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A smectic-3 liquid crystal in three dimensions has been predicted to exhibit algebraic decay of
the layer correlations rather than true long-range order. As a consequence, the smectic Bragg

peaks are expected to be power-law singularities of the form q~~
+'l and q~

+ ~, where ll(s) is

along (perpendicular to) the srnectic density wave vector direction, rather than 5 function peaks.

Observation of these phenomena requires very high instrumental resolution together with a

resolution function with wings which drop off much more rapidly than q~~ (q~~). We show

that these requirements may be met by using a three crystal x-ray spectrometer with multiple-

reflection channel cut crystals as monochromator and analyzer. We find that the smectic-A

Bragg peaks observed in the liquid-crystal octyloxy-cyanobiphenyl are indeed consistent with the

predicted power-law singularity form. Furthermore, the explicit values of q required to describe

the measured profiles are in accordance with calculations of q using the harmonic approximation

with empirically determined splay and layer compressibility elastic constants.

I. INTRODUCTION

It has been known theoretically for some time that
translational order as it occurs in a solid cannot exist
in two dimensions because it is destroyed by thermal-

ly excited fluctuations. " Thus for crystalline solids
d, the lower marginal dimensionality, is two. This is

the spatial dimension at which thermal fluctuations
prevent the establishment of the long-range order
which the interactions between the atoms would
favor. For many systems d is two, and this is one of
the reasons for the intense recent experimental arid
theoretical interest in two-dimensional materials. For
these systems it is predicted that a transition occurs
to a state of quasi-long-range order in which the posi-
tional correlation functions do not extend to infinity,
but decay algebraically as some power of the dis-
tance. ' A similar algebraic decay of correlation func-
tions occurs at an ordinary critical point and in both
cases the power-law decay of correlations is accom-
panied by an infinite susceptibility. For various ex-
perimental reasons, this predicted behavior has not
yet been observed directly in any two-dimensional
system. 4

A closely related phenomenon is predicted to occur
in smectic-A and -C liquid crystals. ' These are

phases of liquid crystals which possess both orienta-
tional long-range order (LRO) of the anisotropic
molecules and translational-order intermediate
between that of a liquid and a solid. Explicitly, in
the A and C phases one has a one-dimensional
mass-density wave in a three-dimensional liquid. The
density wave may be either along (A phase) or at an
angle $ (C phase) to the nematic director. As we
shall discuss below, it may be readily shown that the
positional fluctuations diverge logarithmically at large
distances at all temperatures in exact analogy with 2D
crystals. Thus the smectic-A-to-nematic phase transi-
tion is not only a relatively simple example of melt-
ing, but such liquid crystals also provide a three-
dimensional system in which the effects of divergent
long-wavelength acoustic fluctuations can be studied
experimentally. Ultimately one may hope that study
of smectic phases will lead to better understanding of
melting, a problem which still eludes condensed-
matter physicists.

In this paper we report the results of a high-resolu-
tion x-ray-diffraction study of the density wave in the
smectic-A phase of octyloxy-cyanobiphenyl (8OCB).

The traditional picture of the smectic-A phase
(SmA) is shown in the left part of Fig. 1. The
molecular centers are arranged in layers with a well-
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SMECTIC A: DENSITY
FIG. 1, The smectic-A phase consists of a one-dimen-

sional density wave along the average direction of the
molecular axis. The sinusodial shape of the density wave is

reflected in the diffraction pattern by the absence of higher-
order reflections.

defined layer spacing d but with a liquidlike order
within each layer. The average orientation, n, of the
molecules is perpendicular to the layers in the SmA
phase. If this picture were literally correct, Bragg
scattering of x-rays should occur whenever the differ-
ence between incident and scattered wave vectors
equals a multiple of q0=2n/d, that is

k; —kf=p(2n/d) n with p =1,2. . . . In an
earlier study' we found that very near T, the higher-
order Bragg peaks are absent, or precisely, their in-

tensity is at least a factor of 10 less than the funda-
mental reflection. A more correct description of the
SmA phase is therefore that the. density forms a
sinusoidal ripple as shown in the right-hand part of
Fig. 1, and the dot-dashed lines through the
molecules should not be interpreted as lattice planes
but rather as planes of a certain phase of the density
wave. The question is now whether this ripple has
true long-range order.

