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Configurational model for a one-dimensional ionic conductor
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The static and dynamical properties of a Frenkel-Kontorova model (generalized to arbitrary density of defects) are
studied. This system with a constant density of particles is intended to describe a one-dimensional ionic conductor,
The dynamic properties are studied within a generalized free-rate theory in configurational space. (Note that this
description does not allow for soliton-type transport. ) For the case of a piecewise parabolic potential, analytical
results are obtained for all the relevant quantities while for a sinusoidal potential numerical results are reported. A
refined measurement of the diffuse x-ray scattering for hollandite is presented and interpreted in detail with the
above model. This information is then used to compute the effective diffusion barriers and the conductivity that
result in good agreement with experiments.

I. INTRODUCTION AND SUMMARY

One of the few features common to most mem-
bers of the large family of materials exhibiting
superionic conduction is the intimate existence of
an ordered crystalline lattice and a highly dis-
ordered system, i.e., that of the mobile ions.
Often the complexity is further enhanced by an
incommensurate ratio between the number of
available ions and the number of sites available
to them. In addition, the density of the mobile
particles is generally very high (&10" cm ') so
that their static and dynamic properties are ap-
preciably affected by their mutual interaction.
For a theoretical modeling of the static and dy-
namical properties of such systems it is useful
to adopt the Frenkel-Kontorova model' generalized
to an arbitrary density of effects. ' This model
consists of a chain of harmonically coupled parti-
cles embedded in a periodic "substrate" poten-
tial. This system may in fact be interpreted as a
simplified one-dimensional version of a genera-
lized lattice-gas description of superionic con-
ductors as described in Ref. 3. This lattice-gas
concept focuses on the structure of the potential
energy in the hyperdimensional configuration space
spanned by all coordinates of all particles. Stable
equilibrium configurations of the particles in the
real space represent minima of the potential en-
ergy (containing all interactions between all parti-
cles) at the corresponding point in configuration
space. It is possible to define a parcellation of the
configuration space in volumes, each representing
one stable configuration. As a many-body process,
the jump of a particle from one site to a neighbor-
ing empty one (including the relaxation of the other
particles due to the interaction) corresponds then
to the transition of the system from the volume
of one configuration (in configuration space) to

that of another one.
This concept of dynamics corresponds to a gen-

eralized rate theory in configurational space. '
Such a description is valid if the minimum poten-
tial barrier (in configurational space) to go from
one configuration to another is larger than k~T
and if the damping is large enough so that when
the system moves from a given configuration it
completely relaxes into a nearest one before a
new jump takes place.

In this paper we show that under certain condi-
tions analytical solutions for the static and dy- .

namic properties can be given for such a model;
for more complex situations we discuss numeri-
cal results. This work has been motivated in part
by the desire to demonstrate the practical ap-
plicability of the generalized lattice-gas concept
and in part by the fact that there are extensive
experimental data available on the linear ionic
conductor hollandite, a system that represents
a close realization of the Frenkel-Kontorova
model.

In the second part we thus apply our model to
hollandite. Through a fit of the diffuse x-ray
scattering spectrum we determine the two rele-
vant microscopic parameters: the ion-host lattice
interaction and the ion-ion interaction. Using no
further adjustable parameters 'we then compute
the ionic conductivity of hollandite within a genera-
lized rate theory. The result of this calculation
is in reasonable agreement with experimental
data. We conjectuie that the overall very satis-
factory agreement between model calculations
and experimental data demonstrates the adequacy
of the configurational model for the description
of this system.

This paper is organized as follows.
(a) In Sec. II we describe the model and the two

main assumptions we make: (i) periodic bounda, ry
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conditions to preserve local charge neutrality
and (ii}generalized rate theory for the dynamical
properties. Two types of substrate potentials are
considered: a piecewise parabolic one for which
analytical results are obtained and a sinusoidal
one for which a numerical analysis' is performed.

