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Extension of exciton-transport theory for transient grating experiments into the
intermediate coherence domain
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Transient grating experiments provide a powerful new probe for exciton motion in molecular systems. An earlier
theory of exciton transport directed at these experiments is extended into the intermediate coherence domain.
Diffusion-equation results existing in the literature are shown to emerge as particular cases of this theory. Practically
usable expressions for observed signals are given for an arbitrary degree of exciton coherence, and it is shown how

coherence may be measured from the observations in experiments,

I. INTRODUCTION

Transient grating experiments" constitute a
novel technique for probing into the details of ex-
citon motion in molecular systems. In contrast
to the usual direct measurements of exciton dy-
namics, which employ material detectors such as
guest moleeules introduced into the host in sen-
sitized luminescence experiments, ' or surface
layers of a different substance placed at the end
of the sample, ' or other excitons whose collisions
and consequent annihilation can be monitored, '
transient grating experiments detect exciton mo-
tion by following the evolution in time of a tran-
sient grating created by two crossed time-coin-
cident picosecond excitation pulses. 'The two
pulses are crossed at a definite but variable angle.
Optical absorption then results in a spatially
varying exciton density following the optical in-
terferenee pattern and thus creates the diffrac-
tion grating. A third picosecond pulse is used to
probe the strength of this grating by studying its
Braggdiffractionfrom the grating. The grating, or
equivalently, the spatial inhomogeneity, dis-
appears in time not only through radiative decay
but through exciton motion in space. The ob-
served signal is the time-dependent diffracted
probe intensity and is, therefore, essentially pro-
portional to the square of the amplitude of the in-
homogeneity. The characteristics of exciton mo-
tion are thus reflected in the time dependence of
the signal. The experimental variables are the
angle of crossing, the wavelength of excitation,
the temperature of the crystal, and the concentra-
tion of the solute if the system is a solid solution,
i.e. , a mixed crystal, (the solute moiecules being
the ones excited to form the grating). The dif-
fusion constant, the nature of coherence in the ex-

citon motion, and other such transport charac-
teristics may then be deduced from the signal. Re-
sults that have been reported so far concern sin-
gle crystals of p-terphenyl doped with pentacene. '

The directness of these transient grating ex-
periments, i.e. , the fact that they are sensitive to
the transport itself rather than to magnetic pro-
perties' or the effects of defects,"makes them
particularly interesting to the theorist. This
paper studies the effects of exciton coherence on
the output of these experiments and makes speci-
fic predictions for the signal obtained. The issue
of coherence in exciton motion has received im-
mense attention" in recent times, and one of the
present authors has constructed a generalized-
master-equation (GME} theory' especially directed
at these transient grating experiments incorporat-
ing the effects of coherence. Usable expressions
for the observables have however been given only
in the extreme limits of completely coherent and
completely incoherent motion. In this paper we
obtain practically useful expressions for the ob-
served signals for arbitrary degree of coherence,
thus making possible the description of the results
of these experiments in the intermediate coherence
domain. We also give an explicit demonstration
of how the general results of Ref. 8 reduce to
those in Ref. 2 as a special case.

The paper is set out as follows. In Sec. II the
essential aspects of the experiment are stated
from a theoretician's point of view. The notation
and presentation of Salcedo et a/. ,

' who per-
formed the experiment, are followed. In Sec.
III the theoretical description given by Kenkre, '
which includes the effects of coherence as well
as discreteness (in space}, is introduced and
shown to give the results of Ref. 2 as a particular
case. In Sec. IV the predicted signal is evaluated
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explicitly for an arbitrary degree of exciton co-
herence. A discussion is presented in Sec. V.
The present analysis, as well as that in Ref. 8,
assumes the incoherent initial condition for the
problem suggested by Payer et al. in Refs. 1 and
2.

II. THE DIFFUSION EQUATION TREATMENT

sp(x, t) s
p( xt) p(x, t}

9$ Bg 7
(2.2)

In conjunction with (2.1), Eq. (2.2) immediately
gives

We refer the reader to Ref. 2 for details and
state that it follows from the discussion therein
or from the description of the experiment given
in Sec. I above that, if 8 is the angle of crossing
between the laser beams which produce the grating
through optical. absorption and X is their wave-
length, the fringe spacing of the grating is d
= [X/2 sin(8/2)] and the initial condition, imposed
on the excitation population p(x, t) at the instant
the grating is formed, is

p(x, 0) = —', [1+cos(m)], (2.1)

where b, =2'/d. If one assumes, ' for the sake of
simplicity, that the excitation population evolves
in time through the continuum diffusion equation,
i.e. , D is the exciton diffusion constant and w the
radiative lifetime, then

III. THE GENERALIZED-MASTER-EQUATION
TREATMENT

= E(P „+P, —2P„)— (3.1)

which describes the evolution of P„(t), the num-
ber of excitons at site m (alternatively, the prob-
ability of a single exciton), in terms of transfer
rates I" and is more general and corresponds
more closely to the actual (discrete) situation in
the molecular solid. Note, however, that (3.1)
reduces to (2.2) in the continuum limit

a-0, (1/a)P (t)- p(x, t), E- ~, Ea'- D.