Let us briefly recall the arguments of Landau and
Lifshitz' and by Peierls' on this point. The long-
wavelength acoustic modes shown pictorially in Fig. 2
arising from the SmA ordering involve a displace-
ment u of the smectic layers in the z direction, or
more properly gradients in the phase $ = qou of the
density wave. These modes have unusually anisotro-
pic elastic behavior. With the wave vector q along z

(q =q~~z, see upper part of Fig. 2) the displacement u

is longitudinal, and the energy is of the usual elastic
form —,B, u'( q ) with B a compressibility for the

smectic layers. However with q normal to z, the dis-

placement is transverse and the layer separation is
unchanged as is evident from the lower part of Fig.
2; thus, to second order in qq, the displacement re-
quires no elastic energy. The restoring force for
qII =0 then arises because the director field n
remains normal to the layers and thus a director splay
distortion results with an elastic energy density
—K(O n)2, where K is the nematic phase splay elas-

tic constant. Since n is normal to the layers, one has
Sn = —'7qu and an elastic energy 2

Kqqu2(q). Ex-
perimentally one finds that K has the same value in

both the nematic and smectic phases near the SmA-N
transition. ' Since a magnetic field exerts a torque on
the molecules, the complete expression for the elastic
energy density of the SmA elastic modes of wave
vector q is

F, = —,
'

(Bq(f + x, H'qg + Kqg ) u'(q)

where X, is the volume diamagnetic susceptibility an-
isotropy that results -from nematic ordering. We note
that 8 and X,H have the dimensions of energy per
unit length. The characteristic lengths of the smectic
phase are thus the sample dimension L, the density
wavelength 2m/qo, and two additional lengths
h. = (K/B)' ' and g~=(K/X, H')' ' Both h. (the
penetration depth) and gM (the magnetic coherence
length) are relaxation lengths; h. determines the de-
cay of an undulation distortion (pure splay director
distortion) imposed at the surface of a uniform smec-
tic. A surface-imposed director alignment in a
nematic phase will relax to that favored by a magnet-
ic field with a characteristic distance gM, in the
smectic-A phase gM determines the long-wavelength
cutoff of the diverging fluctuations in u.

The mean-squared fluctuations (u2) can be calcu-
lated by applying the equipartition theorem to Etl. (I)
and summing over all wave vectors & qo. One readi-

ly finds

(Bq(( + X H qz +Kqz ) 2wqzdqj

=(4w) '(BK) '2kTln( q,„L/m2) for )~=0

(u ) = (2m) kT dqp-qo ' ~ qmln

(4~)-1k' (BK)-1/2 "(q&2 + $~2)-1/2dq&
qmin

(2a)

=(4rr) '(BK) '/2kTln(2$~q, „) for 0 & gM && L (2b)

The mean-squared displacement thus diverges logarithmically with the smaller of L or fM and, in this model, an
infinite three-dimensional smectic-A liquid crystal in zero field does not have true long-range positional order at
any finite temperature. A similar divergence due to long-wavelength modes makes two-dimensional crystals
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may be expected to fail; however there is as yet no
theory for this region. As can be seen from Eq. (2),
finite sample dimensions or a magnetic field remove
the logarithmic singularity. In principle these will

cause true Bragg scattering as well as the quasielastic
scattering of Eq. (3); however this finite size scatter-
ing will be indistinguishable from Landau-Peierls
scattering if the wave vector of the longest wave fluc-
tuations is much less than the instrumental resolution.

