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The possibility of a p-wave "equal-spin-pairing" superconducting state is predicted in itinerant

ferromagnets. The pairing interaction is mediated by the exchange of longitudinal spin fluctua-

tions, and the resulting state is analogous to the Al phase of superfluid He. We describe the

system in terms of a Hubbard-type exchange interaction constant I and a Stoner enh incement

factor S = (1 —I ) . As I is varied and the ferromagnetic transition is approached from either

the ferromagnetic or paramagnetic side, the p-state transition temperature goes through a max-

irnum and then falls to zero. Rough calculations of the transition temperature indicate that tnis

state should be observable in very clean samples of weak itinerant ferromagnets at currently at-

tainable temperatures. Applications to ZrZn2 and Ni are discussed.

I. INTRODUCTION

The p-wave superconducting transition temperature
for paramagnon-induced pairing in nearly ferromag-
netic systems has been shown to go through a max-
imum and then approach zero as the system becomes
ferromagnetic. ' ' Here one is considering a system
at very low temperature in which the ferromagnetic
transition is brought about by increasing the strength
of the exchange interaction'. The coexistence of p-

wave pairing (or triplet pairing in general) is, howev-

er, not excluded by this result. We show that the ex-
change of longitudinal "paramagons" can lead to an
"equal-spin-pairing" (ESP) state in itinerant fer-
romagnets which is similar to the A1 phase of He in

a magnetic field. As in the paramagnetic case, the p
state T, of this phase exhibits a maximum and falls
to zero as the magnetic transition is approached from
the ferromagnetic side. We should emphasize that
we are considering coexistence in an itinerant system
in which the same electrons (usually d electrons in a

transition metal) are responsible for both the super-
conductivity and the ferromagnetism.

We assume that the relevant magnetic behavior of
the system is adequately described by a RPA-
(random-phase approximation) —mean-field theory in

terms of a Hubbard-type exchange interaction param-
eter I and the Stoner enhancement factor
S = (t —I), the magnetic transition occurring at
I =1. At the very low temperatures appropriate for
p-wave pairing this approach receives support from
the work of Hertz4 who showed that, for a zero tem-
perature nearly ferromagnetic system, the RPA is

qualitatively correct in that the mean-field critical ex-
ponents are obtained. The RPA is presumably also a

reasonable approximation for a weak ferromagnet at

temperatures much less than the Curie temperature.
In the limit of very weak ferromagnetism where
I 1 from above and Tc is thus very small, we

should really go beyond the RPA and at least employ
the corrections due to the coupling among the spin
fluctuations introduced by Moriya. ' However, since
we are primarily interested in obtaining a qualitative
picture of the behavior of the system and an order of
magnitude estimate of T„ the RPA should be suffi-
cient, We have also assumed a spherical Fermi sur-
face.

We consider in this paper only the ESP state where
the pairing is between parallel-spin electrons. In the
paramagnetic phase at T = T„ the three spin com-
ponents of the triplet are equivalent in the absence of
a magnetic field in the sense that all components
yield the same T, . This will be evident from the
RPA calculation. In the ferromagnetic region, on the
other hand, one must consider parallel- and
antiparallel-spin pairing separately. The theory of the
parallel-spin pairing developed here is analogous to
the theory of superfluid 'He in a magnetic field (Al
phase) as discussed by Levin. 6 Triplet antiparallel-

spin pairing cannot however by strictly ruled out. In
this case exchange of spin waves can lead to attrac-
tion. ' However, this pairing and that due to phonons
is reduced by the exchange splitting of the Fermi sur-
face which cuts out a part of the attractive low-

frequency spin-wave and phonon spectra. To mini-

mize this reduction, the electrons must be paired
with a finite total momentum Q. ' As a consequence
the phase-space volume available for the scattering
processes leading to the Cooper pairing is reduced.
The optimum value of Q minimizes both of these
reductions simultaneously. Furthermore, the
nonzero value of the pairing momentum Q generates
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a supercu. rent that must be compensated for by the
total current of the unpaired electrons so that Bloch's
theorem is fulfilled. Fulde and Ferrell' succeeded in

constructing a depaired superconducting ground state
that exhibits zero current assuming a constant BCS
pairing interaction. For the time being we assume
that the transition temperature of a Fulde-Ferrell
state is lower than that of the ESP state we investi-
gate. This assumption probably fails very close to
I =1 where the p wave T, approaches zero. This is

because the. spin-wave energy (and hence T, ) ap-

proaches zero somewhat more slowly than the effec-
tive longitudinal spin-fluctuation energy'. This ques-
tion is rather academic since p-state pairing would

probably only be observable (if at all) near the max-
imum of the T, vs I curve where our assumption
should be valid.