(b) In Sec. III we study the equilibrium proper-
ties and show that for the case of a piecewise
parabolic potential the problem of determining
the static configurations of the Hamiltonian given
by Eq. (2.1) can be reduced to an effective spin
model with exponential interaction and fixed mag-
netization. The results are analytical in the sense
that, given a configuration only in terms of oc-
cupancy of the pots of the potential, the equili-
brium displacements of all the particles and the
corresponding configurational energy follow [see
Eqs. (3.32) and (3.35)]. Of course, in practice,
some computer work is still necessary to gene-
rate all the possible configurations of a given
system. Some of the results of this section have
already been briefly reported in a Letter. ' Here
the full derivation is given.

(c) In Sec. IV we extend the description of Sec.
III to the saddle-point configurations to determine
the effective barrier for diffusion. The transfer
rate in configurational space is evaluated for the
full many-body system including the effect of
thermal fluctuations of all particles. The cor-
responding conductivity is evaluated neglecting
correlation between different configurational
changes. It is found that, also for a finite density
of defect, a good description of the total con-
ductivity can be obtained in terms of quasiparti-
cles consisting of a vacancy plus the associate
distortion field of the surrounding particles.

(d} Section V is dedicated to the analysis of spe-
cific results of the model described in the previous
sections. A numerical study of the same model
with a sinusoidal potential is also reported. These
models are applied to study different properties
of the one-dimensional ionic conductor hollandite,
for which refined data on diffuse x-ray scattering
are also presented.

The main features we consider are (i) the sta-
bility of configurational states and their contribu-
tion to the specific heat, (ii) the reduction of the
diffusion barriers due to the interaction between
particles, and (iii) the analysis of diffuse scat-
tering and conductivity in hollandite.

II. THE MODEL

We consider a system of mobile interacting
ions confined to linear motion and subjected to a
periodic substrate potential owing to the crystal-
line surrounding. If the interaction between the

ions is strong enough we can expand the inter-
action potential around the equilibrium configura-
tion corresponding to no substrate potential and
only retain the quadratic terms. The Hamiltonian
is then

N E
B= —'mi, + Vx,

+ —,
'

A. Q (x„,—x, —b)', (2.1)

where x, denotes the position of the Lth ion. The
substrate potential V has periodicity a. In general
this periodicity is different from b, the periodicity
that the interaction between the ions would produce
in the absence of the substrate potential.

The first authors to study the dynamical evolu-
tion of a Hamiltonian given by Eq. (2.1}with a = b

were Frenkel and Kontorova. ' They pointed out
the possibility of soliton-type behavior of such a
system. Frank and van der Merwe4 then studied
the equilibrium properties for the discommensu-
rate case (a&&) with a. free-end boundary condi-
tion. Recently a number of authors have con-
sidered various problems concerning both static
and dynamic properties of such a system. ' '4

Here we study Eq. (2.1}as a representation of a
partly filled ionic channel and, in order to pre-
serve charge neutrality (fixed density), we employ
periodic boundary conditions. This is a very im-
portant fact because it gives rise to equilibrium
properties different from those corresponding to
free-end boundary conditions as studied in Ref. 5.
For the dynamical properties we study Eq. (2.1)
within a generali red rate theory. ""' This has
the following physical meaning: We assume that
the interactions between the mobile ions and the
ions of the fixed substrate give rise, in addition
to the potential V, to a damping acting ori our mo-
bile ions. Eventually a stochastic force should be
added to this description in order to preserve
thermal equilibrium. " This damping is assumed
to be small enough so that the vibrational proper-
ties of our system are not overdamped. At the
same time it is assumed to be large enough so
that when the system moves from one configura-
tion to another (adjacent), it completely relaxes
in the new configuration before a new jump takes
place. This means, for example, that if an ion
or, in general, a collective coordinate moves
from one potential well to another, it thermalizes
in this new well without preserving any memory
of the transfer. ' ' As one can. see, this ap-
proximation does riot allozo for the so-called
"soliton motion" often associated with equations
of type (2.1)." By its nature, soliton motion in-
volves successive correlated jumps of the system
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p =a/b =N/N, (2.2)

with N, being the number of pots defined by the
periodic potential (one pot per unit cell).

In order to obtain exact analytical results, it
is convenient to define the periodic potential as a
piecewise parabolic potential

V(x+a),
V(x}=

—,'m(u', x', [x~. & —,'a. (2.3)

Numerical results will also be presented for a
sinusoidal potential. The dependence of the re-
sults on the specific form of the potential will. be
discussed but we shall see that in general it is
rather small.