II. EXPERIMENTAL

FIG. 2. {a), (b) The hvo fundamental )ong-wavelength

modes of the smetic-A phase. The energy density is

proportional to q(( for the longitudinal mode but to qj for

the transverse mode.

unstable. We should note, however, that there are a
number' of important differences in the predicted
phase transition behavior of these two systems. For
example, the 2D crystal should exhibit no observable
specific-heat singularity on melting whereas the 3D
smectic-A exhibits a dramatic A, anomaly in its specif-
ic heat at the N-A transition. There is not yet a ful-

ly satisfactory theory for the nematic —smetic-3 tran-
sition. However, in the approach presented by
Halperin and Lubensky' one may define a nonlocal
order parameter which has true LRO in three dimen-
sions in spite of the fact that the positional correla-
tions are expected to decay algebraically with distance
in the smectic-A phase.

The consequences of the divergent real-space posi-
tional fluctuations for x-ray scattering may be calcu-
lated in the harmonic approximation. " The details of
this calculation are given in Appendix A. In this case
the instantaneous correlations exhibit an anisotropic
power-law dependence on molecular separation. On
Fourier transforming for a sample in zero field, one
finds that the x-ray scattering is predicted to follow

Experimentally it is not trivial to distinguish
between the "Landau-Peierls" scattering of Eq. (3)
and a combination of Bragg scattering plus thermal
diffuse scattering from the acoustic modes. The in-
strumental resolution must be very good to distin-
guish between a 8 function (Bragg) and a cusp
(Landau-Peierls). High angular resolution can be ob-
tained by using perfect crystals together with an
essentially monochromatic x-ray line source; only x
rays collimated within a few milliradians wi11 fulfill
the Bragg condition. In an earlier study we used the
(111) reflection from perfect Ge crystals to define
the direction of the incident and scattered x rays. In
this study we did not fully appreciate the extent to
which tails of the resolution function, arising primari-
ly from extinction, "made it impossible to conclude
unambiguously that the tails we observed were
indeed caused by the Landau-Peierls scattering.

The solution to this problem is to use multiple
Bragg reflections in the collimating crystals, since the
resolution after m Bragg reflections is that for a single
reflection raised to the mth power. ' In the present
paper we have investigated the resolution functions
in great detail and are able to prove that the SmA
line profile is consistent with Landau-Peierls scatter-
ing as described by Eq. (3) with essentially no adjust-
able parameters.

The high-resolution experimental setup at Ris is
shown schematically in Fig. 3. The scattering plane is

S(0, O, qo) (Qo —Vo) DETAIL OF M AND A

and

~(qx 0 Vo) (3b)

with

~ = kr(q 2/8 ~) (ave) (3c)

%e should emphasize that in x-ray scattering we
measure the instantaneous correlations so that Eq.
(3) represents quasielastic rather than true elastic
scattering. Analogous results have been obtained for
the two-dimensional harmonic crystal. ' ' Near the
nematic-smectic transition temperature T„Bbe-
comes very small and the harmonic approximation

FIG. 3. Experimental setup using triple-reflection
channel-cut crystals as monochromator (M) and analyzer
(A) crystals. A single-domain smectic-A sample is obtained
by aligning the director by a magnetic field. S& is the slit to
separate Ko.~ from Kcx2 lines; 0 is a two-stage oven holding
the sample; D is a scintillation detector.
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horizontal and the x-ray source has dimensions 0.9
mm wide by 0.6 mm high seen from the monochro-
mator M. The x-ray generator is a rotating-anode
machine operating at 55 kV and 180 mA with a
copper target. A 0.5-mm wide 3-mm high slit S~, 65
cm from the source enables the monochromator to
separate the Ko.~ and Kcxq lines. Because the in-
cident beam is depleted by scattering as it penetrates
the monochromator crystal, only a finite number of
crystal planes contribute to the Bragg scattering.
Thus even a perfect crystal with a monochromatic x-
ray beam will have a finite angular acceptance known
as the Darwin width wD', and the beam incident on
the sample has an angular divergence equal to the
Darwin width. The theoretical value of ~D for the Si
(220) reflections we used is 0.0012'. The direction
of x rays scattered by the sample is similarly deter-
mined by the analyzer A. A two-stage oven located
at 0, 44 cm from the monochromator, contains the
1.5-mm-thick flat 8OCB sample between Be windows;
to obtain a single domain sample a field of 4.8 kG was
supplied by an electromagnet. The analyzer was 36
cm from the sample, and a slit (4 mm wide, 13 mm
high) determined the illuminated area of the scintilla-
tion detector D. The channel-cut crystals used for M
and A are discussed in more detail in an Appendix.
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III. LINE PROFILE OF BRAGG SCATTERING
I

