the pure field diffusivity X in
magnitude and temperature dependence.

III. EXPERIMENTAL
Two mixtures with respective composition of
X3=0.82 and 0.45 were investigated. In addition,
control experiments were carried out under the same
conditions with pure *He and *He. The experiments
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FIG. 1. Location of the critical temperature from sound
velocity measurements at | MHz for the mixture X =0.82.

were carried out along the critical isochore over the
temperature range 0 <t <2x 107",

The measurements were done on the same ap-
paratus as described in Ref. 4, using an acoustic
etalon with x-cut quartz transducers, which were 2.54
cm in diameter and separated by 1.33 mm by a con-
voluted spacer. At the fundamental frequency of 1.0
MHz, the sound velocity and attenuation could be
measured right to the critical point. However, at the
harmonic frequencies of 3 and S MHz, the attenua-
tion became so large that the detected signal vanished
close to the critical point. As before,* the critical iso-
chore was determined from the location of the sound
velocity minimum along an isotherm slightly above
T.. The critical temperature, in turn, was located
from the sharp minimum in the sound velocity mea-
sured along the critical isochore, as shown in Fig. 1
for the mixture X =0.82.

The velocity was measured by using a phase com-
parison technique to determine the time of flight of a
sound pulse through the sample, as described previ-
ously.*3 A resolution of approximately 10~3 m/sec
out of 80 m/sec was obtained. However, the repro-
ducibility from one temperature cycling to-another
was about 1072 m/sec. Close to T, or where the re-
ceived amplitude was very small, the reproducibility
became approximately 3 x 1072 m/sec. The effective
acoustic spacing and the electronic delay in the time
of flight were determined both by calibration with
JHe (under identical conditions as in Ref. 5) and by
extending the velocity measurements for each mix-
ture to a temperature well above 7, at a pressure of a
few centimeters of Hg. For the latter case, ideal gas
conditions were expected to hold, so that the veloci-
ty, U, obeys the well-known relation U?=oRT/M,
where o =C,x/C,x, R is the gas constant, and M is
the molar mass of the mixture. In this way, the ab-
solute velocity could be determined within a few per-
cent. It was not possible to find out whether far way
from T, there was a constant background dispersion
between 1 and S MHz, and we have assumed it to be
zero, as in the situation for the pure fluids.

. Ulzhcrm (0)= =

(m/sec)

The attenuation measurements were conducted,
analyzed, and corrected (for acoustical mismatch
between the fluid and the transducer) as described in
Ref. 5. It must be emphasized that our experimental
arrangement (using an etalon with a constant path
length) could determine the temperature-dependent
contribution of the attenuation, «, but not a
temperature-independent background term.

In order to obtain the dispersion
AU =U(w)—U(0) in the absence of any low-
frequency sound velocity measurements for mixtures,
the limiting (or thermodynamic) velocity U jerm(0)
has been calculated from the relation

1 1 T ’
.+.

pZCV,X

i)
or

. (1

v, X

pKsx  pKrx

Here K x and K7y are the adiabatic and isothermal
compressibilities at constant composition and C, y is
the specific heat at constant volume per unit mass.
For the 82 at.% *He, 18 at.% *He mixture (or

X =0.82), the available data on p, K1y,
(dP/8T )y, ,, and C, x from Refs. 10—12 were used.
For the X =0.45 mixture, the thermodynamic data
were scarce, but fortunately an interpolation from
some available K7y results'' for X =0.40 and 0.60
was possible. Also, an examination of (9P/0T )y,
and C, x for pure *He,? the X =0.80 mixture,'’ and
pure “He,?>»?* along their respective critical isochores,
indicates that an almost linear interpolation to the

X =0.45 mixture can be made for these quantities.
Within the experimental uncertainties of the thermo-
dynamic quantities, the calculated U perm(0) was in
very good agreement with U (1 MHz) far away from
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FIG. 2. The sound velocity U(w) at 1 and 3 MHz for
pure 3He, *He, and the two mixtures as a function of re-
duced temperature. The calculated thermodynamic sound
velocities U (0) are shown by solid lines. For 4He, these
calculations are consistent with the data at 20 kHz by Bar-
matz (Ref. 25) (not shown).
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T., where dispersion effects are negligible. The cal-
culated thermodynamic velocities for the two mix-
tures, as well as for pure *He and *He are presented
in Fig. 2. For *He, the calculated velocity differs by
only ~ 0.5 m/sec from the direct measurements by
Barmatz, made at w/27 =20 kHz. For the sake of
internal consistency with the mixtures and He, we
have used in our analysis the calculated U (0) for
“He rather than the data of Barmatz.?* We note that
the increasing uncertainty in the thermodynamic
quantities as T, is approached introduces an uncer-
tainty of approximately +3 m/sec at r =1075.