This work was undertaken, in part, due to the
current interest in ZrZn2. Several groups are ap-

parently planning experimental investigations of the
low-temperature properties of this material. ZrZn2 is
one of the few known weak itinerant ferromagnets
and has the interesting property of becoming
paramagnetic at a critical pressure P, of about 8

kbar. ' Varying the external pressure would thus in

principle allow one to effectively vary I through the
point I =1(P =P, ). That p-wave pairing due to the
spin-fluctuation (SF) exchange mechanism' ' might
be observed in the nearly ferromagnetic P & P, re-
gion of ZrZn2 was first pointed out by Leggett" and
later discussed by several authors. ""Our present
work suggests that p-state pairing could also occur in

the weakly ferromagnetic region P- &P, . Indeed, the
maximum of T,' for ZrZn2 seems to lie near zero
external pressure. Since the elements Zr and Zn are
superconductors, the s-wave phonon pairing interac-
tion in ZrZn2 is expected to also be large and attrac-
tive. Thus one might expect s-wave superconductivi-
ty to appear in ZrZn2 at pressures well above P,
where I && 1 and therefore the spin fluctuations
which presumably suppress singlet pairing' are no
longer dominant. Singlet pairing is also suppressed in

the ferromagnetic region by both spin-wave ex-
change' and by the longitudinal SF's considered here
indicating that if superconductivy can coexist at all

with itinerant ferromagnetism, it it would most likely
be of the triplet type. Thus we can speculate on the
progression of states that might be observed in clean
ZrZn2 at very low (probably (0.5 K) temperature as
the pressure is increased from zero to P » P, :
itinerant ferromagnetism, itinerant ferromagnetism
plus p-state pairing, paramagnetic p-wave pairing, and
paramagnetic s-wave pairing.

Since p-state pairing is strongly suppressed by im-
purity scattering (and almost anything else one can
think of), it is not clear that ZrZn2 can be made clean
enough to actually observe the above effects. Thus
we have also investigated the possibility of an ESP
state in Ni which can be made quite clean: In mea-
surements of the de Haas —van Alphen effect, " sin-
gle crystalline samples are used in which the residual
resistance ratio is about 104 with a Dingle scattering
temperature TD & 0.5 K. Unfortunately, the majority
spin band in Ni is probably full which turns out to be
quite detrimental to SF pairing in either band. Not
being deterred by experimental facts, however, we
have used our model to simulate a hypothetical Ni in
which the majority band is not completely filled.
This yields a T,' on the order of 20 mK. While not
directly applicable to Ni, this calculation may still find
application in other interm'ediate strength itinerant
ferromagnetics or possibly in Ni under pressure.

In Sec. II we discuss the paramagnon-mediated pair
interaction in the paramagnetic and ferromagnetic
phases. In Sec. III, T, is calculated in a weak cou-
pling approximation and the results for a model fer-
romagnet are discussed. In Sec. IV application is
made to ZrZn~ and Ni and in Sec. V our results are
briefly summarized.

II. SPIN-FLUCTUATION PAIRING

We assume a one-band, spherical Fermi-surface
model and, since we are primarily interested in deter-
mining whether a p-wave superconducting state can
exist and, if so, at approximately what temperature,
we consider the exact finite temperature gap equation
linearized at T„'

(p, ru„) = T, X X V (p, co„;k, cu )G (k, co, )G, (—k, —co, )A (k, cu, )
k

(2.1)

Here G is the exact single-particle propagator and
I

V ( p, k) is the irreducible interaction for a Cooper
pair with spin (a., a-') scattering from (p, —p) to
(k, —k) and a =—(+1)=—(t, J). Both G and V are to
be evaluated in the nonsuperconducting state at
T = T, and, since T, is expected to be very small, we
calculate V at zero temperature as BCS do. The in-
teraction V contains a phonon contribution. In gen-
eral, that is, when V»,„,„ is not strongly dependent

on p and k, the p-wave component should be much
smaller than the s-wave component", therefore we
neglect it and consider V to be due entirely to spin
fluctuations.

In the next section we will argue that a weak cou-
pling solution of Eq. (2.1) is sufficient for our
present purposes. In this case the quantity of pri-
mary importance for general t-state pairing in the
paramagnetic phase is the Ith angular momentum
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component with respect to the angle between p and
k of the static limit of V with ] p ]

=
~
k

~

= kF. Gen-
eralizing to include both parallel-spin pairing in the
ferromagnetic region and general triplet pairing in the
paramagnetic region we define a BCS-type pairing
parameter A. ~ by

h.
~ L = N ( 0) VI (2.2)

with

Fcr dqo

2kF~ 2k'~

x«V ( I q l, qo =0)
I p I-I k I-k~

. (2.3)

Here N (0) is the density of states at the spin-o Fer-
mi surface, q =

~ q ~

=
~ p

—k ~, and the superscript L
reminds us that this contribution is due to longitudi-
nal spin fluctuations. For triplet pairing in the
paramagnetic phase the spin indices can be dropped
[see Eq. (2.11)].