In this section we shall consider in some detail the
Bragg line shape one would have observed if the
SmA phase had true long-range order. As we shall
see one can, by simple scaling of a measured Bragg
profile which in our case originated from a Si(111)
reflection, simulate the Bragg profile of a crystal with

the same planar spacing as 8OCB. Furthermore, we
account in detail for the Si(111) profile from mea-
sured protperties of the monochromator and analyzer
crystals. In the end of the section we compare the
simulated Bragg profile with the actual line profile
from the SmA, and this comparison shows that the
SrnA phase exhibits anomalously intense diffuse
scattering which is consistent with our expectations
based on the harmonic theory but which appears to
be much too strong to be accounted for on the basis
of normal thermal diffuse scattering accompanying a
true Bragg peak.

There are two contributions to the width, or in
general the shape, of a Bragg profile. One is the
Darwin width of the perfect monochromator and
analyzer crystals as already discussed in the previous
section; the other is the spectral width of the Cu Kai
line. In order to discuss the latter effect let us, as il-

lustrated in Fig. 4, consider two wavelengths, X and
A. + 4k, as they are Bragg scattered by the monochro-
mator M, the sample S, and the analyzer A. The
difference in Bragg angles between the two wave-

FIG. 4. The geometry of the dispersive (bottom) and
nondispersive (top) orientation of the monochromator (M)
and analyzer (A) crystals and sample (S). Note that the
dashed lines representing rays with wavelength A, + b, A. will

only be reflected by the anlayzer crystal if either 258~ or
2b, 8~+258~ is less than the Darwin width for the nondisper-
sive and dispersive configurations, respectively. Therefore as
the sample scattering angle 28~ becomes small relative to the
analyzer Bragg angle 28~, the resolution function in the non-

dispersive configuration approaches the direct beam profile.

lengths is lLH = (8 h/X) tan8. We use subscript 1 for
Bragg angles in the identical monochromator and
analyzer crystals, and subscript 2 for the Bragg angle
in the sample. It is important to notice the difference
between the two possible analyzer orientations as il-

lustrated in the top part and in the bottom part of
Fig. 4. In the first case the analyzer must be turned
through the angle 258' counter clockwise in order to
scatter the wavelength A. + AA, , whereas it must be
turned the angle 258~+258i clockwise in the latter
case. Suppose there is no sample. In the top part of
Fig. 4 the analyzer should then not be turned at all in
order to scatter A. + b A. , and scanning the analyzer
would not yield any information about the wave-
length distribution. But in the setting of the bottom
part of Fig. 4 an analyzer scan determines directly the
intrinsic linewidth of the Cu Kcxi line, the angular
width being 2(hit/k) tan8, provided that the width is
.much larger than wa. This orientation of monochro-
mator and analyzer is called the dispersive orienta-
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FIG. 5. Direct beam profile in the dispersive orientation

(open circles) and the profile of a Si(111) reflection in the
nondispersive orientation (filled circles). The solid line is a

guide to the eye. The dashed line is the resolution function
as calculated from the direct beam profiles in the dispersive
and nondispersive orientation.

