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The optical absorption spectrum of SiO, is calculated using tight-binding single-particle Hamiltonian and a
screened Coulomb electron-hole interaction. The results of the calculation suggest strongly that all four features
in €, are excitonic resonances, that the gap in SiO, is 8.9 eV as indicated by internal photoemission, and that a
Rydberg series of disallowed excitons exists beginning at 8.4 eV.

I. INTRODUCTION

Despite the technological importance of SiO,
and the extensive experimental and theoretical
work performed on it in recent years,'? its optical
absorption spectrum is still not completely un-
derstood. The reasons for this, which are
numerous,’ may be traced to the unfortunate
confluence in this material of three factors an-
tagonistic to simple analysis of optical spectra.
The first is the large gap and small conduction-
band effective mass SiO, has in common with
alkali halides® and rare-gas solids.* This causes
the electron-hole interaction to be large,>™* thus
preventing computation of €, using single-particle
spectra® % alone, but not sufficiently large to
make the Frenkel picture of exciton formation
quantitatively correct. The second is the struc-
tural complexity of SiO, in all its naturally oc-
curring allotropes, particularly its glassy state.
The third, and probably most important, is its
lone-pair nature, i.e., its dense, overlapping,
structure-dependent valence bands. These are
sufficiently close together to be thoroughly mixed
by the electron-hole interaction and therefore
must be dealt with as a whole. The difficulty in
interpreting the absorption spectrum of this ma-
terial has had a number of serious consequences,
the most significant being uncertainty™’? as to the
size of its gap.

In this paper an attempt is made to shed some
light on the nature of electronic excitations in
Si0, via a model calculation of €,. The calculation
is motivated by the observation'? that matrix ele-
ments of the single-particle Green’s function tend
to be the same in any structure in which the in-
tegrity of the SiO, tetrahedron is preserved. An
obvious corollary of this is that inclusion of the
electron-hole interaction via a Green’s-function
technique? must also be insensitive to structure
if the excitons are sufficiently small. That this
is probably the case in SiO, is indicated by the
remarkable similarity of the crystalline and
amorphous absorption spectra. Insensitivity of

the Green’s function to structure has been used
in this calculation as justification for adopting the
highly symmetric but nonexistent g-cristobalite
as a prototype structure and exploiting the favora-
ble symmetry to make tractable the inclusion of
a screened Coulomb electron-hole interaction.
The calculation leads to sufficiently small exci-
tons to justify to original approximations and sug-
gests very strongly that

(1) all four features in €, are excitonic reson-
ances,

(2) the gap in SiO, is 8.9 eV, and

(3) there is a Rydberg series of disallowed exci-
tons beginning at 8.4 eV.

II. EXPERIMENTAL SURVEY

Figure 1 shows reflectivity spectra of crystalline
and amorphous SiO, (Refs. 13 and 14) taken by
Philipp.*® The gross features of the two, which
are the same, include four peaks (10.3, 11.7,

14.0, and 17.3 eV), a rapid decrease in €, below
10.3 eV, and a more gradual decrease above 18.0
eV. The evident insensitivity of €, to disorder has
led’® to the speculation that its structure arises
locally, possibly as a result of molecular sym-
metries preserved when the crystal is made
glassy. The lowest two peaks are thought® ! to

be excitons. Mott'® has pointed out that the ex-
pected narrowing of the 10.3-eV peak at low tem-
peratures does not occur, although some tempera-
ture dependence is observed.'®* The large width

of this feature (~0.5 eV in a-quartz at room tem-
perature) is thus perplexing and has led to the
speculation®® that phonon scattering is anomalously
strong.

Reproduced in Fig. 2 are measurements by
Appleton et al.'” of optical density and photocon-
ductivity in SiO, near the absorption edge. These
show an “exponential edge” between 8.9 and 10.3
eV (probably present in the crystal as well) and a
tail of absorption between 8.4 and 8.9 eV coinciding
with a quenching of the photoconductivity. The
residual absorption below 8.4 eV, found to vary

3021 © 1980 The American Physical Society



3022 R. B. LAUGHLIN 22

30

Si 0, (CRYSTAL)
25

n
o

o

o

REFLECTANCE ( PERCENT)

Si 0p ( FUSED)

I 1 1 1 ]
0o 5 10 15 20 25

hv (ev)

