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The spontaneous-emission rates of emitters embedded in a thin layer 0 of a loss-free dielectric depend on their
optical environment, i,e., on the optical properties of the two media 1 and 2 adjoining layer 0. For electric- and
magnetic-dipole transitions the spontaneous-emission rates, normalized with respect to those in an infinite
medium 0, are expressed in terms of the Fresnel reflection coefficients for plane and evanescent waves incident from
medium 0 on the interfaces to the planar-stratified or homogeneous media 1 and 2, respectively. From this result
which is valid for arbitrary layer thicknesses d, we derive an approximation for extremely thin layers of optical
thickness n+0~/8 {where 1, is the emission wavelength) between two homogeneous loss-free dielectric media 1

and 2. For the normalized spontaneous-emission rates as functions of the refractive indices n,. of media j= 0, 1, and
2 analytical expressions are obtained. %e have used these expressions previously without proof IPhys. Rev. B 21,
4814 (1980)]to analyze experimentally observed changes in the fluorescence lifetime of Eu'+ ions in varying optical
environments, which yielded the quantum efficiency of the emitting state.

I. INTRODUCTION

Experiments have shown that the fluorescence
lifetime of emitters can be changed by varying
their optical environment. ' In our experiments'
the emitter s (Eu" ions) were embedded in a very
thin layer 0 of a loss-free dielectric; that part
of their optical environment which we varied were
the two homogeneous loss-free dielectric media
1 and 2 adjoining to layer 0. For the analysis
of our experiments we used analytical expres-
sions for the spontaneous-emission rates for
electric- (and magnetic) dipole transitions in
emitting systems embedded in a layer of refrac-
tive index n, and of optical thickness n,d, «A/8
(where A. is the emission wavelength), between
two half-spaces 1 and 2 with refractive indices
n, and n» respectively. We stated these theoreti-
cal results in Ref, 1 without any proof.

The object of this paper is to derive the ana-
lytical expressions for the normalized spontane-
ous-emission rates for emitting systems in ex-
tremely thin layers as approximations from the
theory for arbitrary film thicknesses d, . In Sec.
II we explain with an argument based on the cor-
respondence principle why the optical-environ-
ment-dependent normalized spontaneous -emis-
sion rates can be calculated by classical elec-
trodynamics, viz. , by calculation of the total
power radiated by a classical dipole in the given
optical environment. In Sec. III we solve the
em boundary-value problem for a radiating di-
pole in layer 0 of arbitrary thickness d„by ex-
tension of a method' we had previously used for a
dipole in front of a single interface. We use a
special combination of a one-component electric
Hertz vector and a one-component magnetic Hertz

vector to represent the field of an electric or a
magnetic dipole. Physically, this representatioo
corresponds to a decomposition of the near and far
field of the dipole into s —and P-polarized plane
and evanescent waves. The final results for the
normalized spontaneous-emission rates are given
in Sec. IV; they are expressed in terms of the
reflection coefficients for plane and evanescent
waves incident from medium 0 on the interf ace
to the adjoining media 1 and 2, respectively.
The physical effects responsible for the depen-
dence of the spontaneous-emission rates on the
optical environment are briefly discussed. In
Sec. V we consider dipoles located at the inter-
face between two media. We derive "boundary
conditions" for the power radiated by the dipole
moved across the interface in a thought experi-
ment. In Sec. QI we derive the approximation
for the spontaneous-emission rates of emitters
in extremely thin layers 0, i.e. , for n,d, «A/8.

II. CLASSICAL CALCULATION OF THE RATIO OF
SPONTANEOUS-EMISSION RATES IN DIFFERENT

OPTICAL ENVIRONMENTS

We consider an atomic system (emitter) D at
position xc(x, =0, y,„=0,a, ) in a loss-free dielec-
tric thin layer 0 of refractive index n, and thick-
ness d, between two adjoining media 1 and 2 (cf.
Fig. 1). All three media 0, 1, and 2 are assumed
to be linear, isotropic, and nonma, gnetic (p, =1).
We further assume that media 1 and 2 a.". 8 planar
stratified in the z direction, which includes as a
special case that they are homogeneous (absor-
bing) half-spaces with (complex) refractive index
n,. at the emission wavelength A. .