tion. We have examined the resolution function of
the apparatus by analyzer scans with no sample for
both the dispersive and nondispersive orientations.
With scattering through a finite angle by a sample,
the x-ray linewidth broadens the resolution even for
the nondispersive orientation. From the direct beam
profile with the analyzer in the dispersive orientation
(shown as open circles in Fig. 5) we find a full width
at half maximum (FWHM) 0.015' or 0.262 mrad.
With the Bragg angle 8~ =23.651' we find Ah/A. =3.1

x 10 ' for the Cu Ka~ line. We can then use this
result to calculate the line shape for Bragg scattering
from a sample with nondispersive orientation. For
Si(111),neglecting the finite Darwin width, we
should expect to scale the abscissa by tan8~~~/tan822p
=0.579; we find w =0.00897' FWHM. Since» w~, neglect of the Darwin width was a good
approximation. The predicted Si(111) line (dashed
curve) and the data points (solid circles) agree quite
well. It should be noted that if the sample is a single
crystal with a narrow mosaic spread, the sample must
be rotated along with the analyzer to scan the Bragg
peak. In the nondispersive orientation the ratio of
sample to analyzer rotations is —2 tan82/( tan8~ —tan8q)
= —2.75, the minus sign indicating rotations in opposite
directions.

The direct beam profile for nondispersive orienta-
tions is shown (open circles) in Fig. 6. The FWHM
is not far from the theoretical limit w~ =0.0012'.

ANALYZER BRAGG ANGLE MISSET (8-8~)(deg )

FIG. 6. The calculated and measured line profile of
Si(111) gives by simple scaling a simulation of the 8OCB
profile if the smectic-A phase had true long-range order
(dashed line). This profile is somewhat broader than the
direct beam profile (open circles) due to the linewidth of the
Cu Ko.

~
line. The measured profile from 8OCB (filled cir-

cles) exhibits pronounced wings, and the full line is a least-
squares fit of the theoretical line shape discussed in the text
folded with the experimental resolution.

More important is the very rapid falloff in intensity
as the angular misset exceeds w~. This tailless reso-
lution is the virtue of channel-cut crystals as dis-
cussed in the Appendix. We may calculate the ex-
pected line profile for a true Bragg peak correspond-
ing to qo for 8OCB (which has 82=1.39'). The
result is obtained by scaling the abscissa for the
Si(111) peak of Fig. 5 by tan(1. 39')/tan(14. 221')
=0.096, to obtain the width due to 4A. and then con-
voluting this with the profile determined by scanning
through the forward direction in the nondispersive
orientation; the net result is shown as a dashed line
in Fig. 6. The line profile observed at a reduced tem-
perature t = 1 —T/T, = 9 && 10~ is shown as solid cir-
cles in Fig. 6. We see this differs significantly from
what one would expect for a conventional Bragg
peak, the difference being more than an order of
magnitude at a misset of 0.005' from the peak. We
emphasize that the expected profile for true Bragg
scattering is obtained by direct scaling in angle of ex-
perimental data [for the Si(111) Bragg peak] that is,
with this ultrahigh resolution, normal thermal diffuse
scattering in the silicon is almost undetectable.
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IV. QUANTITATIVE DATA ANALYSIS Io—

In our experiment we measure the convolution of
the scattering S(q) with the spectrometer resolution
function R (q). Thus if the spectrometer is set for
wave-vector transfer q, a variety of scattering
processes in the vicinity of q will be picked up as

S(q ) — S(q') R (q —q') d q' (4)

x +yS( r ) —e ~"
2 2 exp —v]E)

x +y 4zz
!