Assuming that a pot can be occupied by one ion

only, we introduce the variable

Pl S S ~ ~ ~ '& (2.4}

which denotes the number of empty pots which
follow the lth ion. A particular configuration of
the system is defined by the set

(2.5)

The relation between average particle density p
and P is easily obtained by noting that in the P
representation the number of pots is given by

N. =g(1 P, )=N(1 (P)). (2.6)

This gives

(p& =(I/p) -1 (2.7)

It is convenient to introduce the relative coordi-
nate 5x, that represents the displacement of the
1th atom from the bottom of its pots. From the

through several wells, an effect which is not be-
lieved to be of importance in linear ionic con-
ductors, "but there exist different opinions on
this point. '

If these conditions for the damping are satis-
fied, the transport properties can be given from
a generalized rate theory and they are independent
on the damping itself. For this reason we omit
any dissipative term in Eq. (2.1). It is important
to note that, even in the case of no external damp-
ing mediated by the potential V, a fluctuation
from equilibrium also decays into the vibrational
modes of Eq. (2.1)." ~ This means that an in-
trinsic damping always exists for fluctuations that
bring the system from one configuration to
another even if no damping exists for phonons.
This again supports the use of a rate theory.

With respect to the unit cell of length a defined
by the period of the substrate potential, the density
of ions is

definition of P, we can write

x, = P, +i a+-,'a+ex, (2.8)

and therefore

x„,—x, =a(p, +1)+5x„,—5x, .
We have then

(x„,—x, —5)' = (5x„,—5x, )'

+2(5x„,—5x, ) [a(P, +1}—b]

(2.9)

+[a(P, +1}-b]'. (2.10)

The third term is a constant and we will neglect
it. Using Eq. (2.7) and writing (from now on) x,
instead of 5x, we can rewrite the total potential
as

V= Q —,'m(u20x2, + —,'A Q (x„,—x,}

+ aA Q (x„,—x, }(P—(P)). (2.11)
l=&

We study now the static configurations corres-
ponding to the potential given by Eq. (2.11). A
complication arises from the fact that a given
configuration n =(P,) may not satisfy the condition
6V" =0 within the limits Ix, l

& a/2. For the mo-
ment we introduce an extended substrate potential
adjusted to every configuration. This potential
has the form of Eq. (2.3) for each pot but it ex-
tends beyond the limits Ix, I &a/2. The configura-
tions that make use of this extension of the po-
tential are unstable with respect to the original
potential given by Eq. (2.3}and we will eliminate
them later.

(3.1)
where the potential is the one given by Eq. (2.11)
with the extension of the background potential as
discussed at the end of Sec. II.

It is convenient to write the displacement x, as a
Fourier series with respect to the index L:

(3.2}

III. EQUILIBRIUM PROPERTIES OF
CONFIGURATIONS

In this section we study the static equilibrium
properties (zero temperature). The results we
derive here are analytical and allow us, given a
configuration n, to specify all the ionic displace-
ments at equilibrium and the corresponding total
potential ene rgy.

For a given configuration ~, the equilibrium
positions are given by the condition



22 CONFIGURATIONAL MODEL FOR A 05E-DIMES SIONAL IONIC. . . 2991

where Q, is the qth Fourier component of x„
Q, =~~ ~e x, .

1

(3.3)

q= n (n=0, 1,2, ... , N}.2g
(3.4)

By using Eq. (3.2) we have

Because of the periodic boundary conditions, p
only takes the values

(3.17)

The corresponding potential energy is given by
substituting Eq. (3.1'1) into the total potential
given by Eqs. (3.8)-(3,13). This gives

&.=~ p lm((~)( )
(~ "-&)(~"-&) ((Aa

m q&

(s.18)

1x„,—x, = ~ e'"(e"- l)Q,
e

(3.5)
v, =& aA g (e"—1)( )(e-"—1k(„,(3.19)

g (x„,—x, )' =2 g (1 —cosq}Q,Q, .
Similarly we have

(s.e)
V=V, +V, =- g (2 —e"-e-")K,K,

(Wa)'

a

(s.2o)

gx&=Pqq, . (3.'1)

