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A Lagrangian formalism is set up within which the vibrational spectrum of any covalently bonded network with

nearest-neighbor central forces can be discussed. The covalent bonds are used as directions that define coordinate

axes at each site. The nonorthogonality and in some cases overcompleteness of the displacements is taken care of in a

simple way within the Lagrangian formulation. It is shown that the vibrational eigenvalues can be obtained from the

corresponding quantities for the connectivity matrix of the network. This allows the spectral limits delineating the

allowed spectral regions to be found, and their dependence on the masses and bond angles is simply exposed.

I. INTRODUCTION

While there is a substantial amount of experi-
mental data' on the vibrational properties of
glasses from infrared absorption and Raman
scattering, the theory is in a much less well-
developed state. The lack of microscopic trans-
lational invariance prevents the vibrational exci-
tations being described by plane waves propagat-
ing from unit cell to unit cell. The principal theo-
retical approaches used to date have involved
either numerical techniques to determine the
modes of the random network" or attempts to
identify molecular fragments that retain their
integrity to some degree in the amorphous solid. 4

An alternative approach was introduced recently
by Sen and Thorpe. ' This involves treating 0&ly
the nearest-neighbor central forces in the net-
work and neglecting other forces such as the
angle-bending forces and the long-range Coulomb
effects. ' These other forces are often much
smaller and there is mounting evidence that most
of the essential qualitative physics is contained
in the nearest-neighbor central forces. Sen and
Thorpe used the position of two delta functions to
interpret the high-frequency modes of AX, glasses
(BeF„GeS„GeSe„SiO„andGeO, ), and consid-
erable insight into the vibrational spectra was ob-
tained. In particular, the spectra of BeF, GeS„
and GeSe, are dominated by molecular effects
whereas solid-state effects are most important
in SiO, and GeO, .

Subsequently, Galeener' has shown that the
central-force model of Sen and Thorpe' gives re-
sults within 5% of those obtained by the large
cluster calculations of Bell, Dean, and Hibbins-
Butler, ' which include. both central and noncen-
tral forces. Galeener' also showed that band-edge
motions derived from the central force model are

able to explain the large highly polarized Raman
line seen in tetrahedral SiO„GeO„and BeF,
glasses. This first explanation of the origin of the
dominant Haman line in tetrahedral glasses has
been discussed mathematically by Martin and Ga-
leener" and it has been suggested that the central
force model also explains the primary Raman and
ir modes seen in vitreous As,Q„As2S3, and

As, Se,." These quantitative and qualitative suc-
cesses of the Sen and Thorpe model for tetrahe-
dral glasses have encouraged us to carry out the
present work. "

In this paper we put the theory of Sen and
Thorpe on a more complete and general theoreti-
cal basis using a Lagrangian formulation. " This
allows extensions to be made to any network and
we derive results for a number of glass struc-
tures. We believe that this approach will be very
useful in interpreting experimental results without
having to do large numerical calculations. Con-
siderable insight is also obtained into the inter-
play between the structure and the vibrational prop-
erties of a glassy network. For example, changes
in the spectrum due to structural changes caused
by pressure or neutron irradiation can be readily
under stood.

The outline of this paper is as follows. In the
next section we set up a general Lagrangian for-
malism for arbitrary networks. It is shown how
the kinetic energy and potential energy can be
written in terms of generalized coordinates for
various local geometries and bonding schemes.
In Sec. III, a number of specific networks are dis-
cussed in detail, and it is shown how the connec-
tivity matrix of the network plays a vital role. De-
tails of the connectivity matrix for various net-
works are given in the Appendix. An important
goal of this work has been to provide sufficiently
general results and detailed examples to enable
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the reader to derive expressions for additional
networks not considered herein. In the concluding
section some brief comments are made about com-
parison with experimental results.

II. LAGRANGIAN FORMULATION OF NETWORK
DYNAMICS

Restricting the problem to involve only nearest-
neighbor central forces leads to great simplifica-
tions. The vibrational frequencies of the network
w can be expressed in terms of the eigenvalues of
the connectivity matrix z, discussed in the Appen-
dix. Even if the detailed shape of the spectrum of
eigenvalues p(q) is not known, the spectral bounds
on q allow us to find spectral bounds for w.

A. Potential energy

It is convenient to refer all displacements to
bond directions rather than introduce an externa, l
coordinate system. The bond directions are de-
scribed by unit vectors q and the amplitude of the
displacement by q as shown in Fig. 1. For the
network we use labels l, l', etc. , to denote the
site and &, ~ ', etc. , to denote the bond so the
unit vectors are q~(l) and the amplitudes of the
displacements are the generalized coordinates
q~(l). The displacements q~(l), q~, (l) are asso-
ciated with the same site, whereas q~(l), q~(l') are
associated with the same bond. It is particularly
simple to write down the potential energy t/ in this
coordinate system:

Iq~(1}+q~(1 '}]'.
&r, r, a&

If there is more than one type of bond, then there
will be more than one force constant n. The angu-
lar brackets below the summation mean that each

A

bond is only counted once.
There are two disadvantages to using the q~(l}

rather than the three orthogonal components nor-
mally used in crystalline lattice dynamics:

(1} The q~(l) are not necessarily orthogonal,
even at a single site l. This is not a serious com-
plication and is easily handled within the I agran-
gian formulation introduced below.

(2) In some cases the q~(l) form an overcom-
plete set. Only three are needed at each site to
describe a vector displacement. If there are four
or more bonds the set is overcomplete. If there
are g bonds then we must introduce (g —3) con-
straints at that site. This is most easily handled
by including an additional term in the potential.

Neither of these disadvantages is sufficient enough
to outweigh the tremendous advantages of not hav-
ing to introduce the rotation matrices that relate
an external coordinate system to the bond direc-
tions at each site in the disordered solid.

B. Kinetic energy

The kinetic energy T is a little more compli-
cated to express in terms of the q~(l) but we de-
rive expressions below for the various site sym-
metries that will be encountered in this paper. We
will consider the three cases that correspond to
two-, three-, and four-coordinated atoms.

L T~o-coordinated atoms

A two-coordinated atom (such as 0 in SiO,) is
shown in Fig. 2, where the mass of the atom is m
and the bond angle -is 0. The transformation be-
tween the orthogonal unit vectors x, y and the non-
orthogonal unit vectors q, and q, that lie along the
two bonds is

x = —,'(q, -q, )/sin-,'8,
ff = -,'(q, + q, )/cos-,' 8.