(6)

with k=(K/8)'/ and r) given by Eq. (3c). The reso-
lution in the vertical (y) direction can be calculated
from the geometry shown in Fig. 3. It is actually
trapezoidal with base full width 20 mrad and peak full
width 11 mrad; we approximate it for ease of calcula-
tion with a Gaussian of the same FWHM
(a'~ =0.22qe, where qe=0. 197 A '). The longitudi-
nal resolution (along q, = q„)~is given by the dashed
line in Fig. 6; it has tails which are very nearly ex-
ponential. We therefore represented it within the ac-
curacy of our measurements by the best fit to the
convolution of a Gaussian with an exponential; the
functional form is g&ven by Table I and the parame-
ters are ~, =2.2 x 10 qo with the momentum-space
decay of the exponential tail being crcr, =1.54o-, .
This resolution function has a FWHM of 0.0014',
only slightly larger than the theoretical Darwin width.
The exponential ~ings of the longitudinal resolution

A conventional deconvolution by direct numerical in-
tegration is quite inefficient because S(q) diverges at
(0, 0,qe). Fortunately we have an explicit theoretical
expression for S( r ), the Fourier transform of S(q ),
rather than for S(q) itself. We may therefore use
the folding theorem to calculate

S(q) =(2m) „dr S(r )F(r)e'q'', (5)

where F(r) is the Fourier transform of R(q) and
the correlation function S( r ) was calculated by
Caille" (see Appendix) as

Xqo

~ ~

~CO ~
~r

lO 2 lo~
I

lO4
Ti Tc

lO6

FIG, 7. Liquid-crystal penetration depth, A. = ( K/B) ', in

the smectic-A phase of 8OCB. As T approaches T, the layer
stiffness constant B approaches zero. The solid line is the
equation Aqo =1.55(1 —T/T, ) ' obtained from a least-
squares fit to a power law. The data are from Ref. 17.

function are an experimental fact which we do not
fully understand. Finally, the transverse in-plane
resolution was determined by the mosaicity of the
liquid-crystal sample, which showed some variation
with temperature. We represented the mosaic distri-
bution by a Gaussian whose width was determined by
a fit to points above 20% peak intensity for sample
rocking curves (qq = q„scans) for each temperature.
The results were: o.„/qe =6.45 x 10, 4.2 &c 10 3, and
4.9 @10 for t =9.0X10, 5.9 &10, and 4 x10
respectively. The reciprocal-space resolution function
is given by R(q) =R~(q„)R2(q~)R3(q, ), and its
real-space transform is F( r ) = F~(x) F2(y) F3(z); all
of these functions are given in Table I. The data
analysis consisted of a nonlinear least-squares fit of
the Fourier transform of F( r ) to the longitudinal
scan data normalized to the peak height. Values of
qll & 0.999qo were not used because of contaminant
scattering from the Ku2 line. S( r ) is determined by
two parameters' . A. and q. Since the penetration
depth has been accurately measured by light scatter-
ing, "we used these results in our data analysis.
The measured value of A.qo for SOCB is shown in
Fig. 7. The fits were therefore carried out with only

TABLE I. The experimental resolution function (values for the parameters are given in the text).

Momentum space Real space

R (q) = R &(q„)R2(q )R3(q, )
R

&
(q„) = exp (—q„ /2 a'„)

R2(q&) =exp( —
q& /2a&)

R3(q, ) = Jexp( —qt2/2o. 2)

x exp( J21q qt I/~~ )dq&
I

F(r ) = F)(x)F2(y) F3(z)
F)(x) =exp( —x a.„/2)
F2(y) =exp( —y a.&/2)

exp (-z2a-,2/2)
F,(z) =

(1+a.2a 2z2/2)
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TABLE II. Exponent q and elastic constant K.

107K (dyne)

9.0x10 4

0.17 + 0.02
8,4 + 1

5.9x10 4

0.23 + 0.02
7.1 + 0.6

4x10 6

0.38 + 0.06
7.7 +2

0
ot 10
~ t= 9x10

0-

F)Z 2
LtJ

z1

1 2 3
1000 (q, i/q0-1)

FIG. 8. Longitudinal line profiles at two reduced tempera-
tures. The dashed line is the experimental resolution as
shown and discussed in Fig. 6, the full line the best fit of the
theoretical line shape (q~~

—qo) +~ folded with the three-
dimensional resolution function using the exponent q and
an overall scale factor as adjustable parameters. As dis-
cussed in the text the values of q so-obtained agree with
those calculated from the empirical values of qo, B, and K.

one adjustable parameter, the exponent q. The
results of the fits are shown in Table II. The uncer-
tainties are those which result in a doubling of X' and
include the effects of experimental errors in A. and
the resolution function. The resulting fits for two
longitudinal scans are shown along with the longitudi-
nal resolution function in Fig. 8.