We investigate how the spontaneous -emission
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rate A for an electric- or magnetic-dipole transi-
tion in the atomic system D depends on its optical
environment, i. e. , on the optical properties of
media 1 and 2. The transition dipole moment is
assumed to lie in the x-z plane, 0 is the angle
between the dipole moment and the z axis. The
spontaneous-emission rate A(z, ) times the photon
energy E =5+ is equal to the expectation value
L(z,) of the energy emitted inunit time per ex-
cited system:

gp

cI0

@~A(z,) =L(z,) (2.1)

A (z,)/A „(n,) =L(z,)/L„(n, ), (2.2)

where L„(n,) is the total power radiated by the
dipole in the infinite medium 0. Since we as-
sumed linear constitutive relations for media
0, 1, and 2, the dipole field is linear in the di-
pole moment. Consequently, the radiated power
is proportional to the square of the dipole mo-
ment in any optical environment. Therefore, the
normalized radiated power L(z,)/L„(n, ) and, be-
cause of Ecl. (2.2), the normalized spontaneous-
emission rate A (z,)/A„(n, ) do not depend on the
(transition) dipole moment. We implicitly as-
sumed further that the transition dipole moment
and the transition frequency & are not changed by
a variation of the optical environment of the sys-
tem. Therefore, the normalized spontaneous-
emission rates can be calculated by classical
electrodynamics, i. e. , by solving the boundary
value problem for the dipole in the layer 0.

In our experiments' the optical environment of
one and the same ensemble of emitters was va-
ried. The ratio of observed fluorescence life-
times in two different optical environments (de-
noted by a prime and no prime, respectively)
were compared with the theory. The ratio of the
radiative lifetimes iri the primed and unprimed

In other words, L(z,) is the total power radiated
by a transition dipole. According to the corres-
pondence principle I. will be given by the expres-
sion for the total power radiated by a classical
dipole in which the classical dipole moment has
to be replaced by the transition dipole moment.
The classical dipole is located at the position
x, (0, 0, z, ) of the emitter D, it oscillates with
fixed frequency equal to the transition frequency
u, and with fixed dipole moment and orientation
8.

We are interested only in the normalized spon-
taneous-emission rate A(z, )/A„(n, ), defined as the
ratio of the spontaneous-emission rates of the
same emitter D in the optical environment shown
in Fig. 1 and in an infinite homogeneous medium
of refractive index n„respectively. From Eq.
(2.1) we derive

FIG. 1. Emitter (electric or magnetic dipole) D in
loss-free dielectric thin layer 0 of thickness do between
two adjoining media 1 and 2. 6, angle between transition
dipole moment and g axis.

III. RADIATING ELECTRIC AND MAGNETIC
DIPOLES IN A THIN LAYER

We solve the boundary-value problem for a ra-
diating dipole in layer 0. We employ a method
we used previously for a dipole in front of a sin-
gle interface. '

A. Description of em fields by two scalars

Any monochromatic em field can be represented
by two scalar functions Q'z'(x) and p'"'(x) which
are the z components of an electric and of a mag-
netic Hertz vector, respectively,

(x) =(0 0 P (x)) (3.1)

7'"'(x) =(0,0, P'"'(x)) . (3.2)

We omit the time dependence exp (-i~t) of all field
quantities. We use SI units. Both scalar s satisfy
the homogeneous Helmholtz equation

(n +ck')p'z'"'(x) =0, k =e/c (3.3)

in source-free regions of a homogeneous medium
with dielectric permittivity &. The field strengths
are

E(x) =i&uV x v'"'(x) +(&,q) 'V x V x v' '(x),

H(x) =(p.,)-'V x V x m'"~(x) —i&tV x n'z~(x) .
(3.4)

(3.5)

environment is given by the inverse ratio of the
(normalized) spontaneous-emission rates

7 „'(z,)/7 „(z,) =A (z,)/A '(z, ) =L (z,)/L '(z, ) . (2.3)

If nonradiative transitions compete with the ra-
diative transitions the quantum efficiency of the
emitting state can be obtained from a comparison
of experiment and theory.
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This representation is adapted to the geometry
of our problem, viz. , to the planar stratification
of the media in the z direction. We will use this
representation for the fields in media 0, 1, and 2.
As shown in Ref. 5, the scalar P(")(x)=P("' exp
(ik x) represents a plane or evanescent s pol-ari
zed wave. Its electric field E(x) is perpendicular
to the plane of incidence, which is defined by the
wave vector k and the unit vector 2 in the z di-
rection. The scalar (t)'z (x) =lt)'s exp(ik. x) re-
presents a P-polarized wave; its magnetic field
H(x) is perpendicular to the plane of incidence,
while E(x) lies in this plane.

with

x exp(i[k„x+k, y+ k. ,(z —zg]jdk„dk,

(3.6)

B. Decomposition of the dipole field into s- and
p-polarized plane and evanescent waves

We consider a dipole in an infinite medium 0.
We present the dipole field as a superposition
of s- and p-polarized plane and evanescent waves.
This representation is valid both in the far zone
and in the near zone of the dipole.