A. Paramagnetic region

We briefly review the spin-fluctuation theory of the
pairing interaction in a paramagnetic system to pro-
vide some background gnd, to illustrate some of the
new features that appear in itinerant ferromagnets.
We assume that a repulsive Hubbard-type contact in-

teraction I acts between particles of opposite spin.
This model is often employed to simulate the intra-
atomic Coulomb interaction in narrow-band transition
metals. More generally, I should be considered as an
approximation to the exact irreducible particle-hole
4-point interaction vertex.

The RPA susceptibility is obtained by summing the
particle-hole ladder diagrams which yields the well-

known result

where

I =—N(0)l (2.8)

Vtt(p, k) = I ———1 I Xp

2 1 —IXp

I Xp

1+ IX0

I'Xp

1 —IX0 p+k
(2.9)

where we have written the contribution of the bubble
diagrams so that the separation into particle-hole
singlet and triplet is evident.

The parallel-spin interaction Vtt is obtained in a

similar manner by summing bubble diagrams with

odd numbers of bubbles. The ladder diagrams are

The Stoner (Hartree-Fock) criterion for the fer-
romagnetic instability is I 1. For I & 1, the sus-
ceptibility is strongly enhanced for .s»iall q and qp in-

dicating the presence of large spin fluctuations or
"paramagnons. " When calculating properties such as
the effective mass or pairing interaction for such a

nearly ferromagnetic system the contributions involv-
ing iterated particle-hole diagrams must be included.

We consider first the SF-induced pair interaction V

which is shown for an antiparallel-spin pair in Fig. 1.
The bubble and ladder diagrams belong to the two
general classes shown in Fig. 1 of Ref. 2. It is often
useful to classify these diagrams according to their
properties in the particle-hole channel: The ladder
diagrams have momentum transfer p + k in the
particle-hole channel and represent transverse spin
fluctuations, i.e., particle-hole triplets (S, =+ 1).
The bubble diagrams, however, have S, =0 and
momentum transfer p —k in the particle-hole channel
and contain both singlet (density fluctuation) and
triplet (longitudinal spin-fluctuation) contributions.
The diagrams of Fig. 1 are easily summed with the
result

Xo( q, qo1
X q, qo) =

1 IXo(q, qo)

w her'e

Xo(q, qo) =i Jl Go(k+q)Gp(k)
d'k

(2m)4

(2.4)

(2.S)

/s J I(
V

I 'I

Even numbers
of bubbles

is the susceptibility of the noninteracting system, Us-

ing the result

lim lim Xo(q, qo) = N(0) = t71kp/2''
q «Oqp«0

(2.6) i( i

Particle hole

ladders

along with Eq. (2.4) we define the Stoner enhance-
ment factor S:

S —= lim lim [X(q,qo)/Xo(q, ga) ] = (1 —I), (2.7)
q «Oq «0

0

FIG. 1. The spin-fluctuation contribution to the irreduci-
ble, antiparallel-spin, pair inter (ction Vt&( p, k ) for the con-
tact model.
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absent due to the Pauli principle

I Xp I Xp
Vtt(p k) +

2 I+IXp 1 —IX. .. (2.10)

Again the longitudinal spin fluctuations and the den-
sity fluctuations separate. V&~ is obviously a particle-
particle triplet interaction and thus contains only
odd-I partial-wave components. V&~ on the other
hand is a combination of particle-particle singlet and
triplet and all 1 values can contribute. In order to cal-
culate VI from Eq. (2.3) we write Vtt as a function
only of p —k: Consideration of Eq. (2.3) shows that
we may replace p+ k p —k in the last term if we

multiply the corresponding contribution to VI~ by
(—I)'. It is thus easily verified from Eqs. (2.9) and
(2.10) that for triplet pairing

d3k Ow( Ek+q ~) —Oe(Eg ~)x;(q, vp) = J (2m) q p+ &k. ~ &k+q, ~

where 0 is the unit step function and

(2.14)

Brinkman and Engelsberg'7 (hereafter BE) have con-
sidered the RPA equations for a more general
momentum-dependent irreducible particle-hole in-

teraction. In fact, our Vtt is just their ttt [BE Eq.
(2.8)] specialized to a contact interaction. In the gen-
eral case ladder diagrams as well as bubbles can con-
tribute to V&~. We will follow closely the notation of
BE and take over directly a number of their results.

We restrict our attention now to the calculation of
h, ,

L from Eqs. (2.2) and (2.13). For this we require
Xp ( q, (7p) for qp = 0. The kp integration of Eq. (2.5)
yields

Vtt= Vtt(l odd) (2.11) ek =k2/2m ——I(N +N ) + —I(N —N ) —p,

Thus, in the absence of any iong-range magnetic or-
der, T, ' is the same for parallel- and antiparallel-
spin pairs as could have been expected from sym-
metry grounds. One can also easily show that Vl~ is
large and negative (repulsive) for singlet (even-/)
pairing when 5 is large.