The potential given by Eq. (2.11) can now be re-
written as (P —&P&)(P ~ —&P&), (3.21}

By inserting Eq. (3.13) into Eq. (3.20) we obtain

A.a2
V = [B(l- l' +1)+B(l l' —1-) —2B(l —l')]

l, l

with

V= Vo+V~ (s.e)

B(n) =— Q e""1 A „1
N m, (P(q)

(3.22)

and

Vo = Q —,'m(())(q)Q, Q, ,

(P(q) =(d', [1 +g(1 —cosq}],

g =2A/m H,

V, =ah Q (e"-1)Q,K
„

(3.9)

(s.lo)

(3.11)

(3.12)

For large N we can write

1 ' cos(ny)dy
2)(, (1 +1/g) —cosy

where

}nl +1

1 —Q

(3.23)

having defined

K, =
& g e '"(P -(P)).

The equilibrium conditions [Eq. (3.1)] give

8+ 9Q„BQ,
BQ i BQ . BQ .

where

(3.13)

(s.14)

(3.24)

Q [B(l—i'+1)+B(l- l' —1.) —2B(l —l')] =0.

(s.28)

It is convenient to introduce

c(=1+(1/g)(1 —41+2g ).
Of the various terms of Eq. (3.21), only the term

containing P,P, is different from zero since

BV~, t' BQ, BQ,' = Q —,'m y (q)
~
Q,

Q
' +Q,
q'

=my(q'}Q, . [y(q}=0(-q)] (s.le)

C(n} =4g[B(n +1)+B(n —1)—2B(n)] .
We now have two possibilities:

(s.28)

and

Aa(e" —1)r, . (s.le)

From Eq. (3.14) we obtain the equilibrium value
Q', for each Fourier coefficient once the configura-
tion is given. There results

C(0) =[8o/(1 —n)']2(o. —1}B(0}
= [18 ~/(~ —1)]B(o),

(b} n~O,

C(n) = [ea/(1 —n)'](n+1/n —2)B(n}

=8B(n}.

(3.2'T)

(s.28)
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The term (a) only gives a constant term that we
omit. The potential energy of a given configura-
tion ean then be rewritten as

which such properties as thermal occupancies,
x-ray structure factors, or the specific heat fol-
low in a straightforward fashion.

V =—Aa C(l —l')p, p,
l

and defining

(3.29)
IV. CONDUCTIVITY

Ci (n) nl nl + -I nl /x

With

we finally have

(3.3O)

(3.31)

where

l~l';l&l'
(3.32)

and

J=SJO
( 2)

Z =-'m(u'(-,'a)'
0

(3.33)

(3.34)

(3.35)

At this point we have to remember that this result
is based on the virtual extended substrate poten-
tial, and to remove this additional assumption,
Eq. (3.35) has to be completed with the condition

(3.36)

If this condition is not fulfilled, the corresponding
configuration represents no equilibrium state of
the system.

Equations (3.32), (3.35), and (3.36) constitute
the final results of this section. Given a con-
figuration n = (P,], these equations provide di-
rectly the static equilibrium displacements of all
particles and the total potential energy. They
form the basis for the systematic calculation of
all static equilibrium states of a system from

is the barrier height of the periodic potential.
It is clear from Eq. (3.32} that the problem is

now reduced to a one-dimensional spin model
with exponential interaction, where the magnetiza-
tion is fixed by the value of the particle density
p. Re remember that the only approximation
made until now is the avoidance of double occu-
pancy of a site.

Given a configuration we can also compute the
equilibrium displacements of all the atoms by in-
serting Eq. (3.17) into Eq. (3.2). This gives

In this section we derive analytical results for
the conductivity of our system using a generalized
rate theory. The conditions for the validity of
this approach have been discussed in Sec. II.