If the atom is displaced from its equilibrium posi-

A
q,

site 0 q, (0)

FIG. 1. Nonorthogonal two-dimensional coordinate
system used to describe the displacement of a particle

Pa A

at site E to position P. The unit vectors q& and q2
point along the bond directions and the displacement is
characterized by amplitudes q~(E) and q2(l) in these
directions.

A
q2

m

A
X

FIG. 2. Coordinate system used for a two-coordinated
atom. The y axis bisects the angle between the two
bonds denoted by q~ and q2, and the x axis is perpen-
dicular to the y axis.
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x = -', (q, -q, )/sin28,

y & (q4+ q2)/COSz 8.

The kinetic energy T can now be written as

T=zm(x +y +z )

(2.3)

(2.4)

tion to P, then the displacement is P which may
either be regarded as P(x, y) or P(q„q,). These
amplitudes transform in the same way as the unit
vectors so that qi = x slOG —z COSA,

q, = —x —,
' sina+ y(v 3/2) sinn —z coso,

q, = -x& sinn —y(W3/2) sino. —z coso. .
(2.8)

The kinetic energy is given by (2.4). Inverting
(2.8), this kinetic energy becomes

T = ,' m [a '—(q',+ q,'+ q', ) + b '(q, + q, + q, )'], (2.9)

The amplitudes transform in the same way as the
unit vectors so that

,'m[a-(q', + q,')+ q', + b(q, + q,)'], (2.6) where
where

a=(1 —cos8) ',
a+ 2b = (1+ cos8) ',

(2.6)

and the third generalized coordinate q, = z. With
nearest-neighbor central forces, the potential will
be independent of q, . This is usually referred to
as a redundant coordinate, as it leads to a zero-
frequency excitation. We shall omit it in the ex-
amples in this paper. The dot denotes time dif-
ferentiation.

2. Three-coordinated atoms

q, = x sine —z cosa,

q, = -x-,' sino. + y(v3 /2) sina —z cosn,

q3 = -x z sin& —y(V 3/2) Slnot —Z cos(X .
(2.7)

A three-coordinated atom (such as As in As, O, )
is shown in Fig. 3 where the mass of the atom is
m and the angle between any two of the bonds is 8.
The three vectors q] q2 and q3 span the space.
The x, y, z axes are set up as shown in Fig. 3 where
the x axis is the projection of the q, axis onto the
plane perpendicular to z. The angle made by z
with either q„q„or q, is e so that 3sin'n
= 4 sin' —,'9. The transformation equations are

a'=(1-'cos8) ',
a'+ 3b'= (1+2 cos8) '. (2.10)

qi+ q2+ q3 = 0 (2.11)

that must be built into the Lagrangian. To get a
complete form for the kinetic energy, (2.4) in this
case, a fourth coordinate axis q4 must be intro-
duced that is perpendicular to the plane defined by
q„q„and q, . This gives an additional contribu-
tion to T which is &mq,'.

3. Four-coordinated atoms

A four-coordinated atom (such as Si in SiO, ) is
shown in Fig. 4 where the mass is m and the four
bonds are' assumed to be perfectly tetrahedral.
The kinetic energy (2.4) can be expressed in terms
of q„q„and q3, only using the result for thxee-
coordinated atoms with 8 = cos '(--,'), i.e. ,

T = ,'m [4 (q,'+ q', + q',—)+ 4 (q, + q, + q, )'] . (2.12)

Introducing the fourth coordinate axis q4, this can

A special case occurs when 8= 120 and the three
bonds become coplanar. In this case a' = —, and b'
is irrelevant and can be set equal to zero, as there
is the constraint

A
q„

FIG. 3. Coordinate system used for a three-coor-
dinated atom. The z axis is symmetrically positioned

A A A A ~with respect to q~, q2, and q3. The xis the projection
of the q& axis onto the plane perpendicular to z, and y
completes the right-handed set x, y, g.

A

FIG. 4. Coordinate system used for a four-coordin-
A A A A

ated atom, where the four bonds qq, q2, qs, and q4 form
a perfect tetrahedron.
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be rewritten as

T = -', m (q', + q', + q', + q,'),
with the constraint

qi+ q2+ q3+ V4
= 0

(2.13)

(2.14)

that must be built into the Lagrangian. These
three cases cover all the forms for the kinetic
energy that we will need in this paper.

BL 8I
(2.15)

where q, , q,. are regarded as independent variables.
This generates a set of linear equations for the
network whose solution for particular networks is
discussed in the following sections.

If the set of q,. is overcomplete, account must be
taken of the linear constraints [e.g. , see Eqs.
(2.11) and (2.14)] in constructing the Lagrangian
or the equations of motion. The most convenient
and physical way is to add a term to the potential
which for the constraints (2.11) and (2.14) would
look like

(2.17)

C. Equations of motion

The complete Lagrangian L is defined by"'

L([q;, q;]) = &([q;])—&([q;)), (2.15)

where the curly brackets [ ~ ) denote the whole
set of q, , q, , etc. , over all i. The equations of
motion are

bonds. Keeping a single bond length fixed is one
constraint. If the network has N~ bonds, where a
bond is defined by having two sites connected by a
central force, then there are N~ independent con-
straints and the following are true:

(i) The number of zero-frequency modes=3N, N, ,—
(ii) The number of finite-frequency modes =N, .

(2.19)

Of course (2.19) is only applicable if 3N, )N~. This
is always the case in the covalent networks con-
sidered in this paper. It would not be so in an
elemental network where each atom has more
than six nearest neighbors connected by central
forces. In this case there would be no zero-fre-
quency modes (except of cburse for the three
acoustic modes that correspond to rigid lateral
displacements). Equation (2.19) is an important
result and provides a useful check that one has
found all the finite-frequency modes whose total
should be N~.

Another useful check on the work in this paper
is sometimes provided by a knowledge of the trace
of the dynamical matrix. For a system with cen-.
tral forces (not necessarily nearest neighbors),
a, , connecting sites i and j with mass M, , M, , it
can easily be shown that

(2.20)

This trace is just the sum of the frequencies of
isolated diatomic molecules with masses M,. and

M, at either end of springs n,.~.