As a final check in our analysis, we give the elastic
constant K deduced from each value of q in Table II.
It has been established experimentally that K shows
no anomalous behavior near the A-N transition; thus

K should be constant over the narrow temperature
range of our experiments. This is true within the ex-
perimental uncertainties. There are also independent
measurements of K reported in the literature. ' In
these measurements a magnetic field induces a dis-
tortion in a liquid-crystal film (a Freedericks transi-
tion) of thickness I at a threshold field when

$M = I/7r; thus a determination of K requires a
knowledge of X,. Karat and Madhusudana' report
K =1.8 &10 dyne, however they used an anisotropy
in the 8OCB molar susceptibility AXM =118.6 & 10
cm /mole. This figure was obtained by an incorrect
average of the principal values for the biphenyl
molecule. Using known anisotropies' ' for various
elements of the 8OCB molecule we calculate
hXM =44 x 10 cm'/mole. Including errors in EXM
and the nernatic order parameter at the N-A transi-
tion, we find the correct value for K is (6.8+0.7)
x 10 ' dyne. This is in excellent argeement with the

values we obtained in Table II. Substituting our
measured values into Eq. (2a) we obtain (u')'~'=17
A at t =4 X 10 for L =1 cm. In a field of 4.8 kG at
the same temperature we calculate /~ =6 x 10~ cm

0
and (u2)'~'= 14 A; this illustrates rather dramatically
how slow is the logarithmic divergence of Eq. (2).

It should then be possible to use the parameters
obtained from analysis of the longitudinal scans to
calculate the transverse (q„) scans. We find excel-
lent agreement with no adjustable parameters down
to 10% of peak height, but at 1% of peak height the
experimental data are —60% higher than we calcu-
late. This is probably because the wings of the rnosa-
ic distribution fall off less rapidly than a Gaussian
due to defects near the edges of the smectic sample.
These defects (e.g. , edge dislocations) are undoubt-
edly a small fraction of the total volume of the sam-
ple but can contribute to a broader rnosaicity at the
1% level. A Gaussian mosaic spread is an excellent
approximation to the transverse resolution used in
deconvoluting longitudinal scans, but mosaicity must
be very accurately known well below 1% of peak in
order to analyze the transverse scans reliably.

In summary, then, the complete longitudinal pro-
file can be accurately described using Caille's har-
monic theory with essentially no adjustable parame-
ters. Further, the theory gives a good account of the
transverse scans, although there is a slight discrepan-
cy at the 1% level, presumably due to our incomplete
knowledge of the sample mosaic distribution. As ex-
pected, the exponent q which characterizes the alge-
braic decay of the positional correlations increases
markedly as one approaches T,. Although we have
not proven that the Caille theory is unique, we have
certainly proven that it is completely consistent with
all of the data and we believe that this constitutes
convincing evidence that the SmA phase does indeed
exhibit the expected Landau-Peierls lack of true posi-
tional LRO.



22 OBSERVATION OF ALGEBRAIC DECAY OF POSITIONAL. . . 319

V. CONCLUSIONS is evaluated by first integrating over qt~ using

The data of Fig. 6 show that the smectic-A state is
not an infinite stacking of planes with a well-defined
lattice spacing. This is consistent with the theoretical
model of the SmA state as described by the free-
energy density of Eq. (I). Furthermore, the x-ray
line profiles can be evaluated in this model in the
harmonic approximation in terms of independently
determined parameters such as the penetration depth
and the splay elastic constant. With no adjustable
parameters, apart from an overall scale factor, we
find excellent agreement between the theoretical line
shape folded with fhe instrumental resolution and the
experimental data within a temperature range where
the exponent q describing the algebraic decay of
correlations varies by a factor of two. This evidence
for having observed the quasi-long-range order asso-
ciated with divergent long-wavelength acoustic fluc-
tuations could be further substantiated by examining
the profile of higher-order reflections as well as
transverse profiles and further work along these lines
is in progress.
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APPENDIX A: THE CORRELALTION FUNCTION
AND SCATTERING CROSS SECTION