The electric (point) dipole oscillates with the
electric-dipole moment p(t) =p, cos(dt, where
p, (P, sin8, 0, P, cos8). The magnetic dipole os-
cillates with the magnetic-dipole moment m(t) =

m, cos~t, where m, (m, sin8, 0, m, cos8). The
field of this electric or magnetic dipole of orien-
tation 8 located at x,(0, 0,z,) in an infinite me-
dium 0 is represented by the scalars P(z'(x) and
y„(")(x), wl:ere

k, =zz, k, and k =to/c =2)z/X. For the electric di-
pole

(t)„'",(k„k,) = —i(8v2) 'p, P,(dk, [k, ,(kz+k2)] ' sin8,

(3.8)

k ) =z(6)72) 'p, [(k, ,) ' cos 8 pk„(k'„+k', )
' sin8],

(3.S)

while for the magnetic dipole

(t (")(k k,) =i(8)z') 'm,

&&[(k, ,)
' cos8 vk„(k'„+k', ) ' sin8],

and
(3.10)

P„z,(k„,k, ) = i(8zz2) 'eozzzom ~k, [k„o(kz +k2) J
' sin8.

(3.11)

Details of the calculation leading to E(ls. (3.8)—
(3.11) are given in Ref. 5 ( for the magnetic dipole
only). '

Physically, the Fourier integral (3.6) represents
the dipole field as a superposition of s- and P-
polarized plane waves (k'„+k', & k', ) and of evanes-
cent waves (k', +kz, &k',). In Eq. (3.6)—and E(ls.
(3.6)-(3.11)—the upper and the lower sign, re-
spectively, has to be chosen in the half-spaces
z -z, and z &z,.' A plane wave emitted into the
half-space z ~ z, has the wave vector k(k„,k„+k, ,)
and the amplitude (t)'„"',z)(k„,k,), one emitted 'into
the half-space z &z, has the wave vector k(k„,
k„—k, ,) and the amplitude ltk'„"'z'(k„, k,). The
evanescent waves decay with distance from the
plane z =z0 in both half-spaces.

C. Solution of the boundary value problem
+ (k2 k2 k2)1/2 if (k2 +k2)1/2 & k

gt 0
+ z(k2 +I 2 k2)l/2 if (k2 +k2)l /2) k

(3.V) We use the following ansatz. The field in the
layer 0 (0 &z &d, ) is

'(x)=0„'"' '(x)eff 4', ,"; '(k„k)e p(i(k, xk, kxe, )(Xdkekk„x,

(3.12)

where k... is given by E(I. (3.I) and Q„' ' '(x) by
E(ls. (3.6)-(3.11). The waves Q„,(k„,k,) emitted
by the dipole are reflected at the interfaces 0/1
and 0/2, and are then reflected back and forth
between the two interfaces. The second and third
term in Eq. (3.12) represent the fields resulting

I

from those multiple reflections. The Fourier
component (t), ,(k„,k,) exp(zk x) represents for
k'„+k2 & k', plane waves with wave vectors k(k„,
k„+k,„)which propagate to the right and the
left, respectively, in the coordinate system shown
in Fig. 1. For 0'„+0',&0'„ it represents evans-



THEORY OF OPTICAI. -EKVIRONME5T-DEPENDENT. . .

cent waves whose amplitudes decay in the +z and
the -~ direction, respectively. The fields in the
homogeneous media 1 (z & d, ) and 2 (z & 0) are

E'""( )=g E""(E E)

x exp[i[k„x+k, y +k, ,(z —d, )]jdk„dk,

(3.13)

If medium j is loss-free, k, , is given by Eq. (3.7}, in
which the subscript 0 has to be replaced by j. With
this choice of the sign of k, J Eqs. (3.13) and (3.14)
represent plane waves which propagate into me-
dium j, and evanescent or inhomogeneous waves
which decay in medium j with increasing distance
from the interface to layer 0.

From the electromagnetic boundary conditions
and Eqs. (3.4) and (3.5) it follows that

and
(t)

z (x), —— (x),(z)
f 88

(3.16)

x exp[i(k„x+k, y -k, ,z)]dk„dk„

(3.14)

respectively, where

(3.15)

with k& =n&k and j =1,2. The square root with non-
negative real and imaginary part has to be chosen.