For finite X, there are extra degrees of freedom.
However, as X-~, some of the frequencies be-
come infinite, and the remaining finite frequencies
are consistent with the constraints

g q~(l) =0 for all l . (2.18)

We have found the Lagrangian formulation of net-
work dynamics to be both necessary and easy to
use, as demonstrated in the next section for va-
rious networks.

D. Mode counting

Because our model contains only nearest-neigh-
bor central forces, there are some zero-frequency
modes. These arise because the network can be
distorted in such a way that all the bond lengths
are unchanged. There is no restoring force
associated with this kind of motion. If the net-
work has N, sites, there are 3N, degrees of
freedom. The sites need not be equivalent and
can have different numbers of nearest-neighbor

III. APPLICATION TO SPECIFIC NETVfORKS

In this section we apply the general ideas de-
scribed in Sec. II to particular types of networks.

—-', x Q(Qq (l)), (3 1)

where X is a Lagrange multiplier that will tend to
infinity eventually. This'takes care of the con-
straint at each site l:

(3.2)

A. Silicon networks

Amorphous Si (or Ge) is perhaps the simplest
and best studied continuous random network. Each
atom is assumed to be perfectly tetrahedrally
coordinated as shown in Fig. 4. From Eqs. (2.1),
(2.13), (2.14), and (2.17) the Lagrangian L may
be written as

L= —,'~ Q [q (l)]' ——,
' n Q [q (l)+q (l')]'
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The equation of motion (2.16}for q~(l) is

—,'Mq~(l)+ o.[q~(l)+q~(l')]+ XQ q~(l) =0, (3.3a)

where it is implied in (3.3) that f is a nearest
neighbor of l associated with the same bond A.
We look for normal modes where q~(l) has a time
dependence exp(i&et) so that (3.3a) becomes

(n —-', M(o')q, (l)+ o.q~(l')+ ZQ(l) =0,
where

(3.3b)

Q(f) = Q q, (~) (3.4)

is the "s"-like part of the displacement. The
Q(l) becomes zero as X-~.

A similar equation to (3.3b) can be written for
q~(l'), which is then eliminated between the two
equations to give

(a ——,
' M u)')q~(t) —o.'q ~(l) + X(n ——,

' M (u') Q(l)

= Xo Q(l') . (3.5)

Summing over all f ' (which is one of the four
neighbors of l) we have an equation involving only

(f):

This can be rewritten as

P Q(&') =.Q(t),

with

e = (1/&n)'I(n —~ M m ) + 4X(n —4 M ~ ) —n2].

(3.8)

Equation (3.7) will be recognized as just the
eigenvalue equation for the connectivity matrix
(A2b) discussed in the Appendix. Consequently, a
knowledge of the eigenvalues of the connectivity
matrix q leads to the eigenfrequencies of the vi-
brational problem via Eq. (3.8). Finally we let
X-~ and drive off to infinite frequency the un-
wanted modes associated with the extra degrees
of freedom and from (3.8) we find

M&@'= —,
' n(4 —q), (3.9)

a result previously found by Weaire and Alben. '4

Using (A3b), we see that 0 ~ uP ~ 8n/3M.
The connectivity matrix has 1 state per site. If

the Si network has N sites, then (3.9) leads to N
eigenfrequencies (O'. However the general result
(2.19) shows that there should be 2N finite frequen-
cies. The other modes do not have an "s"-like

(o. ——,'M (o')Q(l) —o.'Q(l}+ 4X(o. ——,'M (u'}Q(l}

= XnQ Q(l') . (3.6)

component, even for finite X. They are not con-
tained within Eq. (3.6) but are included in (3.3b).
Putting uP equal to its maximum value in (3.9)
(8o./3M) Eq. (3.3b) becomes

oq~(l) = nq~(l')+ XQ(l) . (3.3c)

This can be satisfied if q~(l) —q~(l') = 0 for every
bond b. (remembering that l, t' are sites at either
end of the bond b.). There is thus one independent
choice of q~(l) for each bond or 2N in all. How. —

ever to satisfy (3.3c) we must ensure that Q(l) =0
for every site t. This leads to N constraints so
that there are 2N —N=1V modes at w =8o./3M.
Similarly, there are N modes at &'=0, where
(3.3b) becomes

-nq~(l) = o.q~(l')+ XQ(l) (3.3d)

B. GaAs networks

The results of Sec. IIIA can be rather easily
generalized to an AB network like GaAs where
every A-type atom is surrounded by four B-type
atoms and every B-type atom is surrounded by
four A-type atoms. This means that the network
must contain only even rings or nearest-neighbor
bonds. Such networks have been constructed and
studied. '

The Lagrangian is identical to (3.1) except that
the mass M is replaced by%„or M~, as appro-
priate. This carries through to Eq. (3.3b) where
M is replaced by M„or M ~ depending on whether
l is an A- or B-type site, respectively:

and we put q~(l)+q~(l'}=0 for each bond &. This
is in accord with the general result (2.19) and
thus we have found all. the modes. The modes at
co'=0 may be regarded as transverse acoustic and
those at &u' = 8n/3M as transverse optic, although
this nomenclature only has real meaning in a
crystalline solid.

The density of vibrational states in Ge is dis-
cussed with the aid of Fig. 5. Panel (a) is for
nearest-neighbor central forces only, "while (b)
also includes nearest-neighbor noncentral forces, "
which broaden the delta functions in (a). Panel (c)
again shows the central plus noncentral force re-
sult, replotted for comparison with the, experi-
mentally determined density of states" of crystal-
line Ge, given in panel (d). Comparison of panels
(a) and (d) shows that the central-force model
predicts the main features in the density of states
(i.e. , the four main peaks). Comparison of panels
(a) and (b) reveals that the transverse acoustic
and optic peaks in (b) have their origin in the delta
functions oi' (a). Delta functions appear in the den
sity of states for all networks when only nearest-
neighbor central forces are included.
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q„= (3M~(o' —4n}n ',
g~=(3M„(o' —4o.)n ',
q'=0,

(3.11)

(3M „&u' —4n)(3M ~+2 —4n) = q'n2, (3.12)

i.e.,

so that Eq. (A "la) (which relates to the eigenvalues
of the connectivity matrix) becomes