(2.15)

is the Hartree-Fock single-particle energy measured
relative to the chemical potential p, and N is the
number of particles with spin a [not to be confused
with the density of states N (0) ]. Evaluation of Eq.
(2.14) for qp=0 leads to

B. Ferromagnetic region
x, (q) —= x;(q, 0) = N (0)u (q),

where

(2.16)

Now we must attach a spin index to the Gp func-
I

tion in Eq. (2.5) and replace Xp Xp where
X) & XP & Xp . The interaction functions corre-
sponding to Eqs. (2.9) and (2.10) are

u (q)= —I+ I—1

2

q' I + q/2kp-
ln

4kF 1 —q/2kF ~

Vtt(p, k) =-I— I'Xp'X(
' I'X"

I —I'XIIX), „ I —Xlptt „„
(2.17)

is the Lindhard function for the a- spin band, and

(2.12)
N (0) =mkF /2rr2 (2.18)

V (p-k)=
1 —I'Xp~Xp~, k, p k

(rr= [ or [)

(2.13)

where we have defined Xp =—Xp . The longitudinal
spin fluctuations and the density fluctuations can no
longer be separated and Eq. (2.11) does not hold. As
we shall see shortly, for I & I (weak ferromagne-
tism), V is strongly peaked for

~ p —k ~ 0 which
leads to an enhanced p-state pairing interaction much
as in the paramagnetic phase. We point out also that,
due to the requirement of spin conservation, ex-
change of spin waves or transverse spin fluctuations
does not contribute to the ESP interaction V . We
also note for future reference that the RPA diagrams
can also be summed if I is allowed to be a function of
the total momentum in the particle-hole channel.

Given the spin-o- Fermi momentum kF, A. l can be
found from Eqs. (2.2), (2.3), (2.13), and
(2.16)—(2.18).

For our application to a model system in which I
can be varied through the magnetic transition, it is
convenient to express kF in terms of I and the Fer-
mi momentum kF of the (perhaps hypothetical)
paramagnetic phase. Demanding that the particle
densities be equal in both phases yields the relation

1

kF =
) (krt + kFI ) (2.19)

kFI krt = 2l (kFI —kF3t )/3kF (2.20)

A second condition is that the energy of a spin-up
electron at the up Fermi surface should equal the en-
ergy of a down-spin electron at the down Fermi sur-
face: tk = Ek . Using Eq. (2.15) with N / V

Fl Fl
= —, (kF' /3rr') and Eq. (2.8) this condition yields
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Although we could solve Eqs. (2.19) and (2.20)
directly for kFt and kF~, it is useful to -introduce the
auxiliary quantities kF and q employed by BE:

kF = kr'(1 —a v)) (2.21)

k'=k (1+3r)') ' '

(1+3' ) = I (1+q /3)'

(2.22)

(2.23)

From Eq. (2.23) one finds that the region 0 ~ r) ~ 1

corresponds to 1 « I « —4'~' = 1.19. For I ~—4'
4

the magnetization is saturated with all electrons in
the majority ( ] ) band. Using Eqs. (2.21) and (2.22)
we can write

kr~ = kr(1 —o.7) )/(1 + 3rtz) ' 3 (2.24)

and q can be expressed in terms of I through Eq.
(2.23). These equations were employed in our nu-
merical computations

C. X&
~ in the weak ferromagnetic limit

The parameter q is a measure of the "strength" of
the ferromagnetism and has the range 0 «q «1,
with q = 1 corresponding to kF t

=0 and all spins
down. In a nearly free-electron gas (or in a nonde-
generate band), weak and strong ferromagnetism can
be roughly defined as q & 0 and q & 1, respectively.
With the help of Eq. (2.21), the equilibrium condi-
tions [Eqs. (2.19) and (2.20)] can be written as

ation analogous to that in the A1 phase of 'He where
the "strong coupling" contributions to X. are indepen-
dent of the magnetic field to leading order in the
field. 6

Expanding Eq. (2.23) we have

I —
1 = —r} ——7) +0 (r}6)2 2 11 4

3 9

Employing this expansion in Eq. (2.28) yields

(2.29)

—I (1 —3r) ——„q )
I 2 I

N (0)V (q)=—
4 (I —1)(1+—v)') +—„Iq

P I
=--I ln(l —1) (I 1)

2
(2.31)

and thus the p-wave pairing interaction diverges loga-
rithmically as the magnetic transition is approached
from the magnetic side.

We note in passing that for st& oi~g ferromagnetism„
1, A~

L vanishes due to the factor N (0)N (0)
~ (1 —q').