I

&a}e'"'( ), —~
( )

Qz

are continuous across a plane interface z =const
between two different media. The boundary con-
ditions (3.16) at the interface z =0 and z =d, ex-
pressed with Eqs. (3.6), and (3.12)-(3.14) yield
four equations for the unknown amplitudes
(t), ,(k„,k,), (t), (k„,k,), (t), (k„,k,), and (()),(k„,k,) of
the s- and P-polarized waves. By solving these
sets of equations which we do not write down ex-
plicitly, we obtain

Z&» rk k 5 =m&s, y&&&8, P&
Y Ot-+ K «P y~ Oz2

x f (p("' z) (k„,k ) exp(ik, ,z, ) +r(",('(p„'"',z '(k„, k,) exp [ik, ,(2d, -z, )]),
(t)'"' '(k, k ) =~'"('r""exp(2ik, d, )

x [(p'„"',z'(k„, k, ) exp(-ik, Qzo) +ra'2('(p„'"'z'(k„, k„) exp(ik, po)],

(3.1'I )

(3.18)

where

~'"(' =[I -r'*' ( 'r~' e p(x2ik d )] '
Ot 1 Ot2 ZyO 0 t

and

(, ,) (z,/e, )'k, , —k, ,
(&,/&, )'k, , +'k, ,

(3.19)

(3.20)

I

imaginary part is finite:

Im[E (x,)]=(6m&,n', ) 'p, k', (3.22)

(cf. Ref. 5). With Eqs. (3.8), (3.9), (3.12), (3.17),
and (3.18) we calculated the Cartesian components
of E„(x,) from Eq. (3.4); the final results expres-
sed in normalized form are

with e,.= (n~)', j= 1, 2, and p= 0 for s- and p= 1 for
p-polarized waves. Equations (3.17) and (3.18)
hold true with the superscripts (H) and (s) for s-
polarized waves, and with superscripts (E) and

(P) for P-polarized waves. We also obtained the
amplitudes (t)',"z)(k„,k,) and (t)',"z)(k„,k,) which we
do not write down explicitly, since the fields in
media 1 and 2 are not required for the calculation
of the total power radiated by the dipole in Sec. IV.

We calculate the electric field at the position
of the electric dipole,

E(x,) =E (x,)+E„(x,), (3.21 )

where E (x,) is the field of the dipole in the in-
finite medium 0 and E„(x,} is the contribution of
the waves reflected at the interfaces. The real
part of E„(x)becomes singular at x =x„but the

E, „(x,)/Im[E„(x, )]= ('i (kg ' sin8

2~( P ) + k 2~( s)
0

E„„(x,'}=0,

x (k, ,) 'd((('), (3.23)

(3.24)

where x2=—k'+k', and

r'"(') =~("(')(2r("(')r("(')exp(2ik d )Ot 1 Ot 2 gg0 0

+r,",I' exp[2ik, ,(d, -z,)]
+r(E,'(') e px(2i kz, ) .] (3.26)

E, ,(ii)/En[E (x,)1=-,'(() ) 'ros&J r',r'(E, ,) 'r'E(r'),
0

(3.25)
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The magnetic field at the position of the mag-
netic dipole is

through a surface enclosing the source

H(x, ) = H„(x,) +H„(x,) . (3,, 27) L =c~ ~((S) n)dv

The real part of H„(x) becomes singular at x =x„
but its imaginary part is finite:

= —pRe E x 'I+ xd3g. (4.1)

Im [H„(x,)] =(6wp. ,) 'm, @03 (3.28)

IV. SPONTANEOUS-EMISSION RATES OF EMITTERS
IN LAYERS OF ARBITRARY THICKNESS

With the results of Sec. III we calculate the nor-
ma. lized total power L(z,)/L„(n, ) radiated by an
electric or a magnetic dipole in layer 0. Ac-
cording to Eq. (2.2) we thus obtain the normalized
spontaneous-emission rate A (z,)/A„(n, ) for elec-
tric and magnetic dipole transitions in the emit-
ting system at x, (0, O, z, ) in layer 0.

We use the same method to calculate L as in the
case of a dipole in front of a single interface. '
The total power L radiated by the dipole is de-
fined as the integral over the normal component
of the time-averaged energy flow density S =E && H

(cf. Ref. 5). With Eqs. (3.10), (3.11), (3.12),
(3.17), and (3.18) we calculated H„(x,) from Eq.
(3.5); the Cartesian components of H„(x,)/Im
[H„(x,)] are given by Eqs. (3.23)-(3.25) with in-
terchanged polarization indices (s) —(t)).