FIG. 1. Comparison of the reflectivities of crystalline
and fused quartz taken from Ref. 13. The values for
fused quartz have been lowered by 5%.

from one sample to another, was presumed to be
due to impurities or defects. These authors ex-
plain the photoconductivity results by postulating
a series of weakly allowed excitons broadened by
random internal electric fields associated with
disorder.'® Below 8.4 eV, all absorption is due

to impurity or defect ionization, which contributes
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FIG. 2. Absorption coefficient and photoconductivity
of Si0, taken from Ref. 17. Solid lines refer to the glass,
dashed lines to the crystal. The dotted line is an esti-
mate of @ for amorphous silica based on reflectivity
data from Ref. 13.
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FIG. 3. Electron-energy-loss spectra of amorphous
Si0; for g=0 (solid line) and ¢=0.6 A~ (dashed line) taken
from Ref. 20.

free carriers and thus photoconductivity. Above
8.4 eV, excitonic absorption competes with defect
absorption for the available light, and the photo-
conductivity drops. The resumption of photo-
conductivity at 8.9 eV corresponds either to the
band gap (as would be the case in alkali halides)
or to a threshold for ionizing excitons at elec-
trodes or defects. Barely visible in Fig. 2 is some
fine structure between 8.4 and 8.9 eV, suggestive
of an excitonic Rydberg series. Recent attempts
to reproduce this structure have not been success-
ful.’ Appleton et al. also measure the absorption
coefficient of a-quartz between 7 and 9 eV and
find the edge much more sensitive to temperature
than that of amorphous silica. At 100°C they
find a steep rise near 8.4 eV which moves to 8.7
eV as the temperature is lowered to —100°C.
Another experiment of potential significance in
this problem is the electron-energy-loss result of
Meixner et al.,? partially reproduced in Fig. 3.
They report a loss spectrum at §=0 in good agree-
ment with ~Im(1/€) as deduced from optical data.
At ¢=0.6 1?\'1, however, all the features except
that at 15 eV have washed out, and no disallowed
exciton has become visible near 8.4 eV. There
appears to be a slight upward shift of the peak at
15 eV as q is increased.

III. THE MODEL

In the presence of the electron-hole interaction
€, may be calculated by solving Dyson’s equation

G=1/(G5*~-V) 1)

for the two-body Green’s function G using the
single-particle spectrum to generate G, and using
a screened Coulomb interaction for V., Five major
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approximations have been used in the present
calculation.

Firstly, a simplified tight-binding Hamiltonian
has been used to describe the single-particle ex-
citations. The applicability of tight-binding Hamil-
tonians to this system and the significance of the
parameters in them has been discussed in detail
in Ref. 12. The valence states of SiO, may be seen
from the pseudopotential charge densities® to be
composed of oxygen 2p orbitals, bonding either
with one another or with silicon orbitals. The
02p orbitals perpendicular to the bond, which
are forbidden by symmetry from interacting with
silicon orbitals, broaden into a band centered at
the O2p energy referred to'® as the “lone-pair-like”
band. The O2p orbitals along the bonds interact
strongly with silicon orbitals to form the “bond-
ing” band, roughly 5 eV lower in energy. The
lone-pair-like band possesses'? three peaks, each
corresponding to one of three irreducible repre-
sentations of the tetrahedral group: E, F, and
F,. The bonding band similarly possesses a peak
at the high-energy edge which is F, like. The
Hamiltonian used in the present calculation differs
from that of Ref. 12 in that the silicon orbitals
are not included explicitly and that the conduction
states are represented by oxygen s orbitals alone.?*
The interaction between adjacent conduction orbi-
tals is adjusted to reproduce the 0.3m, effective
mass obtained in the pseudopotential calculation,®
and the orbitals are assigned an effective self-

energy appropriate for producing a fundamental
gap of 8.9 eV (Ref. 22). The parameters used in
the single-particle Hamiltonian are listed in
Table I.

Secondly, the B-cristobalite structure, which
is that of silicon with oxygen atoms centered in
the bonds, has been adopted. This is justified
on the ground that neither the single-particle
spectrum?® nor €, is very sensitive to structure,
and it has the important effect of making the sym-

TABLE I. Parameters used in the single-particle
Hamiltonian. All energies are in eV. The notation for
the interactions between O 2p orbitals is that of Ref. 12.