(2,30)

which is valid for I 1, q 0, and q 0. We now
insert N (0) V (q) into Eq. (2.3) and observe that,
at the level of approximation in Eq. (2.30), we may
replace q q/kr . With the substitution x = q/2kr,
the integral does not depend on o- and, neglecting the
q' term in Eq. (2.30), we find, for the singular terms
as' 0

We can calculate X~ exactly in the limit of very
weak ferromagnetism, q 0, if we employ the
small-q approximation for Xp (q):

&p(q)=N (0)[1——„(q/kr )'+O(q')] (2.25)

Expanding Eq. (2.24) for small g and inserting the
result in Eqs. (2.18) and (2.25) we have

N (0) = N (0) (1 —rrrt —q'+ rrr)3+ 2r)4 ) (2.26)

and

X (q) =—N(0) [1 —rrr) —rtz+ r13

D. Effective-mass and renormalization effects

In a nearly ferromagnetic system the value of T, is

strongly influenced by single-particle renormalization
effects. "' This is also true for weak itinerant fer-
romagnets. Indeed, the reason that the divergence
of A. ] as I 1 does not lead to a divergence of T,' is

due, roughly speaking, to cancellation with the effec-
tive mass which also diverges. The relevant quantity
for T, is actually the renormalization constant at the
Fermi surface zk = 1/Z (0) defined byF

+ 2~' ——,', q (1+~~)], (2.27)
BX(kF,kp)

Z(0) = 1—
9kp kp 0

(2.32)

N (0)V (q)=—

I [1 —3v) —,') q (1 —2(r7))]

1 —I ll —3rt'+7rt4 —
—,', q [2+O(q')]]

. (2.28)

We neglect the o--dependent term in the numerator
of Eq. (2.28). Numerical computation has justified
this approximation. This has the result that the lead-
ing contribution to A.

~

L does not depend on o-, a situ-

where q =q/kr. From Eqs. (2.8), (2.13), (2.26), and
(2.27) we find where X is the single-particle self-energy. Making

the usual assumption that X is a very slowly varying
function of momentum, one obtains the important
SF relation for a nearly ferromagnetic system

m'/m = Z (0) =1+ &p (2.33)

where we have indicated the connection with the s-

wave pairing interaction parameter. ' Z(0) was calcu-
lated in the paramagnetic region in a one-paramagnon
exchange approximation to X first by Doniach and
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Engelsberg' and subsequently by a number of au-
thors (see Ref. 2 and the references therein) includ-

ing BE who also considered the ferromagnetic phase.
These calculations showed that the one-paramagnon
exchange approximation with a contact interaction
overestimates m'/m and thus presumably also X~.

The simplest extension of this model is to allow the
irreducible particle-hole interaction to have a small
but finite range in position space. The effect of I
becoming now momentum dependent is to weaken
the spin fluctuations thus reducing m "/m and, unfor-
tunately, A.

~
also. This procedure appears to work

fairly well in Pd where a range of about 1.6 A allows

a good fit to several measured quantities. '
We therefore generalize our previous equations for

I
V (q) by making the replacement I 1(q) with

For I l and b =0, the total effective mass is
/

(m'/m ) = —
—, ln(1 —I ) (I I ), (b =0) (2.39)

in agreement with BE.
In our numerical calculation of Z (0) for use in the

T, equation, we have employed Eq. (2.37) for Xr r

and solved Eqs. (2.2), (2.3), and (2.13) exactly for
This is not really consistent since Eq. (2.37) is

based on a small-q, small-q approximation. Due to
the phenomenological nature of the theory and the
fact that experimental effective masses are not yet
available for the systems of interest, a more accurate
evaluation of 30 ~ does not seem worthwhile at
present.

l(q) =l(1+b'q') ' (2.34) III. CALCULATION OF T,'

The Fourier transform of l(q) has Yukawa form
with a range given by b. In the paramagnetic region
the calculation of m'/m proceeds as in Ref. 2 and the
parameters I and b can be determined from the mea-
sured Stoner factor and effective mass. 1n the fer-
romagnetic region we generalize the result of BE to
the case of a momentum dependent I. The effective
mass is now spin dependent and the contributions
from longitudinal and transverse spin fluctuations
must be treated spearately. Equation (2.33) becomes

(m'/m) =Z(0) =I+)"+XII'—= I+a; . (2.35)

The longitudinal part is simply the s-wave component
of Eq. (2.13) calculated from Eqs. (2.2) and (2.3). In
the limit I I, the Legendre polynomial in Eq. (2.3)
can be replaced by (—1)' due to the peaking of V for
small q and we find

We solve Eq. (2.1) with o. = o.' in a "renormalized
weak coupling" approximation in which the frequen-
cy dependence of 4 and V is neglected and the
single-particle propagator has the form

G (k, cu„) =Z(0) '(ice„—eq )

where eq is given by Eq. (2.15) with m m'. This
approximation retains the most important renormali-
zation and effective-mass effects. The frequency
sum in Eq. (2.1) yields

V (p, k) tanh(eq /2ksT~)
5 (k)

(2m)' 2e„' Z(0)'

ko L= —hf L (I I) (2.36) (3.1)

0

I

61 Inq —
(2 37)

I (1 ——v)2) +12b2kF (I —(re)

where we have made use of Eqs. (2.22) and (2.23) in

simplifying BE Eq. (4.13). Here I = (kF/kF) I. For
I 1, we have

(2.38)