+ ~ 3J 13

{c)

3

(h
LLJI-
I-
M

0

(d)

(n ——,'M„ar')q~(l)+ oq~(l')+ XQ(l) = 0,

(o. ——,'M ~(o')q~(l)+ nq ~(l')+ XQ(l) = 0.
(3.3e)

Equation (3.6) for an A site becomes

(n —,' M „(o')(n ——', M —~uF)Q(l)—n'Q(l)

+ 4y(n ——,'M, uP)Q(l) =an g Q(l') (3.10)

and a similar equation at a B site. As X-~ these
equations correspond to (A6) with

FIG. 5. Density of vibrational states for Ge. The
horizontal scales for' (a) and (b) are frequency zqu~ed,
while those for (c) and (d) are linear in frequency &.
Panel (a) is for a central force model (Ref. 14) [see Eq.
(3.9) in the text], while (b) also includes nearest-
neighbor noncentral forces (Ref. 15). It can be seen
that the delta functions become the TA and TO peaks
and the two peaks in the band in (a) are squeezed to-
gether to become the-LA and LO peaks. (c) is the same
as (b) but plotted against co, and (d) is the experimen-
tally determined vibrational density of states for crys-
talline Ge (Ref. 16).

This is the required generalization of (3.9} when

M„and M~ are not equal. With z„=z~=4, we have
from (A4a) that 0 (q' & 16. The outer band edges
(corresponding to &' = 16) also have delta functions
with weight N (where there are & N AB units in the
network) associated with them and occur at

ur'=0 and 3~ o.(1/M„+1/Mz). (3.14)

The inner band edges, caused by the mass dif-
ference, occur at

ur'=4m/3M„and 4n/3M~. (3.16)

There are no delta functions associated with the
inner band edges. Comparison with the Si result
shows that the mass difference splits the band
into two bands each with weight & N. This has
been discussed previously by Thorpe" for a more
general force constant model.

C. ABX4 networks

An interesting generalization of the AB tetrahe-
dral network is obtained by inserting a 2-con-
nected X atom between each AB pair, producing
what is here referred to as an ABX4 network. We
treat the special case where all X-'A-X and X-B-X
angles are tetrahedral and all A-X-B angles have
the common value 8. This network is pictured
schematically in Fig. 6. (Note that the X Bdis--
tance does not necessarily equal the X-A dis-
tance. ) To our knowledge, no glass has been shown

to have this structure, but there are several for
which it may be an appropriate idealized model,
including SiGe04, GaAs04, and other amorphous
III-V oxides. In the special case A =B, this net-
work corresponds to the tetrahedral 4-2 glasses
such as SiO„GeO,

&
BeF„etc.

To simplify notation, we use the q~(l) for the
A and B atoms but x~(l} for the X atoms. Using
the results of Sec. II for two- and four-coordi-
nated atoms, the Lagrangian for the whole system
ls
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2 2I =' ZM rlq~(1)]'+-' Q Q [,(l)]'+b Q, (1) ——.'Q, [q,(i)+,(1')]' —,'y g g q (l)
l~6 l (l, l', Q)

(3.16)

where M, =M „orM B and n, = nA or n as appro-
priate. The X term is introduced as in Sec. IIIA
because the q~(l) form an overcomplete set at each
site. The coefficients a and b are given by (2.6).
The equations of motion for q~(l) and x~(l') are

—,'M, q„(l)+ n, [q~(l)+x~(l')]+ X Q q~(l) =0

(3.17)

q„= (3M (o' —4o.'~s)(n') ',
ps=(3M„uP —4o'„)(n') ', (3.22)

I

and l =A or B as appropriate. The Eqs. +.19)
through (3.21) are very similar in structure to Eq.
(3.3e) except that a single force constant a ap-
pears in (3.3e), whereas three frequency-dependent
force constants appear in (3.19). This leads to a.

simple generalization of Eqs. (3.11) to give

and

l +& xz I +~) x~ l +q~ l =0.

q'=0.
Equation (A7a), which relates to the eigenvalues
of the connectivity matrix, becomes

(3.18) (3M „(u' —4o.'„)(3i'Vl s(u' —4d~s) = (o 'q)'. (3.23)

(n~ ——', M,~')q~(l) + n 'q~(l ') + XQ(l) =0,

where

CY = -IPl QPCVAGB COS6

(3.19)

&& [(m(u')' —(n„+ ns)m(o'+ n„as sin'8] '

(3.20)

n, [o,mco' —a„os sin'8]
n~r= Q. s+

[(m (o')' —(n„+ o.~)m(o'+ n„n ~ sin'8]

(3.21)

Putting in the exp(ivt) time dependence of the

q~(l) and x~(l) and eliminating the x~(l) from Eqs.
(3.17) and (3.18), we obtain

Putting in the explicit frequency dependence of
o.~ n~~, and a [Eqs. (3.20) and (3.21)], this leads
to a fourth-order polynomial for ~2,

a(S = (mo. „o.~g cos8)',
where

tt = 4mn„(mar' —n~)
-3M „[(m(o')' —(o.„+o.~)m(u'+ a„n~ sin'8],

(3.24)
di = 4 m o.~(m(o' —ns)

-3M ~[(m(u')' —(n„+ ns)m(o'+ n„o.~ sin'8],
which allows the vibrational frequencies co' to be
determined from the eigenvalues q of the connec-
tivity matrix. Every value of q' leads to four
frequencies &o, or (a better way of looking at it)
every value of & leads to two values of co. Be-
cause the structure of ABX4 has only even rings
of bonds in the skeleton AB network, the eigen-
value spectrum of the connectivity matrix is sym-
metric about & = 0, and for every eigenvalue + &

there is a corresponding one -q. In effect we have
eliminated the twofold bonds and related the eigen-
frequencies of the ABX4 network to those of the
connectivity matrix of the skeleton AB network.
This can always be done with atoms that are two-
fold coordinated. It cannot be done for higher
coordination numbers.

The quartic equation (3.24) must be solved
numerically in general. However, simple expres-
sions can be obtained for the frequencies of the
band edges. Noting that 0 (q'(16, we put q'= 16
in (3.24) to obtain

FIG. 6. Schematic drawing showing a piece of an
ABX4 network. The A and B atoms are tetrahedrally
coordinated, and all the A-X-B bond angles are e.