The solution of (3.1}for P„(0)= 5„, is the well. —

known expression'

The discussion' in the previous section neglects
at least two characteristics of exciton motion: (i)
the molecular crystal is not actually a, continuum:
exciton motion takes place in a discrete space,
and (ii) it is not known a priori that the incoher-
ence in the motion is high enough to allow the use
of (2.2). We shall first show that an analysis
incorporating the former, but not the latter,
characteristic does introduce changes but con-
tinues to predict an exponential signal. After that
we shall discuss the significant modifications
brought about by coherence in exciton motion. —

We therefore start with the discrete-space equa-
tion

p(x, t) = ,'e "[1+e~—~'cos(&x}]. (2. 3) P„(t)= e '/' e ~~'I (2Et), (3.2)

The observed signal in these experiments is
essentially proportional to the square of the grat-
ing depth, i.e. , to

which, in the continuum limit stated above, goes
over to the familiar solution of the diffusion equa-
tion

[p(0, t) -p(d/2, t)]'. p(x t) e 0/ e-x / Dt- (3.3)

From (2. 3) one sees that this is a simple exponen-
tial with the exponent given by

@=2(~'D+ / I)r. (2.4)

Independent measurement of 7 and knowledge of
X and 8 (and therefore of &) thus allow one to de-
duce D from the above exponent of the observed
signal. We mention in passing (and refer the
reader to Ref. 2 for details) that, although the ob-
served signal generally involves convolutions with
the pulse-excitation functions, it equals the square
of the grating depth as stated above for a short
optical pulse condition. Such a condition is in-
deed met in the experiment. Furthermore, in
situations wherein it does not hold, it is stra. ight-
forward to carry out the various convolutions re-
quired. We do not exhibit them here because they
would add little to the physics of the problem.

It therefore follows that for the initial condition
(2.1) characteristic of transient grating experi-
ments, written in the discrete form

P (0)=-,'[1+cos(qm)],

where g=&a, one has

P (t) =—,' e "[1+e ~""'""'cos(rtm)] .

(3.4)

(3.6)

The observed signal S(t) continues to have an ex-
ponential time dependence

S(t) =S(0)exp(—2t[4E sin'(q/2) + 1/7]). (3.6)

The exponent is, however, different from that
given' in the previous section [Eq. (2.4)] in that
it involves 4 sin'(q/2) rather than ri'. The result
of Salcedo et al. ' is, of course, recovered from
(3.6) in the limit a- 0 because then q -0 and
4 sin'(q/2) may be replaced by q'.
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A much greater change occurs in the predicted
signal when allowance is made for exciton motion
to be at least partially coherent. Equations (2.2)
or (3.1) cannot be used to describe this situation.
A unified theory of this experiment incorporating
coherence effects had already been constructed'
before the experiment in Ref. 2 was performed.
It takes the generalized master equation (GME)

to describe the exciton motion and is, therefore,
capable of handling any degree of coherence. One
begins with

0 n

w ()-—)„')&„()'))—,
The memory functions are derived analytically from a simple model for the motion and are found' to have
the form

'([J' .. (2Jt)+ J' „,(2Jt)+2J „(2Jt)J „,(2Jt}]
-(2J' „(2Jt)+J „(2Jt)[J „(2Jt)+J' „,(2Jt)]]), (s. 8)

where J is the intersite matrix element, taken to
have nearest-neighbor character for simplicity,
and a is the randomization parameter arising
from exciton-bath interactions. In the limit a 0
signifying no bath interactions, (3.7) and (3.8)
are equivalent to results obtained from the Schro-
dinger equation, and in the limit n- ~, J-~;
2J'/n =E, signifying extreme incoherence, (3.1}
and therefore (2. 2) are recovered. The details
of the derivation of (3.8) will be found in Ref. 8
where the following four results have been obtained
in the specific context of transient grating experi-
ments:

(a) Purely incoherent motion frith small inter
site interaction. The signal is exponential in time
and is given exactly by (3.6). As stated earlier,
the results of Salcedo et al. ' follow in the limit
a -0.