We calculate the transverse contribution as in BE
with the exception that we employ Eq. (2.34) expand-
ed to lowest order in q'. Equation (4.13) of BE be-
comes"

where we have defined 5 (p) = 5 (p, 0). Includ-
ing the 2nd term on the right-hand side of Eq. (2.15)
in the chemical potential we can write

ka' 6g +05 (3.2)

where eq =k'/2m' —p, and 8=(l/2)(!VI —Nt). As-
suming that V (p, k) is a function only of the mag-
nitudes of p and k and the angle between them (true
for the SF interaction), we set 6 ( p ) = 5P( p) YP( p )
and expand Eq. (3.1) in spherical harmonics. Con-
verting to an integral over e„' and using Eq. (3.2) we
find

, tanh(e„' /2kaT, )
&P(p) = —

Jl &(a~~ —rr&)d&g, V~ (p, k)b~(k)
2 —v+~~ Z (0)'e' (3.3)

We now parametrize V~ in the manner of BCS:

V( (p, k) = V( 8((o, —icy [)O(co, —is~ i) (3.4)
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with Vi defined by Eq. (2.3). The cutoff cu, simu-
lates in a crude way the fact that V is in reality a
strong function of frequency, being sharply peaked at
small energy transfer for I = 1. For k&T, && c,((p„Eqs. (3.3) and (3.4) lead to

ksT,' =1.14', exp[ —Z(0)'/N( —ag) V, ] . (3.5)

Observing that N ( —a g) = N" (0) —= (m'/m ) N (0),
and using Eq. (2.35) we have

10 Tc/ TF

PARAMAGNETIC =
'

= FERROMAGNETIC

ks T,' = 1.14', exp [—( I + Xo ) /k f ] (3.6)
I I I

0.97 0.98 0.99 1.0
I

I

1.01

I

1.02

I

1.03

o),"'"'=~OEF = [(I —I ) + , g'I ]EF —.(3.7)

For I 1, ~024 (I —1).
With these choices for cu, one sees clearly from Eq.

(3.6) together with Eqs. (2.31), (2.35), and (2.39)
that, as I 1 (in either phase), T,' goes through a

Our "derivation" of Eq. (3.6) is admittedly not
very satisfying for a nearly (or weakly) ferromagnetic
system where the effective interaction and self-energy
are strongly energy dependent. We should really em-

ploy the methods of conventional strong coupling su-
perconductivity" which were first applied to the
paramagnon model by Berk and Schrieffer' for s-

state pairing and later generalized to arbitrary I pair-

ing by Fay and Layzer. "' Extensive numerical cal-
culations have recently been done for p-wave pairing
in the nearly ferromagnetic region by Levin and
Valls. The strong coupling calculations show that, to
a good approximation for small T„ the general form
of Eq. (3.6) is retained but the prefactor 1.14&v, is re-
placed by a factor To (I ) which must be computed
numerically. The approach we follow however is

simply to use Eq. (3.6) as it stands. In the paramag-
netic region we take co, = (I —I )E& which is a rough
measure of the maximum paramagnon energy and in

the ferromagnetic region we use the related quantity

Ko given by BE below their Eq. (4.16):

I.IG. 2. The tr-state superconducting transition ternpera-
ture as a function of the exchange interaction parameter I
with range b =05kF

maximum and then approaches zero due to the van-

ishing of the co, factor. Comparison of our results
with those of Ref. 3 shows that while our choice of
co, is not a very good quantitative approximation to
To (I ) in the paramagnetic region, the qualitative
behavior is correct. Since our numerical values of T,'

in the paramagnetic phase are almost an order of
magnitude smaller than those of Ref. 3, the T,'
values we report for the ferromagnetic region most
likely underestimate the actual transition temperatures
also.

We would like to point out that none of the T, cal-
culations mentioned (strong or weak coupling) have
consistently iricluded vertex corrections'9 "which are
probably important for I = l. In view of this hand the
lack of experimental information about the parame-
ters I and m "/m in real itinerant ferromagnetics, we

believe our weak coupling solution is adequate for
our present purposes.

In our numerical T, calculations we have also in-

cluded a phonon contribution to the effective-mass
enhancement Ap" = 0.35. Not having detailed experi-
mental information, we have used the value appropri-

TABLE I. Properties of the maximum of the T, vs I curve in the paramagnetic region for vari-

.ous values of the range b of the exchange interaction I,

bkF T,' jTF (10~)

0.00
0.25
0.50
0,75
1.00
1.25
1 ~ 50
1.75
2.00

0.989
0.986
0.983
0.986
0.990
0.994
0.997
0.998
0.999

14.40
9.20
5.08
3.53
2.80
2.46
2 ~ 25
2.07
1.99

2.54
1.62
0.87
0.57
0.42
0.33
0.28
0.23
0.20

3.78
4.93
5.21
3.01
1.15
0.35
0.09
0.02
0.005
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TABLE II. Properties of the maximum of T,' in the ferromagnetic region.

bkF

M inority spin ( a. = t )

r,' t/rF (10')

Majority spin (a.= ))

T,'&/Tp(10 )

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2,00

1.002
1.004
1.011
1.018
1.025
1.030
1.040
1.051
1.063

26.5
15.1

6.7
4, 1

3.0
2.4
2. 1

1.9
1.8

4.57
2.66,

1.15
0.67
0.44
0.32
0.24
0.19
0.15

0.90
1.87
4.30
5.19
3.81
1.95
0.75
0.23
0.06

1.0042
1.0065
1.0079
1.0079
1.0042
1.0024
1.0015
1.0011
1.0003

20. 1

1 1.2
5.6
3.6
3.0
2.6
2.3
2. 1

2. 1

3.16
1.83
0.95
0.57
0.46
0.37
0.29
0.24
0.24

0.92
1.82
2 ~ 85
1.92
0.81
0.28
0.08
0.02
0.01

ate for Pd. ' This has the effect of further reducing
our calculated T, .