In the above rigorous solution of the em boun-
dary value problem for a dipole in layer 0, the
media 1 and 2 were assumed to be homogeneous.
This assumption leads to the Fresnel formula
(3.20) for the reflection coefficients ro",(' Th.e
field in layer 0 is determined by the amplitudes
of the s —and P-polarized plane and evanescent
waves emitted by the dipole, and the reflections
of these waves between the interfaces z =0 and
z =d, to media 1 and 2, respectively. From this
physical interpretation of the theory it is evident
that the results for the field in layer 0—in parti-
cular Eqs. (3.23)-(3.26)—remain valid if medium
j (j =1, 2) is not homogeneous but planar strati-
fied. In this case we have to insert for x0"&~' the
reflection coefficients describing the reflection
of an s- or P-polarized plane or evanescent wave
incident from medium 0 on to the stratified me-
dium j. The calculation of the resulting reflection
coefficient for a layer system is a standard pro-
blem in thin-film physics.

L„(n,) = (n,)'L„„,
where q =1 for electric and q =3 for magnetic
dipoles, and L„,is the power radiated by the
same dipole in vacuum

[L..,], =P', (u'/12m&, c',
[L, ,] =m (k) /127{i), c

(4.4)

(4.5)

(4.6)

For a dipole in layer 0 we find from Eqs. (4.2)
and (4.3) with Eqs. (3.21) and (3.27)

L(g,) ) p, Im[E„(x,)]
L-«0)j, p, im[E„(x,)]'

~ ~

L(z,) m, Im[H„(x,)]
(nJ m, im[H„(x,)]

Inserting Eqs. (3.23)-(3.25) into (4.7) we obtain

(4.7)

(4.8)

for an electric dipole of orientation 6

[L(z,)), e =cos'8[L(z, )], , +sin'& [L(z,)], „(4.9)

where & and ~(, respectively, denote a dipole ori-
ented perpendicular (8 =0) 'and parallel (8 = 90') to
the layer. We further obtain

The second line in Eq. (4.1) follows from Poyn-
ting's theorem; it leads to a simple way to calcu-
late L. The radiated power L is equal to the ne-
gative of the work done per unit time by the field
on the source; I(x) is the current density in the
source. With Eq. (4.1) we find for the electric
and magnetic dipoles

L, =;vp, Im[E(x,)], (4.2)

=-,'(om, Im[H(x, )], (4.3)

respectively, where Im[ ] denotes the imaginary
part of [ J. The power radiated by electric
(magnetic) dipole is proportional to that component
of the electric (magnetic) field in direction of the
dipole axis at the position x, of the dipole which
is 90' out of phase with the oscillating dipole mo-
ment. Inserting Eqs. (3.22) and (3.28) into Eqs.
(4.2) and (4.3), respectively, we obtain for the
powers radiated by a dipole in an infinite medium
of refractive index n0

and

{k(k,)/t. (k,)], , =1k;(kJ ' Hk f r'. (k, ,) 'k'd(kk')),
0

(4.10)

{k{z,)(k.(k.)l., =)kl{k,)-'Hk(f {(k, „)'r'"+(k.)*r',")(k„.) 'k(k')), (4.11)
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where x,'"~'(z) is given by Eq. (3.26). For the total power radiated by magnetic dipoles Eqs. (4.9)-(4.11)
hold true with interchanged polarization indices:

(s)-(P), (P)-(s).
(4.12)

From Eqs. (4.9)-(4.12) follows that the normalized total radiated powers L(z,)/J. „(n,) for an electric or a
magnetic dipole of any orientation [I) depend only on the reduced distance n, z, /X, on the reduced optical
film thickness n, d, /A. , and on the reflection coefficients r(B'&~' (j =1, 2) which in turn depend only on the
(complex) relative refractive indices n, /n, and n, /n, in the case where media 1 and 2 are homogeneous.

In the special case where n, =n„ the dipole is located in medium 1 at distance z, from the interface to
medium 2 and Eqs. (4.10) and (4.11) reduce to

[L(e„)/L (n)], , =1+,(k)' B(ef r'e'(k, ,)'exp( k,ik) e,e(d))'n, (4.13)

[L(e,)!L (n, )], =1+, (k, )
' Be f [(k,)'r,",' —(k, ,)'r', r,'](k, ,)

' exp(kik, ,e,)d(x')),
0

(4.14)

while for magnetic dipoles analogous expressions
hold with interchanged polarization indices (s)—(p). Equations (4.13) and (4.14) agree with Eqs.
(3.15)-(3.17) of Ref. 5.

Our results (4.10) and (4.11) for the dipole in
layer 0—expressed with Eq. (2.3) in termS of
radiative lifetimes —agree with those of Chance
et at.' [their equations (2.47) and (2.48)] who gave
a derivation for electric dipoles only. The ap-
proach used by these authors differs from ours
in the following respects: They use the model of
a harmonically bound charge for the electric di-
pole. The oscillation of the charge under the re-
action of the reflected field yields the radiation
damping of the dipole. The classical model is
applied without further theoretical justification.
They solved the em boundary. value problem by a
different technique.