I A%2 A B &A —+B +AH COS 8
2m 2m m2

4e

(3.25)
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(~+)2 nA B + nA + nB
2m 3 M~ MB

e& —nB 2 a& &B t &&nB cos 8

2m 3 M„Ms) m~

(3.26)

By using arguments similar to those used for Si it
can be shown that there are delta functions with
weight N at ~; (where there are 2N ABX, units in
the network). The other four band edges, caused
by the difference between the A and B atoms, occur
when p = 0 and are given by

( +)2 A+ B + A

+3M„

(Q~ —AB 2&g QgQB cos 82 a -x/a
i + +

3M~ m'

(3.27)

(
.)~ n~+ns 2 na
4 2m 3 MB

A &B 2QB t~ Q&QB cos 8

(3.28)

These band edges are shown in Fig. 7(c) for the
kyPothetieal case of GeSi04. In. this figure,
n(Ge-O)=431 Njm and n(Si —0) =545 N/m, values
deduced from a central force analysis of data on

GeO, and SiO, glasses, respectively. ' The band

edges for the latter AX, tetrahedral glasses are
shown in Figs. V(a) and 7(b).

For the special case when M =M„=MB and

n = n„= ne, Eqs. (3.25) through (3.28) reduce to

(3.30)

those for AX, glasses derived by Sen and Thorpe'
(where there is an extensive discussion of the be-
havior of the modes as a function of 8). Figure
V(c) shows that extra splittings appear in the ABX,
bands due to the A, B mass difference. Also as 6
= 90, the network decouples into the molecular
modes of AX4 tetrahedra at

Q~ 4(y~
and + (3.29)

m m 3M„
and molecular modes of the BX4 tetrahedra at

and — ——+~B nB 4mB
m m 3M

In e'ach case, the first mode is the high-frequency
singlet and the second mode the high-frequency
triplet of the tetrahedral molecule as discussed in
Sen and Thorpe. There is weight —,'N in each of
the four bands to give a total weight of 4N including
the delta functions. The other 5N modes are at
zero frequency.

The bands for GeSi04 are perhaps surprisingly
narrow when compared to GeO, and SiO, in Fig. 7.
This is because it is difficult for the modes cen-
tered on one Ge to hybridize with those centered
on another, the inter vening Si having modes at
quite different frequencies. A similar argument
holds for modes primarily associated with the Si
atoms. This "shielding" effect is particularly
apparent in the very narrow band at the highest
frequencies in Fig. 7(c). This effect will be less
pronounced if the Ge and Si atoms take up random
(rather than alternating) positions in the network.
Nevertheless, at sufficiently low concentrations
of Si substituted into a GeO, network, the highest-
frequency band should be very narrow as would be
expected for a local mode.

—0.2
co —Q.4
o —0.6

-0.8
—1.0

—0.2
—Q.4

0 —0.6
—0.8
-1.0

—0.4
CO —0.6

—0.8
—1.0

Ge02

90
- 100
—110
- 120
—130- 140
= 180

90
100
110
120
130
140

180

90
— 100
—110
—120
—130- 140

180

FIG. 7. The allowed frequency bands for GeO&, SiO&,
and GeSi04 as discussed in the text. The band edges
shown by heavier lines have delta functions associated
with them as discussed in the text.

D. A3B4 (Ge3As4) networks

In Sec. IIIA we worked with tetrahedrally four-
coordinated atoms, such as Si, and in Sec. III C we
added two-coordinated atoms, such as O. In the
present section we introduce trigonally three-coor-
dinated atoms, typified, e.g. , by As. In particular
we treat an idealized A,B4 network in which each
A atom is tetrahedrally coordinated to four B
atoms, while each B atom is trigonally coordinated
to three A atoms. This local order is depicted
schematically in Fig. 8, where all A-X-A angles
have the same value 6. In general, 0 & 9 & 120'.
%e alternatively call this the Ge3As4 network,
since it may provide an idealized model for a
glassy form of Ge3As4.

For notation, we use q~(l) for the A atoms (Ge)
and x~(l) for the B atoms (As). Using the results
of Sec. II for three- and four-coordinated atoms,
the Lagrangian for the whole system is
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I. =-', M Q [q~(E)]'+ —,'m Q a" Q [x~(E))'+O' Qx~(E) —2 n Q [q~(E)+x~(E')]'
E, h. l (l, l', 6)

(3.31)

where M is the mass of the A atom and m the mass
of the B atom. The A. term is introduced, as in
Sec. IIIA, because the q~(E) form an overcomplete
set at. each site. The coefficients a' and 5' are
given by (2.10).

The equations of motion for the q~(E) and x~(E')
are

—,'Mq~(E)+ njq~(E)+x~(E')]+ X Q q, (l) =0 (3.32)

and

[(n ——'M(u') (n —ma' (u') —u'] Q(E ) + nmb'(o'Q X(E' )
~t

+4&(u —ma' v')@(E) = 0 (3.39)

and similarly eliminating qz(E) from (3.36) and
(3.37) gives

[(u —4M(u') (u —ma'e') —u']X(l' ) —uh g Q(E )

—3mb'~'(u ——,Mco')X(E') =0 . (3.40)

Those equations can be brought into correspond-
ence with (A6) if we choose

(3.33)

putf;ing in the exp(i&et) time dependence of the

q~(E) and x~(E') and writing

e„=[4&(u —ma'(u') + (u —ma'(u')(n —g M(o') —u']
x(umb'~') ',

ce = [3mb (d (n —g MR )

X(l')= gx, (E') (3.34) —(n —ma'e')(u —~ Me') —n'] (uX) ', (3.41)

Q(E) = Q q~(E),

we obtain

(n ——,'M(u')q~(E)+ nx~(E')+ XQ(E) =0,
(n —ma'(u')x~(E ') + nq~(E) —mb '(o'X(E ') = 0.

(3.35)

(3.36)

Letting ~-, the eigenfrequencies ~' are related
to the eigenvalues c of the connectivity matrix by
(A7a).