Typical numerical results for T,' /T~ vs I are
shown in Fig. 2 for a range parameter b = 0.5kF '

which is on the order of 0.5—1.0 A for the systems of
interest. The value of b for a particular physical sys-
tem could be fixed to fit the measured effective
mass. In Tables I and II we give, for various values
of b, some of the properties associated with the maxi-
ma of the T,/Tq vs I curves. As b increases from
zero, the maxima in the paramagnetic region and for
majority-spin pairing in the ferromagnetic region gen-
erally move toward I =1, while the minority spin
maximum moves to larger l. In the paramagnetic re-
gion the largest T,' =—5.2 & 10 'T~ occurs for
b =—0.5k' ' and I =—0.983(S = 60). The largest T,'
in the ferromagnetic region is 5.5 x 10 'T~ at
b =0.75kF ' and I =—1.018 for pairing in the minority
band (o.= t) and 2.8 x 10 'Tq at b =0.5k' ' and
I =—1.008 in the majority band (o = J). Very close
to I =1, curves for both spin bands fall together in

agreement with the analytic results.

IU. APPLICATIONS

A. ZrZn2

As mentioned in the Introduction, increasing the
external pressure on ZrZn2 should effectively de-
crease the parameter l. In order to determine wheth-
er p-state pairing might be observed in the pure fer-
romagnetic phase we need an estimate of I at zero
pressure. This can be obtained from the Curie tem-
perature T~ and the degeneracy temperature T~,
Stoner theory provides the relation I =1+(m'/12)
x(TM/Tq)'. ' Corrections to this result are important
and have been studied for weak ferromagnetics by
Moriya. 5 An approximate expression containing

Moriya's corrections is"

I =—1+10.6(TM/Ti)4I' (4.1)

There is unfortunately some uncertainty about the
parameter T& for ZrZn~. For TM =35 K and TI; =1
eV, '6 Eq. (4.1) yields I = 1.0046 which is very close
to the value given by %ohlfarth. 27 Enz and Mat-
thias" estimate Tr at 0.2 eV from which Eq. (4.1)
gives 1=1.04. From Table II we see that, for rea-
sonable values of b, these numbers correspond to T,
values in the vicinity of the maximum. The actual
value of T, depends on T~ for which estimates range
from 260 K (Ref. 27) to 1.2 && 104 K.'6 Thus, consid-
ering that our weak coupling approximation may
somewhat underestimate T,', values as high as 1 K
might be possible if, and this seems to be a big if,
ZrZn2 can be made extremely pure.

B. Nickel

From an experimental point of view Ni is attractive
because it appears that real single crystals can be
grown which are ultrapure, corresponding to a residu-
al resistance ratio r = 10"—10'." Furthermore, a
great deal of theoretical and experimental effort is
being made to obtain a consistent picture of the one-
electron band structure for the ferromagnetic ground
state. There is now a consensus that the d electrons
in Ni, being responsible for the ferromagnetism, can
be regarded as itinerant electrons, "' Taking into ac-
count both d and s electrons, Wang and Callaway
have recently calculated self-consistently the energy
bands of ferromagnetic Ni. Their results for the
cross sections of the Fermi surface in the (100) and
(110) planes are in good agreement with de
Haas —van Alphen measurements for both the d and
the sp electrons. It is found that the majority spin
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(here ) ) d band is full and that the exchange split-

ting of the d band is not strongly dependent on the
momentum k and has the magnitude hE,„=—0.7 eV.
The calculated magneton number is found to be close
to the experimental value of 0.56. Experimentally,
EE,„and the Stoner gap 8 (the energy separation
between the highest occupied majority spin d band
and the Fermi energy) have recently been obtained
from angle-resolved polarization-dependent pho-
toelectron spectroscopy. ""The experimental values
depend somewhat on the single-crystal surface. For
the (111) surface, EE,„=0.31 eV and 8= 100—250
meV, as compared to the theoretical values of 0.7
and 0.4 eV, respectively. There is a considerable
discrepancy between the theoretical and experimental
values of the two salient parameters of the spin-
polarized band structure, AE,„and 5, and it is not
clear at this time to what extent the discrepancy can
be accounted for by many-body effects.