We give a physical interpretation of Eqs. (4.10)—
(4.12). The power emitted by the dipole in the
form of plane waves in layer 0 [integration inter-
val 0 & ~ = (k'„+k',)' ' ~ k, ] is determined by the fol-
lowing effects:

(i) The wide-angle interferences of the emitted
plane waves (t)„,(k„,k,) and (]))„(k„,k,) with wave
vectors k(k„,k„k,=+k, ,) and k(k„,k„k, = —k, ,),
respectively. The wide-angle interferences arise
only if the dipole is near to a single partially re-
flecting plane interface or between two such inter-
faces. The directly emitted wave (())„,(k„,k„) in-
terferes with that part of the wave (t) (k„,k„)
which is reflected from the interface 0/2 (cf. Fig.
2 of Ref. 5); also the directly emitted wave

(k„, k,) interferes with that part of the wave

,(k„, k,) reflected from the interface 0/1.
(ii) The waves resulting from these wide-angle

I

interferences are then reflected back and forth
between the interfaces 0/1 and 0/2. This leads
to the multiple-beam interference factor m given
by Eq. (3.19) which appears in Eq. (3.26). The
energy emitted by the dipole is radiated into me-
dia 1 and 2 in the form of plane or inhomogeneous
waves, respectively, depending on whether the
medium is loss-free or absorbing. If n, &n„n„
and if d, exceeds the cutoff thickness, layer 0 is
a planar dielectric waveguide whose guided modes
are excited by the dipole. Then, energy is also
carried away in the waveguide.

The evanescent waves in the dipole's near field
play no role for its emission in an infinite me-
dium. But for a dipole in a thin layer they can
contribute to the radiated power (integration in-
terval k, &z&~). Assume that one of the adjoin-
ing media, say, medium 2, is a loss-free di-
electric, optically denser than medium 0, i.e. ,
n, &n,. Then, evanescent waves with k, &i ~ k,
which reach the interface 0/2 are refracted; the
transmitted waves in medium 2 are plane waves
with angles of refraction c[, =arcsin (z/k, ) ex-
ceeding the critical angle o, , =arcsin (n, /n, )
[cf. Fig. 3 of Ref. 5]. We have shown that this
emission process can contribute very effectively
to the total power radiated by a dipole in front
of an interface to a denser medium. ' For dipoles
in a thin layer 0 this emission process is in-
fluenced by the following two effects which are
analogous to the wide-angle interferences and the
multiple-beam interferences of the emitted plane
waves.

(a) Interferences involving the two evanescent
waves (I)„,(k„,k,) and (]])„(k„,k, ) which for a di-
pole in an infinite medium 0 exist separated in the
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half-spaces z )z, and z(z„respectively. The
interference effect results from the presence of
the interfaces 0/1 and 0/2. Interfering waves
are the evanescent wave Q„(k„,k,) and that part
of the wave (t)„,(k„,k,) reflected from the inter-
face 0/1, which after this reflection also decays
in the -z direction. The two superposed waves
impinge on to the interface to the (denser) me-
dium 2.

(b) The resulting wave is then reflected back and
forth between the interfaces 0/1 and 0/2.

Different processes in which the evanescent
waves contribute to the radiated power L(z, ) are
treated by Chance et al.'. If medium j (j =1,2)

is absorbing, the evanescent waves transport energy
from the dipole to the absorber, in particular, if
the dielectric permittivity of medium j is negative
fe&& —(n, )'], energy is absorbed by surface (plas-
mon) polaritons.

From our derivation of Eqs. (4.10)-(4.12) it
follows (cf. end of Sec. III) that they are valid not
only for homogeneous media 1 and 2, but also
when one of the two media, or both, are planar
stratified in the z direction. For ~0'",.~' the re-
sulting reflection coefficients of the layer system
have to be inserted. The properties of media 1
and 2 influence the radiated power only through
the reflection coefficients.

V. DIPOLES AT AN INTERFACE: BOUNDARY CONDITIONS FOR THE RADIATED POWER

We will compare the total power radiated by the same dipole located on different sides of one and the
same interface. We assume the dipole to be located first in layer 0 at the interface to the loss-free homo-
geneous medium 1 (z, = d, —0), then in medium 1 at the interface to layer 0 (z, = d, + 0).