[ 4(u —ma'(u')]( [ u —m(a'+ 3b' )(u'] (n —-,'M(u') —n'}

+ u'mb' &u'e'= 0 (3.42)

(3.37)
Eliminating q~(E) from these two equations gives

(n ——,'M ur')(n —ma'(o')q~(E) —n'q~(E)

+ nmb'uPX(E')+ A(n —ma'aF)Q(E) =0. (3.36)

Summing over all & yields

which has the solution:

2n (2+ cos 8)u
3M' 2m

�

2m 3u cos 0 ' n'&'cos20 i/2+-
3M 2m 3MI

(3.43)
Thus for every root of the connectivity matrix,

two eigenfrequencies are generated. The eigen-
value spectra is bounded by 0«'& l2, and so the
band edges for ~' are obtained by putting &'=0 and
12 to give

FlG. 8. Schematic diagram of anA3B4 network. Each
A. atom is tetrahedrally bonded and each B atom makes
three bonds so that the A-8-A bond angles are all 8.

(u,'= (u/m)(1+ 2 cose),

~', = (u/m)(1 —cos 9),

e', = ~,'+ 4n/3M,

~,' = &v,'+ 4n/3M.

(3.44)
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These bands are shown in Fig. 9 for the special
case M = 2m. If there are E A atoms, then the
two bands each have weight ¹ The delta function
at c~ with weight X~ -N„=-,'N described in the
Appendix is at m,

' in Fig. 9. The remaining 3

states are in a delta function at u)4. This gives
a total of 4X modes which is equal to the total
number of bonds [see (2.19)].

At 8=90, the system decouples into the singlet
and triplet modes of isolated A.B4 molecules. As
the apex angle at the S atom opens up, these
modes spread out into bands which cross over at
8„given by

cos8, = —4m/9M. (3.45)

For M=2m, 8, =103'.
The trace of the dynamical matrix (2.20) for this

network is

ra', =4N(—+—) (3.46)

This agrees with the same trace worked out using
the eigenvalues (3.43) (the square root that in-
volves &' cancels between pairs of modes) and
remembering to include the contributions from
the tu o delta functions.

E. A2X5 (P205) networks

At this point we introduce one-coordinated at-
oms, such as singly bonded F or doubly bonded O,
In particular, we treat the ease of P,O„which
has been shown to be a network in which each P
atom is surrounded almost tetrahedrally by three
bridging oxygen atoms and one double-bonded oxy-
gen terminator. " This kind of network is shown
schematically in Fig. 10, where every bridging
atom has the same A-X-A angle 6W. Although not

0(/m + 40./3IVI

90

—0.1

—0.2

—0.30

—0.4

.—0.5
0 4n/3M

100

105

110

115

120
3n/2m+ 4 /3M

shown in the figure, we require the three single
bonded X-A-X angles about each A atom to have
the same value P. This network is especially
useful to treat since it has numerous special
cases corresponding to ideal structures for glas-
ses other than P,O, .

For notation, we use q~(l) for the P atoms,
x~(l ) for the singly bonded 0 atoms, and y(l ) re-
fers to the P site to which the 0 is bonded. Us-
ing the results of Sec. IIB we only use three q~(l)
at each P atom The.fourth coordinate q, (l ) is
given in terms of the other three by

3

q, (l ) =c q~(l),
=1

where

c'=[3(1+2cos(t))] ' .

(3.4V)

(3.48)

. Using the results of Sec. II for two- and three-
coordinated atoms, the Lagrangian for the whole

system is

FIG. 9. AQowed frequency bands for an ASB4 network
with mass ratio M{A.)=2m{.B). The frequencies that de-
fine the band edges +&, co2, +3, cu4 are given by {3.44).
The band edges shown by heavier lines at ~3 and c'4 have
delta functions associated with them as discussed in the
text.

( ( 2

Mg a'g [qz(i)]'+b'
) gq&(l) +-,'mp a p[x~(i')]'+b)gx~(l')

~

+*~ Z()'()))' —l~ Z (~~(()+~,((')1'-l))I. ~Pq, (()+v(())
r

(3.49)

where M is the mass of the P and m is the mass
of the O. It is convenient to use m'forthemassof
the doubly bonded 0 even thoughwewill put m =m
at the end of the calculation. Here, u is the P—0
single-bond force constant and p is the P=O
double-bond force constant. The coefficients a,
b are given by Eqs. (2.6) and a', b' by Eqs. (2.10)
with 8 replaced by g. The equations of motion are

M a' jz, l +5' q~i l +e qz l +@~ l'

+pc c q~t l +y l =0, 350
gl

m ) ())+(t( ( )+'c)'Q(s~())) 0, =
pl

(3.51)

+ -Mb'co' Q l =0m'u'- p

m gx'~ l' +6 7'~ l' +n xp l' +qg l
(3.52)

putting in the exp(i&et ) time dependence of the
q~(1), x~(l ), and y(l) and using (3.51) to eliminate
the p(l), we obtain

(o. -Ma'(u')q~(l )+ o(xg(l )
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alld
(n —ma& )&~(l )+nq~(l) —mb&u'&(I') =0 .

(3.54)

These equations are very similar to (3.36) and

(3.3V). Proceeding as in that case, we can identi-

fy

3(u —ma+')[pc'm'u '/(m'~' —p) M—bu&']i (u —maur')(u —Ma'+') —u'
E nmb&'

2mb'&'(u -Ma'~') —(n —ma&a')(n Ma'&u') —u'
u[pc'm'&u'/(m'&o' —p) —Mb' ~2J (3.55)

The eigenfrequencies ~ are related to the eigenvalues & of the connectivity matrix of a network with z~
= 3 and ze = 2 and can be found using (A7a) where 0 & z & 6. This is an alternative to the technique used in
SiO, and ABX4 networks where the coordinates of the twofold coordinated atom were eliminated. There is
always this choice with two-coordinated atoms. The equation relating co' to &' becomes

8'6i'+u'mb[pc'm'/(m'~'-p) -Mb']e'=0,

where

6'=ma[M(a'+3b') —3Pc m'/(m'e —P)]&a —n[ma+M(a'+3b')] —3Pc m/(m'e —P),
S' = m (a + 2b)Ma '&u2 —n [m (a + 2b ) +Ma '] .

(3.56)

This leads to a quartic equation for &'. We assume the P atom to be perfectly tetrahedrally coordinated
so that a=b=4. The band edges are given by f =9 and g =6.