Holes Electrons

029
€ponding™ —6.98

eg%ﬁonding‘ =-1.739
Vi=-0.625
V3=0.0

V= —0.616
vy=0.108

€9% = 19.952

V=-1.842
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FIG. 4. Solid curve: Density of valence states of g-
cristobalite calculated using the Hamiltonian of Table I.
The normalization is the number of valence orbitals per
unit cell. Dashed curve: Experimental x-ray photo~
emission spectroscopy of amorphous silica taken from
Ref. 23.

metry of the tetrahedron the symmetry of the
problem. Figures 4 and 5 show the valence and
conduction states of B-cristobalite calculated us-
ing the Hamiltonian of Table I. The x-ray photo-
emission spectra (XPS) of amorphous SiO, (Ref.
23) and the free-electron (m *=0.3m,) (Ref. 6)
densities of states are shown for comparison.
Thirdly, a dipole matrix has been adopted in
which the electric field connects only oxygen sp
orbitals on the same atom. This mechanism,
which has been suggested before,? is physically
reasonable and it tends to give the same result
as more complicated mechanisms involving cross-
ing transitions. The approximate equivalence of
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FIG. 5. Solid curve: Density of conduction states of
B-cristobalite calculated using the Hamiltonian in Table
I. The fine structure above 13 eV is computer noise.
The normalization is the number of conduction orbitals
per unit cell. Dashed curve: Free-electron density of
states (1/272)@®m*/i*)}/*VE, with a=5.26 A the g-
cristobalite primitive translation length.
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all mechanisms is a side effect of the small con-
duction-band mass. The conduction states most
relevant to the absorption edge are those near
the minimum at I'.® As small m * prevents states
with large K from participating in the exciton
wave function, the value of the conduction wave
function in the vicinity of an atom is always well
represented by its value on the atom.

Fourthly, the electron-hole interaction is as-
sumed not to distort the tight-binding basis set
and to take the value e?/e» between a pair of orbi-
tals, where € is the high-frequency dielectric
constant of SiO, (2.38) and 7 is the separation of
the orbital centers. If the valence and conduction
orbitals are on the same atom, 7 is taken to be
a bond length, the assumption being that most of
the conduction wave function lies on the neighbor-
ing silicon atoms.® In addition, as the numerical
solution of Eq. (1) requires a finite number of
degrees of freedom, the electron-hole interaction
is cut off beyond a separation of 8 A. This distance
corresponds to two effective Bohr radii and is
selected for three reasons:

(1) Numerical considerations make this a con-
venient place to stop. The number of degrees of
freedom grows as the cube of the cutoff radius.

(2) This is the distance at which the crystal and

amorphous topologies begin to differ. (The first
six-fold ring forms at 6 A in B-cristobalite.)

(3) This is the point at which the n =1 exciton
wave function and energy begin to stabilize. Most
of the optical oscillator strength into parabolic
excitons is into the n=1 state.

The most serious effect of the cutoff is to prevent
the binding of excitons with primary quantum num-
ber n=2 and higher. It also induces a small up-
ward shift in the »=1 binding energy, which may
be taken into account using perturbation theory.
The introduction of a cutoff is consistent with the
notion that the features in €, are local in origin.

Fifthly, a very limited, highly symmetric basis
set is used to expand the two-body Green’s func-
tion. Although the most natural position-space
basis elements are those composed of a hole on
atom j, pointed in the ath direction and an electron
on atom j,, these are far too numerous for nu-
merical work. They may be combined into two-
body Bloch states having crystal momentum g,
the set of which forms a basis in which G is
diagonal. For any §, it suffices to know Green’s-
function matrix elements pertaining to a hole in
the zeroth unit cell and an electron near that hole.
These are given, in the absence of the electron-
hole interaction, by