Despite this difficulty, certain qualitative features
are clear: The majority spin d band is full and the
majority spin sp-d band has a density of states at the
Fermi energy that is —

8
of the total minority spin

density of states at EI:.' Because of the full majority
spin d band, these d electrons cannot be paired and,
since xone is zero in Eq. (2.13), they also cannot parti-
cipate in the pairing between minority spin d elec-
trons. The minority spin d electrons, however, can
still pair due to the spin-fluctuation contribution to
Vtt that involves the excitation of j electrons in the

sp-d band. At EF the density of states of the t elec-
trons in the sp-d band is almost entirely of "d charac-
ter, " as is seen from the orbital decomposition of
Nt(EF). '4 Hence it is reasonable for our purposes to
employ a Ni band-structure model consisting of a 3d
band only (that is, ignoring the sp-d band) which has
a minority and majority spin Fermi surface with the
density-of-states values Nt(Eq) and Nl(EF) given by

Nl 1
~ t t(EF) of Ref. 34, for example. The parabolic

3d band is threefold degenerate; we count in terms
of holes in this band. %e assume that in the
paramagnetic phase the number of 3d holes per Ni
atom is N =N~+Nt =0.6. In the ferromagnetic
phase we take N~ —Nt =0.5, corresponding approxi-
mately to the experimental magneton number. The
exchange sPlitting is given by hE,„=(Nt —Nl)l, rr,

where l,fr= —eV yields the experimental value

b, E,„=0.31 eV. Now the spin-polarization parameter
rlN; is given by Eqs. (2.20) and (2.23). We find
7)N;=0.38, corresponding to (Nt —Nt)/N =0.833 and
I I ffN (EF ) = 1.076. Using these parameter values
and taking TF = 2994 K (corresponding to m' = 9.8mo
and a degeneracy of 3), we get for T,' the values
given in Table III. As a function of the range b of
the interaction I, T, exhibits a maximum which for
the minority spin electrons occurs at b = kF '. The
value T,' = 0.023 K can be easily attained with
present cryogenics but it depends of course rather
sensitively on our model assumptions for the elec-
tronic structure of ferromagnetic nickel. Neverthe-

TABLE III. Numerical results for the effective mass, ~r-wave pairing interaction, and the p-wave
transition temperature for various values of the range b for the value I =1.076 corresponding to
our nickel model.

r~ (~)

0.00
0.00
0.25
0.25
0.50
0.50
0.75
0.75
1.00
1.00
1.25
1.25
1.50
1.50
1.75
1.75
2.00
2.00

t

l
I

1

t
l

l
t

l

13.05
6 ~ 15
9.03
4.39
5.37
2, 84
3.69
2.18
2.86
1.86
2.39
1.70
2. 1 1

1.60
1.92
1.54
1.80
1.50

0.367
0.311
0.384
0.278
0.385
0.210
0.348
0.151
0.298
0. 110
0.250
0.082
0.209
0.063
0.176
0.049
0.149
0.040

x 1P 9

30 x 10 '2

90 x 10 7

2. 1 x 10 8

48 x 10 4

2.8 x10 4

45 xlp 4

8.4 x 10-'
1.8 x 10 4

0.023
1.4 x lp ~

0.024
3 xlp 7

0.014
3

0.006
1 xlp"
0.002

10-14
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less, the results may find application in Ni under am-
bient conditions and under pressure where

.+t (FF)l&t (E,) becomes larger, ' in certain interme-
tallic compounds, or perhaps, with some modifica-
tions, in Co or Fe. These metals do have more com-
plicated Fermi surfaces than Ni but, in contrast to Ni,
the majority spin d bands are only partially filled so
that X)q is not necessarily small and the majority spin
d electrons can make a pertinent SF contribution to
the pairing of minority spin electrons.

V. CONCLUSIONS

We have shown that exchange of longitudinal spin
fluctuations can lead to an ESP p-wave superconduct-
ing state in an itinerant ferromagnet. As possible ex-
perimental candidates we have suggested ZrZn2 and
Ni. Since we have limited our calculation to T = T„
we cannot make any definite predictions concerning
the detailed nature of the proposed condensed state.
We should mention, however, that even in the ab-

sence of an external magnetic field, a Meissner-
Ochsenfeld effect due to the influence of the spon-
taneous magnetization on the orbital motion of the
triplet pair is expected to occur. Ginsburg" has given
a theory of the Meissner effect for a singlet fer-
romagnetic superconductor which includes the com-
bined effect of the internal field due to the magnetic
ordering and an externally applied magnetic field.
His theory also applies to the triplet case. In the limit
of a weak itinerant ferromagnetic the internal field is
small and a bulk condensed state should be possible.
For a stronger itinerant ferromagnetic, such as our Ni
model, the Meissner effect could be rendered harm-
less by using a thin film whose critical field is much
larger than the spontaneous magnetization, For Ni,
this is found to be the case when the film thickness is—so A."

Finally, it does not seem relevant to speak of a
Clogston effect' that could provide an upper limit for
the critical field as occurs in a BCS-singlet supercon-
ductor.
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