(3.57)

1( /1 —cos& 11 1 11 1 —cos& 11 1 1& ' 4nP
+3M) +P -,+M I

' n - +3M)
- - +M) +3M2 (3.56)

Q 4a~', =—(1+cos6)+ (3.59)

where , and +, are associated with the positive
square roots and ~, and w, with the negative ones.
Also we have the results

The bands are shown in Fig. 11, using parame-
ters" approximately appropriate for P,O,:
n =450 N/m, p=1160 N/m. If there areN P atoms,
then there is weight ~ in each of the three bands
and weight 2N in each of the delta functions at ~3
and &4. The diagram is very much like the others

Q 40.
(u =—(1 —cos&)+

m
(3.60)

—0.2—
—0.4—

V) —0.6—
—0.8—
—1.0

0

(po)
5 6—100

—110
—120
—130
—140—150

~ =180

FIG. 10. Schematic diagram of an A2X& network where
the A-X-A bond angle is e.

Flo. 11. Allowed frequency bands for P20& networks
using the appropriate masses for P and 0 and a ratio
of force constants for the 0 double and single bonds of
2.6. The six band-edge frequencies co; are given by
Eqs. (3.57)—(3.60). The band edges shown by heavier
lines at m3 and cu4 have delta functions associated with
them as discussed in the text.
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obtained previously except for the narrow band at
high frequencies associated with the stretching of
the oxygen double bond.

F. A2L3 (As203) networks

e, =—(1+cos8),
Q

Q
(o22= —(1 —cos8),

m

Q 3Q
(o,'= —(1+cos8)+

(3.63)

The formula (3.56) is particularly interesting be-
cause it contains a number of other networks as
special cases. Putting P =0 yields an &P', net-
work. Using 8 for the &-X-& bond angle and g
for the X-&-X bond angle as shown in Fig. 12, we
find the eigenfrequencies are given by

(2+ cosg}o'.
(d =—+

(3n cosg't' t'n cos8 ' &' cos 8cosge
2M ~ ( m mM

Q 3Q
(o', =—(1 —cos8) +' m

with the same weights as associated with (3.62).

G. As networks

Results for the As network may be derived from
(3.62) by putting 8 = 180', letting m -0, and also
letting Q -2Q ', in order to have Q' as the As-As
force constant. Infinite solutions are rejected.
The equivalent form of (3.61}is

(3.61) I

(e' =—[2+ (1+~) cosy], (3.64)
where & are the eigenvalues of the connectivity
matrix for the & skeleton network [as used in Eq.
(3.24) and in Sen and Thorpe]. This leads to band

edges at

where -3- g ~ 3. If there are & As atoms, then
the band contains ~ states and there are ~+ states
associated with the delta function at

Q Q
&u, =—(1+cos8+—(1+2 cosg), td2 = (1 —cos() .2Q

M
(3.65)

Q Q
&oa =—(1 —cos8)+~(1+2 cosg),

m

Q Q
&o',=—(1+cos8) +—(1 —cosg),

(3.62)

The other band edge is at
I

oui = (I+2cos().
M

These results are plotted in Fig. 14.

(3.66)

Q Q
&o~ = —(1 —cos8) +—(1 —cosg) .:=m — M-

These are plotted in Fig. 13using parameters"'"
appropriate for As, O, : /=98', a= 297 I/m. If
there are N A atoms, then each of the two bands
shown in Fig. 13 has weight & and there is weight
2N in each of the two delta functions at &, and
9)4.

Another special case occurs when the angle

/ =120' and the three bonds from the 4 atom are
planar. We will refer to this as the B,O, network.
In this case Eqs. (3.62) become

IV. DISCUSSION

—0.2—
(-0.4—

CO

O —06
—0.8—

90
100
110
120
130
140
150
180

We have set up a general Lagrangian formalism
for examing network dynamics in the approxima-
tion of nearest-neighbor central forces. One of
our results reproduces the expressions derived
by Hen and Thorpe' for the band edges of AX,
glasses. These expressions have been used else-

FIG. 12. Schematic diagram of an A2X3 network
where 0 is theA-X-A bond angle and P is the X—A —X
bond angle'.

FIG. 13. Allowed frequency bands for an As203 net-
work using appropriate masses for As and 0 and put-
ting g= 98'. The four band-edge frequencies co& are given
by Eqs. (3.62). The band edges shown by heavier lines
at 3 and 4 have delta functions associated with them as
discussed in the text.



3090 M. F. THORPE A1VD F. L. GALEENER 22

2n/m

90

—0.1 95

100

—0.4

—0.5
0

105

110

115

120
3n/m

FIG. 14. Allowed frequency band for an As network
where g is the As-As —As bond angle, m is the As mass,
and & is the As-As force constant. The frequency ~~
is given by Eq. (3.66). The frequency u~ is given by
Eq. (3.65) and shown by the heavier line to indicate that
there is a delta function associated with it.

where' for a detailed interpretation of the vibra-
tional spectra of vitreous SiO» GeO» and BeF,
with surprising success. Expressions were also
obtained for the band edges of several other sim-
ple networks, including those appropriate for
ABX, tetrahedral glasses, A,X, and AQ, trigonal
glasses. The most important final formulas are
Eqs. (3.25)-(3.28), Eqs. (3.44), and Eqs. (3.57)—
(3.60); numerous idealized networks can be treated
as special cases of these results. Detailed com-
parison of the new expressions with experimantal
results on such glasses as P,O, and As, O, is plan-
ned and will be published elsewhere. Since the
fundamental physical assumptions used in the pres-
ent paper are the same as those used by Sen and

Thorpe, it is expected that the new results will
apply to the appropriate glasses with similar
accuracy.