s 9 0RNS G [0 (i + @) (k + @) i) wa®) | s, @

<jh:je: Q|G0@)|jé,jé, CZ’} = Z
k

where [¢7(k)) and |¢"(k)) denote the nth valence
and mth Eonduction Bloch states at crys£a1 mo-
mentum k having energies E:(E) and E*(k). As
there are 12 valence orbitals in the unit cell, and
91 conduction orbitals within 8 A of each of these,
the number of relevant natural degrees of freedom
is 1092. The size of this basis set is reduced in
this calculation by drawing an analogy between
this system and that in which the holes are in-
finitely heavy. In that case, the hole resides on
only one oxygen atom at a time, each possible
hole location producing a problem with the sym-
metry of the staggered form of ethane, i.e., D,,.
With only on-site dipole transitions allowed, no
combinations of conduction orbitals except those
in the completely symmetric A,, representation
need be considered. There are only 12 of these
within 8 A of the hole. Accordingly, in this calcu-
lation the basis has been restricted to elements
combining a valence orbital in the zeroth cell with
the Ith (!=1, 12) A, shell of conduction orbitals
about that valence orbital. This approximation

mom E-EJ(R+@) +Ej(K) +d ; (@)

corresponds physically to disregarding excitons
of high angular momentum and is justified on the
ground that these are not generally visible in
optical spectra of wide-gap materials.®** Further
reduction is achieved at ¢=0 by exploiting tetra-
hedral symmetry. If the /th two-body basis ele-
ment about | j,, @) is denoted by |j,, [(j,), @), the
action of an element T of the tetrahedral group

is given by

Tijh)l(jn)’ a) = |T(]h),l(T(]h»’T(a» . (3)

Therefore, the two-body basis set may be trans-
formed, without altering the form of the electron-
hole interaction, which depends only on I, info the
irveducible representations of the holes. As the
model valence bands produce no Green’s-function
matrix elements between bonding and nonbonding

O p orbitals, judicious choice of coordinates to
remove degeneracy reduces the number of degrees
of freedom within a representation to the number
of shells (12).
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IV. RESULTS

Consider first the case of model electrons in
the presence of an infinitely massive hole. It suf-
fices to solve Eq. (1) in the presence of a point
charge on an oxygen atom, using as G, the single-
particle Green’s function generated from the con-
duction bands alone. The imaginary part of the
Green’s-function matrix element connecting the
orbital at the center with itself is proportional to
€,. Its value before and after the inclusion of the
electron-hole interaction is shown in Fig. 6. In
the presence of the interaction, two new features
appear near the band edge: the ordinary parabolic
exciton at 8.3 eV and an excitonic resonance, or
hyperbolic exciton, near 10.5 eV. Both of these
are well known®*2* in the spectra of alkali halides
and solid noble gases. The hyperbolic exciton is
usually portrayed®*2* as an electron-hole pair
at the L point, bound in two dimensions and un-
bound in the third. (An excellent account of this
in the case of CdTe has been given by Kane.®)
Even though the L point and its singularity do not
exist in a-quartz or amorphous silica, there are
two reasons to suspect that this resonance should
exist in these allotropes. Firstly, the size of the
hyperbolic exciton in the two dimensions in which
binding occurs is comparable®s to that of the
parabolic exciton. Thus, it should not be sensitive
to long-range order, particularly the occurrence
of sixfold rings of bonds which have been as-
sociated'®? with the peak at 13 eV. Secondly,
the tendency of the electron-hole interaction
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FIG. 6. Model €, for the case of infinitely heavy holes
with (solid line) and without (dashed line) the electron-
hole interaction. The negative imaginary part of the
Green’s-function matrix element connecting the electron
orbital at the center with itself is plotted. The real part
of the Green’s function has been computed as though the
imaginary part were zero beyond 18 eV. This allows the
effect of the electron-hole interaction to be checked with
a sum rule, but makes the calculation inaccurate at high
energy.

to enhance €, near the band edge is a well-
known?®'2® phenomenon in the theory of Wannier
excitons. In the presence of such a large
electron-hole interaction, however, deviations

of the tight-binding density of states from the ef-
fective mass value should cause the edge enhance-
ment to become a peak. The oscillator strengths
of the hyperbolic and parabolic excitons are com-
parable, the hyperbolic being about 1.6 times as
strong. The calculated binding energy of the para-
bolic exciton is 0.58 eV, compared to a theoretical
hydrogenic value of

E,=(R./€®)m*/m)=0.72 (4)

expressed in eV. This disparity disappears when
the effect of the missing Coulomb tail is taken
into account by perturbation theory, a somewhat
surprising result in light of the small exciton
size. The agreement is probably fortuitous since
approximation errors are expected to be on the
order of 10%. The parabolic exciton is roughly
the size of the ideal hydrogenic exciton which has
a radius of 4 A. 83% of the state lies within 8 A
of the hole, compared with an ideal value of 76%.
About 6% of the electron is on the hole, 24% is on
nearest-neighbor oxygen atoms, 18% is on second
neighbors, and 13% is on third neighbors. The
hydrogenic radius lies between first and second
neighbors.