(h) Purely incoherent motion tuith large inter
site interaction. An unexpected result of Ref. 8
involved spatially long-range transfer rates aris-
ing from spatially local J's. It shows that even
when the assumption of purely incoherent motion
is made, large J's (with respect to o. ) would gen-
erally invalidate (3.1) and, consequently, the
diffusion equation (2. 2) in the continuum limit.
One would have, in place of (3.5),

I

P„(t)

=-,'e ' '[I —exp(-t([o. '+16J'sin'(q/2)]' ' —n}}].
(s. 9)

Equation (3, 9) reduces to (3.5) and therefore
yields (3.6) in the limit of small J/o(, specifically,
u-~, J-~, J'/@=const. Note, however, that
for arbitra, ry J/o, 'the signal is

(s. lo)
and that, in the continuum limit unaccompanied
by the limit J/o'. -0, one gets results sohich are
not those of the diffusion equation. The decay
rate of (3. 10) has been plotted in Ref. 8, and an
explicit method is given to ascertain the degree
of coherence with its use.

(c) Purely coherent motion. This case involves
& =0 and results in a highly nonexponential signal

S(t) =S(0)e " 'J', (4Jt sin —,'W) (3.11)
which has little resemblance to (3.6) or (3.10).

(d) Partial coherence: intermediate domain.
For arbitrary relative values of J and +, the
signal was predicted in Ref. 8 only up to a La-
place transform

S(t) =S(0)e "~'e xp(- 2t([n'+ 16J'sin'(q/2)]' ' —o']},

2

s(i)=s(O)s " ' f ee"([,S'+)Ss'sin'(&s/2)]' '—
C

(3. 12)

where the e integration is on the Bromwich contour. In the next section we shall give an explicit evaluation
of (3.12) in the time domain and exhibit the plots of the predicted signal in the intermediate domain.

IV. EXPLICIT CALCULATION OF THE SIGNAL IN
THE INTERMEDIATE COHERENCE DOMAIN

We now evaluate explicitly the Laplace trans-
form in (3.12) by making use of the identity

t
f((~'+)*)"*)=s'(f()) —b su&, (ss)f(()*-s')"*)),

(4. 1)

where Z denotes the Laplace transform, J, is the
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FIG. 1. Effect of coherence on the transient grating signal as a function of time. Curves respectively denote the sig-
nal in the incoherent limit given by (3.9), the coherent limit given by (3.10), and the intermediate exact expression given
by {4.3). Parameters are arbitrary: 4J sin+a/2) =1. The four cases correspond respectively to (a) m=0. 02, (b) ~=0.2,
(c) G. =1.0, and (d) o.'=2.0.

(4. 2)

4 Bessel function, and f(t) is any function with Laplace transform f(e). Identifying f(t) with e ' we get
t

dte "[(r'+b')' ' —n] '= e ' —b dud (bu)e '"""
0

1

with which (3. 12) yields, after one puts b=4J sin(ba/2),
t

S(t)=S(0) 24/' 1 —e ' 4dsin du J, 4dusin Ie'"
ha 0 2 j

(4. 3)

Equation (4. 3) is the primary result of this pap-
er. It gives the transient grating signal for an
arbitrary degree of coherence. It reduces to the
various purely coherent and purely incoherent lim-

'i

its given earlier. For instance, when n = 0 the
square bracket in (4. 3) is

i —I@lain(ra/4)]f 4u4, (44sin(4a/4)4),
0

which is J,(4T sin(ba/2)t} and leads to the reduc-
tion of (4. 3) to (3.11). Equation (4. 3) has been

l

plotted in Figs. 1(a)-1(d) for various relative
values of the parameter 8/n. For convenience
we have held J constant and set 4J sin'(M/2) equal
to one. In particular in Fig. 1(a), with n=0. 02,
the three curves denote, respectively, the signals
in the incoherent limit given by (3.6), the co-
herent limit given by (3, 10), and the intermediate
regime given by (4. 3). This is repeated for three
other values of n, i.e. , n = 0.2, 1.0, and 2.0,
to demonstrate the change in the nature of the sig-
nal as one passes from the coherent regime (small
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n) to the incoherent regime. To make this change
clearer we have suppressed the factor e " ' that
multiplies the curves shown.

V. DISCUSSION

The main contribution of this paper is the ex-
plicit evaluation of (3.12). Although (3.12) was
given in Kenkre's unified analysis, ' only the pure-
ly coherent and purely incoherent limits h3d been
calculated in the time domain. Equation (4. 3) de-
rived here, and the plots in Figs. 1(a) through 1(d),
extend the theory of Ref. 8 and make it usable for
an arbitrary degree of exciton coherence. The
qualitative as well as quantitative features of the
predicted signal are seen to be dependent on the
degree of coherence. Measurement of coherence
is therefore possible by comparing these figures
with observations.