The conductivity corresponding to a generalized
rate theory contains two terms. ' One is inde-
pendent of the frequency and it is this one we ex-
plicitly consider here. The other term is fre-
quency dependent and vanishes for high frequen-
cies. It accounts for correlation between different
hops in configurational space. This second term
is omitted here but we point out that in general
it can give a finite contribution at zero fre-
quency. '" " The frequency- independent te rm
gives in our case""

(0) ~ ~ ~ 0

B a, n
(4.1)

(4.2)
I" „= 5' q-q, v'n „vn „s,

~ an'

where ( ) „

is the thermal average within con-
figuration n. The terms q = (x,) and v = (x,]
represent the position and velocity of the system.
The integration in Eq. (4.2) is over the common
surface S„„ofthe volumes (in configurational
space) corresponding to the configurations n and
+', n

„

is the normal to this surface in the di-
rection n - e', and e is Se Heaviside step func-
tion.

In order to illustrate how Eq. (4.2}works, we
first apply it to the ease of independent particles
in one dimension and reproduce the standard re-
sult of absolute rate theory. " For independent
particles we have

e2no")='"' ra2,
k~T (4.3)

where n, is the concentration of particles. From
Eq. (4.2) we have in this case

r = (v e (v))(5(x ——,'a)) . (4.4)

where 0 is the volume of our system, n indicates
a configuration as defined by Eq. (2.5), and /

is the difference in dipole moment between the con-
figurations cv and n'. The term I'„~represents
the average transition rate from the configuration
a to e'. Its definition in the general ease of three
dimensions and N particles is'
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We have

( mv')
vexp

~

— ld v

(ve(v)) 0 k e j ( keT
}~

exp—

(4.s)

Eq. (4.9) by using a Fourier expansion in analogy

to the derivation of Eq. (2.35). The result is

f 1 ~e"' ' f, 2B(l —f')
( )'N ~ y(q) m(u20 g

The activation energy is then written as
c/a - «(0) (2 (o)

~~I = '
Adur =~ol

' +1
2fl(0) ~

(5(x—,'a}) =e ~0 ~&

Zp /T

J m(u'x'&
exp/

2k~X )

2A~T )
(4.6)

The conditions for U ~ to exist are

Pl 00,

(4.ii)

(4.12)

~0 2m(2a)'. The approximation in Eq.
(4 6), valid if keT/Jo &1, consists in extending the
limits of integration from -~ to +~. We obtain

[x 0
j

~ -,'a, jx 0 +u, [ - —,'a.
The rate for a transition n- n' can be computed

from

e -&p/kg2'
21r (4.V) r ~ =f e

[ (S(u, +x p —2a})~ ~
(u r't

(o)

mm~
(4.13}

that is the standard result.
We consider now the evaluation of the rate as

given by Eq. (4.2) for the case of the system de-
scribed in Sec. II. It is convenient to split the
Hamiltonian into

Z ~l l'u1u1' s

l, l (4,14)

It is convenient to rewrite the potential energy as

H =H, +Hp, (4.8) v„=-,'[y(f, I,'}+y'(I, , f')],

where the configurational part H, is given by Eq.
(2.32) and the phonon part is

N

FI, = Q [-,'mu', +-,'A(u„,—u, )'+-,'m(u', u', ], (4.9)

where

y(l, I') =5, , m((u', +(u,'),

y'(I, l') =- —,'muP(s„. ..+5, , , },
(4.is)

having defined

ul +l + l
('0)

where x, represents the equilibrium displace-
ment as given by Eq. (2.35).

Given a configuration a =- [P,}, its configurational

energy is given [using Eq. (2.32)] by Z =H,([P,}}.
We consider now the elementary process that
leads from a configuration G to a configuration
n'. We assume, for example, that this corres-
ponds to the motion of the particle I, into a nearest
free pot. Of course this is not just a one-particle
process because the equilibrium positions of all
the other particles are affected through the cou-
pling with the particle L. The activation energy
is defined by the potential energy of the system
in the unstable saddle-point configuration for
which the particle l is somewhere halfway be-
tween its original pot and the adjacent one. The
difference between this energy and E defines
the activation energy U . In order to explicitly
evaluate this energy it is convenient to define a
force f, that acts on the particle l. The displace-
ment of a general particle /' where the particle I

is subjected to the force f, can be computed from

and we have introduced

4li =A/m, (4.16)