Now consider the case of S-cristobalite. The
band structures giving rise to Figs. 4 and 5 pro-
duce the joint density of states shown in Fig. 7.
This is very similar to the one obtained from the
pseudopotential band structure for a-quartz,® and
indicates that, as in the pseudopotential results,
structure in €, arises only from matrix elements
and the electron-hole interaction.

In Fig. 8 the contribution to €, from transitions
between the nonbonding (=5 to 0 eV in Fig. 4)
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FIG. 7. Joint density of states for g-cristobalite. The
normalization is the number of two-body orbitals per unit
cell.
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FIG. 8. Contribution to €, of transitions from the non-
bonding valence band into the conduction band with (solid
line) and without (dashed line) the electron-hole interac-
tion.

valence band and the conduction band with and
without the electron-hole interaction is shown.

The obvious similarity between this and Fig. 6
results from the tendency of the upper valence
bands to behave as though they were composed

of three heavy holes. The three structure-in-
sensitive!? peaks (0, -2, and -4 eV) in the non-
bonding density of states are centered on the

three energy eigenvalues at I' of B-cristobalite.
These give rise to six excitons, pairs of which

to a good approximation lie in the irreducible rep-
resentation of the tetrahedral group of the ap-
propriate hole, i.e., F,, F,, or E. Thus, the F,
and E excitons are dipole forbidden. Although de-
parting from I" breaks the selection rule quadratically
in k (the single-particle Hamiltonian is even), the
light-conduction-band mass assures that the E%/2
(Ref. 29) absorption from the forbidden transitions
is very weak. One important difference between
Figs. 6 and 8 is the width of the parabolic exciton
in the latter, attributable to the slightly dissipative
nature of the F, part of the Green’s function be-
tween 8.9 and 11 eV. This width corresponds
physically to a lifetime for decay of the exciton
(an A, electron bound to an F, hole) into a free
A,-F, electron-hole pair. The width of the peak
is smaller in the model than it is in experiment,
probably because of the excess symmetry in -
cristobalite.

In Fig. 9, the contribution to €, from transitions
from the bonding (-6 to —11 eV in Fig. 4) valence
band into the conduction band with and without the
electron-hole interaction is shown. The transi-
tions giving rise to the unperturbed Green’s func-
tion involve primarily the peak at -6 eV, which
contains most*? of the bonding F, character. The
spectrum in Fig. 9 has been phenomenologically
broadened to simulate decays of excitons into free
electron-hole pairs involving a hole in the non-
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FIG. 9. Contribution to €, of transitions from the bond-
ing valence band into the conduction band with'(solid line)
and without (dashed line) the electron-hole interaction.

bonding band. The absence of such decays is a
pathology of the model Hamiltonian stemming from
the ability to decompose it exactly into bonding
and nonbonding parts. The density of states is not
sensitive to the value of the parameter (V) which
mixes bonding and nonbonding states, and there-
fore no way exists to establish its value except by
fitting the exciton width.

The quantity actually plotted in Figs. 8 and 9 is
the imaginary part of a Green’s-function matrix
element associated with a normalized two-body
degree of freedom consisting of a linear combina-
tion of four pairs of orbitals, an oxygen p, and
an oxygen s on the same atom, on each of four
atoms in the unit cell. The p orbitals point along
the bonds in the bonding state, point normal to
the bonds in the nonbonding state, and are com-
bined to have F, symmetry in both cases. Ac-
cordingly, the coupling to the electric field is
given by

(Fponding |2 =273 Ed (5)
(Fhonbonding| 1y = [B73 F | (6)

with d the effective dipole matrix element between
P and s orbitals on-site. Including a factor of 2
for spin degeneracy, one has for the electronic
contribution to ¢,