For electric dipoles in layer 0, i.e. , for 0&z, & d„Eqs. (4.10) and (4.11) can be written in the following
form;

(1+r',o')(k, ,) '«'d(«') i, (5.1)

(
=a. (ko) Re [(k, J (1zr+~))+ (kR) (1+r,' )](k, 0) 'd(«')) .

"0

For a dipole located in medium 1, i.e. , for z, - d„we find with Egs. (4.13) and (4.14)

(5.2)

(5.3)

and

=—'. (2,) ' Re f ((2, ,)'[( —e', '„', exp[2(2, , (e, —d )])
&)

+ (k, )'(1 +r,",', exp[2ik, ,(z, —d, )] I)(k„,) 'd («') i, (5.4)

where

1 +r'" ["r"[' exp(2ik d )lg 0 Og2 Zt0 0
(5.5)

(5.7)

I

With the expression (3.20) for the reflection coef-
ficients ra['&[', Eq. (5.6) becomes

1 +r( se P —
(~ /q )RP(k /k )2 (1 + r( se P))

are the reflection coefficients for a plane or
evanescent wave incident from medium 1 on to
layer 0. For magnetic dipoles Eqs. (5.1)-(5.4)
hold with interchanged polarization indices (s)—
(P).

We now consider dipoles on the interface z =d, .
For z, =d, Eq. (3.26) yields

[L(z, =d, —0)], , = (n, /n, )4[L(z, =d, +0)]...
[L(z, =d, —0)], „=[L(z, = d, +0)], „,

(5.8)

(5 9)

With the result (5.7) we obtain by comparing Eqs.
(5.1) and (5.2) with Eqs. (5.3) and (5.4) our final
results:

1 +ro';~' exp(2ik, ,d, )
1 +r("[' = (1 +r"&')

1 —r " r exdpe(2ik d )0~1 Ot2 Zg0 0

(5.6)

[L(z, =d, —0)] = [L(z, =d, +0)]„. (5.10)

E(luation (5.10) holds for magnetic dipoles of arbi-
trary orientation 8.
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I,et us consider a thought experiment in which
a dipole is moved across the interface between
media 0 and 1, the dipole moment and orientation
6I of the dipole axis being kept constant. For a
magnetic dipole with arbitrary orientation
(0 & 8 & 180'), and the parallel electric (e, ~~)

dipole the radiated power does not change, i.e.,
L is continuous across the interface. For the
perpendicular electric (e, &) dipole a'L is con-
tinuous; for the (e, &) dipole the radiated power
is lower in the optically denser medium and higher
in the rarer medium. The boundary conditions
(5.8)-(5.10) for L are not only valid for dipoles on
an interface between the planar stratified media
1/0/2 considered in this section; they are valid for
dipoles on the interface between any two linear,
isotropic, loss-free, and nonmagnetic media,
since they can be shown to follow from the em
boundary conditions, viz. the continuity of E„ II, ,
B„and D, across the interface. '

2~(S, P) (S, P) ~(s, P) ~~(S, P)
(Sf p) Ot 1 0~2 0 ~ 1 Ot2

&st p) (s, t))
Ot 1 0~2

(6 1)

Inserting the expressions (3.20) for the reflection
coefficients r,"&~' into Eq. (6.1) we find

1 +r sty —
(g /q )sn(P /k )+i(1 yr~s~P ) (6.2)

where p =0 and p =1, respectively, for s- and P-
polarized waves. Note that x,"*,~ are the reflection
coefficients for the interface between medium 1
and the directly adjoining medium 2, no inter-
mediate layer 0 being present. Inserting Eq.
(6.2) into Eqs. (4.10) and (4.11)we find by com-
parison with Eqs. (4.12)-(4.14)

[L, /L„(n, )] = (n, /n, )"[I., (z =0)/L„(n, )], (6.3)

where y =5 for (e, &), y =1 for (e, ~(), and y = 3 for
(m, &)»d (m, II) dipoles. ' Equation (6.3) expresses
the normalized power radiated by a dipole in an
extremely thin layer 0 between the homogeneous
loss-free dielectric media 1 and 2 in terms of
the normalized power radiated by the same dipole
located in medium 1 at the interface (z, =0) to the
directly adjoining medium 2. With Eq. (4.4) for
I, (n), Eq. (6.3) yieMs

VI. SPONTANEOUS-EMISSION RATES FOR
EMITTERS IN EXTREMELY THIN LAYERS

We derive an approximation for the normalized
spontaneous-emission rate for emitters embedded
in extremely thin layers. With z, -0 and d, -0
we obtain from Eq. (3.26) the approximation

and

(6.6)

Equation (6.6) is valid for both (m, L) and (m, [()
dipoles, and, because of Eqs. (4.9) and (4.12) also
for magnetic dipoles of arbitrary orientation 8.