The x-ray-scattering cross section is proportional to
the Fourier transform of the correlation function

%ith q, „=2«z/d = qp and q,„=0 the integral is fur-
ther evaluated as follows.

One inserts the series expansion form of Jp(x)

x2n( 1)n
Jp(x) = X

n 0 2 "n

S( r ) = (exp{iqp[u(r) —u(0)] ))

In the harmonic approximation u(r) is a Gaussian

random variable so S( r ) is given by exp[ ——qp

& ({u(r) —u(0) {')]. Thus we need to evaluate

( 2 qp2 {u(r ) —u(0) {2)

kTqp & [I —cos(q r )]dq
(2«r) B " (q~f +A. qg )

with r = ( p, z).
The integral

, [ 1 —cos(q r )

and integrates term by term. By comparing the result
to the series expansion of the exponential integral

E&(—x) =— e '/t dt~x
oo ( I )nxn

E, (x) = —y —lnx —X n(n!)

(y =Euler'sconst. ), one finds

G( p, z) —e '»
2

e &el(p2/4xz)
4d2

, P

with «I —= qpzkT/(8«rB'a). This expression for
G( p, z) has the asymptotic forms given in Eqs. (3a)
and (3b).
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APPENDIX B: SINGLE FACE
VERSUS CHANNEL-CUT CRYSTALS

In this Appendix we compare for the sake of com-
pleteness single face crystals with channel-cut crys-
tals. The conclusions are by and large in agreement
with those obtained by Bonse and Hart in their
pioneering paper on channel-cut crystals in 1968.

In the left part of Fig. 9 is shown the direct beam
profile in the nondispersive orientation (cf. Fig. 3)
using the backside of the two channel-cut crystals.
%e notice that with the open detector geometry used
in the experiment the direct beam has long tails fall-

ing off as the square of the misset angle, or as q~~
'.

It would therefore not be possible to conclude from
an observed q~~ falloff from an SmA sample whether
it was a resolution effect or a true Landau-Peierls
behavior. The qi~ dependence of the direct beam is
a dynamical-diffraction effect due primarily to the
finite penetration of the x-ray hearn into the perfect
crystals. The more of reciprocal space around the
Bragg point is picked up by the detector, the larger
will the relative weight of the q~~ tails be. Indeed, as
also shown in the left part of Fig. 8, when the verti-
cal resolution is improved by about an order of mag-
nitude by horizontal Soller splits in front of the
detector, the relative weight of the q~~

' component
drops by about an order of magnitude.

However, when the Bragg scattering and the dif-
fuse scattering is tripled in the channel-cut crystals,

~o' —+

CQ

CD

cD 10

DIRECT BEAM PROFILES
2 single-face 2 m=3-
Si (220) crystals channel-cut

(220)

V)

i—10 '—
vertical

detector

pen
rtical
ot
tector-

the Bragg-peak intensity is only diminished to about
50%, but the diffuse q~~

' wings become cubed to q~~
'

wings. Indeed, our experiment confirms this simple
picture'. The log-log plot gives approximately a slope
of —6 for the direct beam profile of the channel-cut
crystals.
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FIG. 9. Direct beam profiles of two Si(220) crystals in

nondispersive orientation, With single reflections (left
panel) tails fal& off as b,8, the tails being more pronounced
with relaxed vertical resolution, whereas with triple reflec-
tions both in the monochromator and the analyzer channel-
cut crystals the tails drop off very rapidly as 58 6.
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