€ electrons — (_ 877d2/V) ('%G di £), (7)

where V is the effective unit-cell volume as de-
termined from the density of @-quartz. Assum-
ing an experimental width for the 10.3-eV peak of
0.5 eV and a height of 7, and knowing the integral

b,

ding , 4 ~b
+3G

—Im(G™™°ne ) jp=0,19, (8)
10.3-eVpeak
one estimates a value for d of 1.2¢ A, which is of
the expected order. The relative strengths of the
bonding and nonbonding contributions are at best
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approximate, since the bonding state has silicon
character® and thus relatively less strength on the
oxygen atoms. However, itis clear that the as-
sumption of on-siteO p— O s transitions necessarily
implies comparable contributions to € from the
bonding and nonbonding bands. The function €, as
given by Eq. (7), with arbitrary normalization,

is compared with experiment in Fig. 10. The
bonding contribution has been further broadened
in Fig. 10 to agree better with experiment. With
the band-gap fit to 8.9 eV, itis clear that a rea-
listic electron-hole interaction reproduces the
four peaks of the experiment at approximately

the correct energies. The peaks near 10 and 12
eV originate in the lone-pair valence bands, while
those at 14 and 16 eV start from the bonding
states. The theory also yields correct relative
strengths for all four peaks, indicating that in this
energy range the oscillator-strength ratio given
by Egs. (5) and (6) is satisfactory. The displace-
ments of the third and fourth peaks in the theory
could be corrected by using heavier electrons,

~ and it thus seems likely that the pseudopotential®
m* is slightly too small. As the binding mecha-
nisms of the nonbonding and bonding excitons are
similar, the separation of these energies must

be that of the bonding and nonbonding F, peaks in
the valence bands, seen in photoemission® to be
3.7 eV. Not readily visible in Fig. 10 but indicated
by an arrow is a precipitous drop in the theoretical
€, at 8.9 eV corresponding to the band edge.

In Fig. 11, the on-site matrix element for the
optically forbidden F, part of the Green’s function
with and without the electron-hole interaction is
shown. The F, analog of the visible excitonic
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FIG. 10. Superposition of the solid curves in Figs. 8
and 9 (solid curve) compared with the experimental €,
(dashed curve) for amorphous SiO, taken from Ref. 14.
The nonbonding contribution has been convolved with a
Gaussian of 1-eV width. The heights of the peaks at 12
eV have been equated. The arrow locates the band edge,
where a precipitous drop to zero of the theoretical €,
occurs.
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FIG. 11. Imaginary part of the Green’s-function ma-
trix element between the on-site (I =1) Fy state and itself
with (solid line) and without (dashed line) the electron-
hole interaction.

resonance at 10.3 eV is thus a disallowed exciton
at 8.4 eV. This is only the first in a Rydberg
series, visible in this plot by virtue of its large
amplitude for finding the electron and hole on the
same atom. The disallowed nature of these exci-
tons arises from a cooperative effect between
transitions on all four atoms in the tetrahedron,
and thus ought to be violated in €(q) for fairly
small §. Along symmetry directions, however,
where the computation of €(q) is still simple, it

is evident that the disallowed excitons contribute
onlytothe transversepart of €. For example, con-
strainingd to lie betweenT and X reduces the symme-
try only toC,,, withthe longitudinal part of € compris-
ingan A, representation. The set of nonbonding O 2p
orbitals contains two A, representations: the
vector (F,) state pointing along § and the E state
formed by negating two orbitals in the F, state.
The E part of the Green’s function, which thus
mixes with the F, part in €, as §—X, is virtually
identical to the F, part at I, except that it lies

4 eV higher. Therefore, as §—~X, a disallowed

E excitonic resonance near 12.3 eV should become
visible in €, but the F, exciton should not. Simi-
larly, constraining q to lie between I and L re-
duces the symmetry only to C,,, with the A, rep-
resentation again the relevant one. In this case,
however, the only A, representation is the F,
state pointing along §, and thus the dimensionality
of the problem is still 12, and neither the E nor
the F, exciton is visible. Plotted in Fig. 12 is the
theoretical value for the contribution to 61@) at
4=L (~0.7 A™Y) produced by transitions from the
nonbonding valence band. The only significant
difference between this €, and that of Fig. 8 is a
slight tendency for the unperturbed Green’s func-
tion to tail near 10.5 eV, and thus cause the gap
in €, to fill up. This effect is due to the failure

of the valence bands to function as three distinct
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FIG. 12. Contribution to the longitudinal part of €,(@)
at §=L from transitions from the nonbonding valence
band with (solid line) and without (dashed line) the elec-
tron-hole interaction.

holes at g+ 0 and is probably more severe in
a-quartz and the glass than in this model.