Equations (6.4)-(6.6) can also be derived from
the following consideration: According to Sec. V,
e'L(z, ) for an (e, L) dipole and I.(z,) for (e, [() and
m dipoles are continuous across an interface be-
tween two media. We assume that for a dipole
in an extremely thin layer the radiated power
L

y 0 g is independent of '

zo Therefore, L. ..can
be obtained from the value of L(z, =d, ) for a dipole
in medium 1 at the interface to layer 0. For ex-
tremely small d, the existence of layer 0 between
media 1 and 2 can be neglected [i.e. , the reflection
coefficients r', 'Ot'2 given by Eq. (5.5) are rI",t",=
ri 2~ ], and we obtain Eqs. (6.4)-(6.6).

According to Eqs. (6.4) —(6.6) the power L. ..
radiated by a dipole in an extremely thin layer
is independent of its position z, . For (e, -L) di-
poles only, L», depends on the refractive index
n, of layer 0. For (e, [() dipoles and magnetic di-
poles of any orientation 0, L. .. is independent
of the properties of layer 0. We obtain analytical
expressions for L. ../L„(n, ) when we insert into
Eq. (6.3) the expressions for L»(z, =0)/L„(n, )
which we have derived i.n Ref. 10. The functions
L, ,(z, =0)/L„(n, ) =—l'"(n) for (e, &), (e, [(), (m, (()
dipoles (the latter notation was used in Ref. 10)
depend only on the relative refractive index
n —= n, /n, . Therefore, the normalized radiated
powers L. ../L„(n, ) are functions of the relative
refra. ctive indices n, /n, and n, /n, only; they are
symmetric in n, and n2. From the symmetry of
the physical situation it is obvious that an inter-
change of media 1 and 2 can not affect the radiated
power L, , , In Eqs. (6.3)-(6.6) the indices 1 and
2 can be interchanged. Then, L. .. is expressed
in terms of the power L, ,(z, =0) radiated by the
dipole located in medium 2 at the interface to the
directly adjoining medium l. [The resulting ex-
pressions are consistent with Eqs. (6.3)—(6.6)
because e'L for (8, &) and I. for (e, I() and m di-
poles are continuous across the interface 1/2;
this leads to l'"(1/n) =n~l" (n) with values of y
given immediately below Eq. (6.3).]

In the special case where n, =n, we have
I »(zg =I „(n,), and, consequently,

[L. ..], , =(n, /n, ) [L (n, )]... (6.7)

[Ll.0, 2]., i = (nl/no)'[Li, 2(zo = 0)].,i,
[I„,,].„=[I.. .(z, =o)], „,

(6.4)

(6.5)

(6.8)

for (e, )() and m dipoles. Parallel electric dipoles
and magnetic dipoles of any orientation 6) in layer 0,
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radiate as if they were located in an infinite
medium of index n, But for the perpendicular
electric dipole in layer 0 the radiation rate is
higher if n, & n, and lower, if n, & n, than that in the
infinite medium of index n, .

We estimate the layer thicknesses d, for which
the approximations (6.3)-(6.6) are valid. We ob-
tained Eci. (6.1) from Eq. (3.26) with the approxi-
mations exp(2Q, ,d, ) —1, exp(2ik, ,z,) = 1, and
expf2ik, ,(d, -a,)J= 1, where a, ~d, . For plane
waves emitted by the dipole we haze 2k, ,d, =4m

(n,d, /X) coso „where n, is the angle between the
wave vector and the z axis; the approximations
are justified if n,d, «A/8. For the evanescent
waves in the dipole field in layer 0 the exponential
functions become negative exponentials as, for
exa, mple, exp(- 2

~

k, , ~
d, ) with 2

~
k, , ~

d, = 4&

(n,d,/X)[(k'„+k', )/k', —I]'~'. If one of the adjoining
media (say medium 2) is optically denser than
layer 0 (i.e. , n, & n, ) the evanescent waves in the
dipole field with k, & (k'„+k',)'~' ~ k, appear as plane
waves in medium 2 with angles of refraction a,
exce, .ding the critical angle o, , =arcsin (n, /n, ).
This process can contribute very efficiently to the
total power radiated by the dipole (cf. Refs. 5 and
10). The approximations are justified if
do(n2-nJ'~'«A/8. If n, &n„n, the evanescent
waves do not contribute to the power radiated by the
dipole. In a subsequent paper we will investigate
the range of applicability of the approximations
(6.4)-(6.6) by comparing values L», calculated
from them with values L(ao) calculated from Egs.
(4.10)-(4.12) by computer.
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