Another result reported in this paper is the
explicit demonstration of how the GME expres-
sion (4. 3) for the predicted signal reduces to the
expression of Salcedo et al. ' under the Markoffian
and the continuum limits. We stress that (4.3)
is the general result for an arbitrary degree of
coherence and for discrete space. It is therefore
applicable whatever the values of the intermolecu-
lar distance a, the intersite matrix element J,
and the bath-interaction parameter n. A few nu-
merical estimates might be of some help in ap-
preciating the extent of validity of the various
treatments. The values n = 10" sec ', J= 10"
sec ', and x=10 ' sec allow (3.10) to be used be-
cause ur» 1. Furthermore, because (4J/n) is
not a small quantity, the validity of the further
reduction to (3.5) and (3. 6) depends on the value
of the lattice distance a and the wavelength A.,
since q=(4@a/A) sin(8/2). For a concentration of
about 1.6 x10 ' mol/mol as in Ref. 2, a = 50 A

and A. = 5 x10 A, we see that 16J' sin'(7i/2) «n',
and thus we are indeed in the domain of validity
not only of (3.6) but also of the diffusion equation
treatment of Ref. 2. However, in the case of
@=10' sec ', which might correspond to low tem-
peratures, a suitably large value of (a/X) could
make a' much smaller than 16J2sin'(q/2) for ap-
propriate values of the crossing angle 8. In such
a situation, if n could be neglected with respect
to 4J sin(q/2), one could even have, from (2. 10),

S(t) =S(0)e "~'exp(-t[4J sin(q/2)11 (5 1)

which shows a dependence of the decay constant E
of the signal on the concentration, which is com-
pletely different from that expected from earlier
expressions such as (3.6). The dependence of Ã
on the crossing angle 6I would also be linear rather
than quadratic (for small 8's). Finally, for such

low relative values of a the experimental observa-
tions could exhibit nonexponential behavior, as a
result of a high degree of coherence, and warrant
interpretation in terms of the full intermediate
expression (4. 3).

We now comment on the limitations of our analy-
sis. It is based on the one-dimensional periodic
lattice model with nearest-neighbor interactions
J for exciton motion and with a single bath pa-
rameter 6. The one-dimensional character is
hardly a limitation since the inhomogeneity creat-
ed in the crystal is, in fact, one dimensional.
The nearest-neighbor character of the intersite
matrix element is an assumption made universally
in exact calculations for such problems and is
reasonable for short-range interactions. While
it is an excellent assumption thus for triplet ex-
citons, the excitons created in the experiment of
Ref. 2 are singlets. Even here, however, the
next-nearest-neighbor matrix element is 2' = 64
times smaller than the nearest-neighbor one. The
quantitative corrections would therefore not be
significant. The assumption of the single bath
parameter n is, we believe, adequate at this stage,
although use of the actual contribution made to the
memory functions by the exciton-phonon interac-
tions, computed along the lines of the analysis of
Kenkre and Knox,"would be preferable. In that
case, however, exact calculation of the predicted
signal as given in (4. 3) is not possible, and num-
erical methods have to be used. The assumption
that the underlying structure along which the ex-
citon moves is periodic is the most restrictive
of the lot, from the point of view of the experi-
ments already performed. 2 This is so because
although the p-terphenyl forms a crystal, the ex-
citon moves along the pentacene molecules which
form a noncrystalline array. There is, in fact,
a great deal of analysis" "that is being directed
at the problem of motion in disordered structures.
Thus it has been shown by Haan and Zw3nzig" that
for a slightly disordered system, e.g. , a low-
concentration solution, the average mean-square
displacement clearly exhibits nondiffusive be-
havior at short times. This has been extended
by Gochanour et al."to the case of highly dis-
ordered systems and arbitrary times. In these
approaches, the master equation with Forster
transfer rates has been employed in the very be-
ginning to describe the motion. Consequently,
they can study the effect of randomness only on
incoherent motion. Gochanour et al."have men-
tioned that coherent transport can be important
at low temperatures. Such situations necessitate
a general approach using generalized master
equations as in the present paper. Howev'er, we
have not treated the effect of randomness. We



THEORY FOR TRANSIENT GRATING EXPERIMENTS. . .

believe that the most efficient way to analyze co-
herence and randomness is to convert' the ran-
domness into a pausing time distribution, ~' the
latter into memory functions, "and thus to use a
combined ~ (f) within the framework presented
in Ref. 8 and this paper. In closing we point out
that while the analysis presented here corresponds
to exciton transport according to

~pm+4n Pm-&, n Pm, n+& Pm, n- 1

it is a straightforward matter to generalize these

results either by using long-range J „'s or more
complicated versions of the stochastic Liouville
equation, such as Eq. (8) of Ref. 17.
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