An important advantage of the central force
model is that it yields simp/e formulas for the
vibrational frequencies of a coupled network of
atoms, thereby revealing directly the effect of
changes in atomic mass, force constants, and
bond angles. This information is much more dif-
ficult to obtain from large-cluster' or Bethe lat-
tice' numerical calculations. Moreover, the
simple formulas can be inverted to enable direct
calculation of force constants andbond angles from a
small number of observed frequencies, as has
been done' for vitreous SiO» GeO» and BeF,.
For example, the densification of some glasses
can be thought to take place by reduction of the
bridging oxygen angle angle 8, without change in
the force constant. Equations like (3.63) allow
simple interpretation of the. effect of such den-
sification upon the vibrational frequencies. In this
way Galeener" has interpreted the shifts of vibra-
tional bands in neutron-irradiated GeO, as repre-
senting densification upon bombardment. Similar
shifts should be seen upon application of hydro-

static pressure to glasses, and it would be inter-
esting to contrast the behavior of glasses" like
SiO, in which the tetrahedra are strongly coupled'
with glasses like GeS, in which they are coupled
less strongly. '

Isolated molecule models such as the one pro-
posed by Lucovsky and Martin4 also have the vir-
tue of yielding simple formulas for vibrational
frequencies. In these models the frequencies of
vitreous SiO, (for example) are calculated from
those of a hypothetical Si04 tetrahedral mole-
cule" and perhaps also from those of a Si—0—Si
water-like "molecule. " It has recently been
demonstrated that such models are quantitatively
and qualitatively inadequate, "' except in those
few cases where the structural units are weakly
coupled. (Here, weak coupling means that 8=90'
and noncentral forces are also weak, as is thought
to be the case for GeS, glass. ) The quantitative
accuracy of the central-force model for vitreous
SiO, GeO, and BeF, is due to the fact that the
large values of 8 (-140') ensure that the two
central forces acting noncollinearly on a bridging
oxygen atom give rise to angle restoration tenden-
cies much greater than those due to intrinsic angle
restoring (noncentral) forces Only .one of the two
noncollinear central forces on an oxygen atom is
included in the isolated tetrahedal molecule model.
The resultant error is greater than any improve-
ment provided by the ability of the isolated mol. e-
cule model to treat intrinsic noncentral forces.

'The principal missing elements in the model
developed in this paper are noncentral forces,
Coulomb forces, and the treatment of matrix-
element effects. The intrinsic noncentral forces
mentioned in the preceding paragraph are typic-
ally about 5 the magnitude of the nearest-neighbor
central forces, ' and their neglect is most impor-
tant for the low-frequency modes. " ' It is possi-
ble that they can be included via perturbation the-
ory. The long-range Coulomb forces may produce
TO-LO splittings of the stronger infrared-active
modes, ' which are usually the higher-frequency
modes. It is not known how to include these forces in
the model at the present time. It has been shown
quite generally that strong matrix-element effects
can be expected in infrared and (especially Ra-
man scattering experiments on glasses, "con-
trary to earlier predictions. " This has been
demonstrated to be so in the case of vitreous SiO»
GeO» and BeF» where the dominant Raman line
is ascribed to a singular Raman matrix element
occurring at the lowest-frequency band edge in
the central force model. ' A mathematical treat-
ment has been developed using the central-force
model and a bond polarizability Raman tensor. "
We hope to make further progress in including
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these effects, albeit at the expense of losing some
of the extreme simplicity of the present model.
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APPENDIX

In this appendix we discuss the connectivity
matrix of a network, referred to frequently in

the main text. This describes the topological
ProPerties of the network. It has been used
frequently in the past in discussing the electronic
band structure of amorphous solids. " In this
paper we show how it can be used in vibrational
spectra.

We consider a fully connected network where,
each site has nearest-neighbor bonds to z other
sites. The connectivity matrix M is defined by
its matrix elements,

1 if i and j are nearest neighbors,
M)~=

~ ~

~

~

~

~

(Al)
0 otherwise.

This matrix is real and symmetric and the eigen-
values & and eigenvectors v obey the equation

Mv=fv

In the notiation used in the text, this equation would
be written

The connectivity matrix is again defined by (Al)
but is more complex in that some rows have z„
nonzero entries, while others have z~ nonzero
entries. The positive vector v may be taken to
have equal entries v„corresponding to all A.

sites and v~ corresponding to all B sites: Then v
is an eigenvector if we choose (v„/vz)' =zz/z„,
and we find that the eigenvalues z are bounded by

ZgZ3 (A4a)

(A4b)

A still more general conneetivity matrix can be
formed for this network if diagonal terms &„, &~
are also included so that M is now defined by

E~ if i is anA, site,
&~ ifi is aB site,

1 if i and j are nearest neighbors,
M)y=

~ ~

~

~

~

~

0 otherwise.

(A6}

The eigenvalue equation (A2) can be written

z Q(l)+ Z Q(l')=e'Q(l),
l

e,Q(l)+ Z Q(l')=e'Q(1) .

As before, every A site has zz neighbors of type
B and every B site has zz neighbors of type A.
A little manipulation of (A6) will show that the
eigenvalues & of the connectivity matrix with non-
zero e„, ez are related to the eigenvalues e [Eq.
(A4a)], which corresponds to setting s„=hz= 0
by

Q(l )=eQ(l) . (A2b)
(t')' —(6„+Ez.)e'+ c„fz = 6',

Because the conneetivity matrix is positive, we
can apply the theorem of Frobenius" and taking
v to be a positive vector all of whose elements
are equal, we find that the eigenvalues & are,
bounded by

(ASa}

l.e.)

z = z (&~+ ez) + j[~(e~—&z)] + z ]' (A7b)

and using the result (A4a) (viz. 0&e &z„zz) we
find the four band edges are

(A8)

-Z&(&Z . (ASb)

This is the result that is used in establishing the
spectral bounds in the main text.

A more complex network is formed when some
of the sites A have z„neighbors and some of the
sites B have z~ neighbors. We suppose that all the
neighbors of A are of type B and vice versa. The
chemical formula for such a network would be A, B,„.

This is the main result of this appendix and in-
cludes previous results as special cases. For
example, (ASb) is obtained by setting E„=hz =0
Rnd zg=zp= z.

In using these results in the text, it is conven-
ient to set &' = 0 and allow q„and q~ to be fre-
quency-dependent quantities. The equation that
determines the eigenfrequencies (A7a) then is
simply
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2
&~&a = & (AVc)

If there are N„atoms of type A and Ns atoms of
type B, then the two bands with edges given by
(A8) contain N„and Ns states, respectively. This
can easily be seen by allowing &„—&~ to be large
when the bands become wel. l separated and there
are N„states around &„and N~ states around &, .
The general result follows from continuity as
&~ —&~ is decreased in value.

The spectrum contains a delta function at &~

with weight N~ -N~ if N~ &N„. This state is con-
structed by allowing the amplitude of the wave
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