V. DISCUSSION

As itis based on an unparametrized electron-
hole interaction, the good agreement between
theory and experiment in Fig. 10 is persuasive
evidence that the gap in SiQ, is near 8.9 eV indi-
cated by photoconductivity.”'?2 It also indicates
that the dipole-forbidden excitons between 8.4 and
8.9 eV suggested by Appleton ef al.!” exist. For-
bidden excitons with nonzero angular momentum
should,®® in principle, contribute to the optical
density near the band edge, and thus a careful
measurement of the edge of a-quartz at low tem-
perature might be in order. It should be pointed
out, however, that if the gap in a-quartz is in-
direct, direct excitons might be lifetime broadened
via phonon-assisted decay.?°

There are a number of reasons why the forbidden
excitonic absorption in the glass might be a con-
tinuum. Dow-Redfield—type tailing'® might be
important, as might inhomogeneous broadening
due to fluctuations in the exciton binding energy
or allowed oscillator strength produced by weaken-
ing of the k=0 selection rule due to disorder.

One piece of evidence supporting the latter ex-
planation is the large temperature dependence of
the edge in a-quartz compared to that in the
glass.'” An increase in band gap with increasing
temperature should appear in both spectra, where-
as breaking of the momentum selection rule would
occur only in the crystal. One would predict from
~ such a picture that the absorption edge of the glass

would be similar to that of the liquid at the glass
transition temperature.

It seems likely that the width of the 10.3-eV
resonance, given incorrectly by the model, is at-
tributable in part to the Si—O-Si bend angle in
8i0,. Dissipation in the F, Green’s function is
related to the loss of tetrahedral symmetry at
k+0, and should thus be more prevalent when
tetrahedral point symmetry does not exist at all.

In this model the four peaks in €, between 8 and
18 eV are analogs of features seen in alkali halides
and rare-gas solids. As in these other wide-gap
materials,®*2* the holes behave as though they are
distinct and heavy, and the only relevant conduc-
tion band is the lowest one. The formation of the
two lower peaks (and thus of the two higher ones)
differs qualitatively in this model from the pic-
ture suggested by Pantelides? in that neither is
associated directly with a peak in the single-
particle €,. This is especially important in light
of the possibility®! that the peak at 11 eV in the
pseudopotential €, (Ref. 6) is not correct. The
grid in that calculation consisted only of 13 points
in the a-quartz irreducible Brillouin zone and
was used to construct a histogram of width AE
=0.5 eV which was later smoothed, The step giv-
ing rise to the peak at 11 eV is quite small and
could conceivably be noise.

The failure of the disallowed excitons to be
visible in €,(g) for §#0 has been shown to be ex-
pected along symmetry directions, but not in
general. A more universal argument may be ap-
plied if § is small. Since § is responsible for the
destruction of tetrahedral symmetry, the amount
of F, character in the disallowed exciton may be
expanded in a power series in §. Since this exci-
ton is a pseudovector, however, it can be con-
verted to a vector only via cross product with q.
This forces the exciton dipole moment to be trans-
verse to lowest order in 4, and thus invisible in
energy-loss spectroscopy.

The peak at 15 eV in Fig. 3 is the last to wash
out with increasing §. A possible explanation for
this is that the bonding valence bands involve only
two irreducible representations and are wider
than the nonbonding bands. In 8-cristobalite there
are four bonding bands, two of which are relatively
flat and generate the peak in the density of states
at -6 eV. These two are completely F, in charac-
ter and fransverse. The two remaining bands
form the peaks at -7 and ~9 eV and share the A,
and longitudinal F, charactér, the latter being
concentrated near —6 eV. The longitudinal F,
character in the two-body Green’s function there-
fore comes primarily from one band and is not
strongly smeared until § approaches X. One con-
sequence of this picture is that the parabolic exci-
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ton (15 eV) should track the downward dispersion
of the longitudinal F, valence band between —6
and -8 eV, and thus disperse upward by about 1

eV by ¢=0.6 A™!, This is consistent with the trend

observed in Fig, 3.
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