IV. RESULTS AND DISCUSSION

Tabulations of the measured sound velocities and
acoustic attenuation have been compiled in a separate
report.?6 Here we show in Fig. 2 the sound velocities
for the pure fluids and the two mixtures at 1 and 3
MHz. Measurements for 5 MHz could not be carried
out for + < 1072 because of the large attenuation (see
Fig. 4). Because the dispersion is small above
t =1072, these data are hardly distinguishable from
the 1- and 3-MHz results and are not shown in Fig.
2. The dispersion results at | MHz are shown in Fig.
3. Within the uncertainty in the calculation of U (0)
as t — 0, there are no systematic differences between
the mixtures and the pure fluids. This observation is
also confirmed by the measurements at higher fre-
quencies, where however the reduced temperature
range is smaller than for 1 MHz.

Figure 4 shows the attenuation results at 1, 3, and
S MHz for the X =0.82 mixture, expressed as
a), = al, the attenuation per wavelength. This
representation was used in previous publications.
Finally, Fig. 5 compares the critical attenuation at 1
MHz for the two mixtures and the pure fluids.
Again, no differences are noticeable within the exper-
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FIG. 3. The dispersion at 1 MHz for pure 3He, *He, and
the mixtures as a function of the reduced temperature. )
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FIG. 4. The acoustic attenuation results for X =0.45 at 1,
3, and 5 MHz.

imental uncertainty, and the higher-frequency results
confirm this observation.

The analysis for the attenuation and dispersion for
the pure fluids has been carried out’ according to the
theory of Kawasaki as extended by Mistura. The
consistency with theory in the hydrodynamic regime
and the systematic discrepancies in the high-
frequency regime (w > 27x!) were discussed in detail
and will not be repeated here. The differences
between the results for the two fluids can be easily
attributed to the transport and static properties that
appear in the general expressions for the critical at-
tenuation and dispersion (see Sec. VIII in Ref. 9) and
also to the experimental uncertainties in the determi-
nation of e, and of U(w)— U(0). From our present
results, it appears that the mixtures are also account-
ed for by the Kawasaki-Mistura theory, at least in the
hydrodynamic regime and where the parameters used
(both static and transport properties) are intermediate
between those of the pure fluids. '
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FIG. 5. The acoustic attenuation data at | MHz for pure
3He, “He, and the two mixtures.
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There are two possible explanations for these ob-
servations, neither of which can be proven without a
comprehensive acoustic theory for these mixtures.
Assume the validity of Eq. (9), then the first possibil-
ity is that @y >> «p, namely, the coupling of concen-
tration fluctuations to the sound modes may be much
weaker than that of the thermal fluctuations. The
second possibility is that the respective effects of
these two types of fluctuations cannot be separated
into components such as in Eq. (9) because of their
strong correlation. A different approach would then
be to look at the mixture in the perspective of Grif-
fiths and Wheeler.!® -If we consider the phase di-
agram using the field variables P-T -u instead of the
mixed variables P-T-X (see, for instance, Fig.

4 and 1 of Ref. 13) then we see that the difference
between mixtures and pure fluids vanishes for prop-
erties at constant field variables, such as (8V/9P)7,,
or Cp,, linstead of (3V /3P )rx or Cpxl. The proper-
ties then will be intermediate between those of pure
fluids. One might therefore speculate that acoustic
attenuation, critical light scattering intensity, and
linewidth in mixtures, when expressed in terms of
properties at fixed field variables, will turn out to be
intermediate between those of the pure fluids. In
this approach, there is no formal differentiation
between Dging and Xing, Which are the same according
to Mistura’s prediction. This means that diffusive
motions resulting from fluctuations are strongly cou-
pled. We are inclined to believe that this second pos-
sibility makes more sense than the first one.

V. SUMMARY

We have observed no noteworthy difference in the
critical acoustic attenuation and dispersion (at fre-
quencies of 1, 3, and 5 MHz) between pure *He and
*He, on one hand, and two mixtures (X;=0.82 and
0.45) on the other hand, near their respective liquid-
vapor critical point. Theory shows that in pure fluids
and in liquid binary mixtures near their consolute
point, the order-parameter fluctuation rate is deter-
mined by the thermal diffusivity and the mass dif-
fusivity, respectively. The theories for critical acous-
tic attenuation and dispersion have been formulated
some time ago for these two systems.” However,
there is no such theory for binary mixtures near their
liquid-vapor critical line. Here both types of diffusivi-
ty -(thermal and mass) will become relevant, and
theory predicts that the singular fluctuation decay
rates of these two processes should be very similar.
We have suggested two possible interpretations for
our observations. It is clear that further progress—

‘both experimental and theoretical—on transport

properties in such binary systems near the liquid-
vapor critical point would be very desirable.
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