For convenience we now let the coordinate l =0
be the "jumping" coordinate. For a fixed up we

obtain from Eq. (4.14) a new potential energy

At 4W

l~u lug~ p

l. l (l, l"O)
(4.is)

where now u, indicates the relative displacement
with respect to u, given by Eq. (4.10) when uo is
fixed by the delta function appearing in Eq. (4.13).
We now have from Eq. (2V}

far
Z' =~

' e "«'~'e'e
(2 &?B

(4.18)

where

1 +du e lh vTe
l40

f +du e v»er
l

(4.19)

The explicit evaluation of Eq. (4.19}can be carried
out analytically using for the integrations the ex-
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(4.20)

1 1p2 + 1p2 4, [(1p2 + 1p2)2 1p4]1/2

a 2 [(1p2 + 1p2 }2 pp4]1/4

Note that for ~, =0 we obtain

(4.21)

tended harmonic potentials in analogy with Eq.
(4.5). The calculation, rather long, is not re-
ported here. " The result is

V. APPLICATIONS AND DISCUSSION

In this section we will illustrate some specific
results for the model described by Eq. Q.l). In
order to obtain analytical expressions for various
properties it was necessary to use a substrate
potential that is piecewise parabolic [Eq. (2.3)].
To evaluate the significance of the results ob-
tained with such a highly simplified potential we

have, in addition, performed fully numerical cal-
culations with a sinusoidal potential of the form

~~ =~0~ U~~' =Jo (4.22)
v, (x) =c, sin2[(11/a}x]. (5.1}

in agreement with Eq. (4.7).
For the case of a single vacancy Eq. (4.11}be-

comes

U =Jos. (4.23)

A single vacancy behaves thus as an effective
particle see ing an effee tive barr ier reduced by s
compared $o the single-particle barrier J„where

s= 1+& (4.24)

v =gpe 'p'/2s f(s),
where

(4.25}

8 QB
0 y T 2& y lt 0 (4.26)

where n„is the density of holes and no is the
density of potential minima. f(s) contains all the
nontrivial prefactor corrections due to many-
particle effects; from Eq. (4.21) follows

f(s) = [2(1+s)J'(1/s'"). (4.27)

Note that in Eq. (4.26}we have used the fact that
Il, —E,l =a.

For an arbitrary density of holes the conduc-
tivity is given by

o e -zp4/2srf(s)pF

where p =a/b. We have then

(4.28)

e -(E~ U ~at T)

/ling

T

f(s)pE =
e -E~/upT'

ctn'

(4.2 9)

The numerical evaluation of Eq. (4.29) gives a
rather smooth behavior +=1 for /22T/J p&0.1 and
p&0.75 with deviations of less then 10jp. The
implication of this result is that the description
of conductivity in terms of an appropriate "effec-
tive" single-particle picture as given by Eq.
(4.25) can be extended to the full many-body prob-
lem [as given by Eq. (4.29}] in a rather wide pa-
rameter region.

For a low concentration of vacancy the conductivity
thus becomes

A. Stability of configurational states

Without ion-ion interaction, our model system
of 13 particles in 17 wells possesses (,",}=2380
energetically degene rate conf igurational states
with the particles located at the local well mini-
ma. Introducing an ion-ion interaction leads to
an energy splitting between these states and
causes the equilibrium positions of the particles
to be shifted off the well minima. For a strong
interaction, certain configurations will no more
fullfill Eq. (3.36); i.e., certain particles are
shifted to a position outside their assigned well.
This means that there is no more local minimum

of the potential energy within that part of the con-
figuration space corresponding to the starting
conf iguration. Th is "configuration quench ing.

"
turns out to be of considerable importance in the
case of hollandite. In order to discuss the results
it is convenient to introduce

C = —'Aa2I (5.2)

as a measure of the interaction energy and C,

These calculations made use of an adapted least-
squares routine to determine all minima of the
13-dimensional conf iguration space.

We, in particular, determined the parameters
that best describe the experimental data available
on the hollandite. In the composition K2p/Ig„
Ti, „O„hollandite consists of an octahedral
(Ti, Mg) oxide framework forming separate linear
channels in which the potassium ions reside.
Each channel contains one site per unit cell along
the tetragonal c axis (c =2.97 A) and the fractional
occupancy p of these sites is equal to x. The
single-crystal samples used for the diffuse-scat-
tering experiments were grown by a flux method
and had a, composition corresponding to p =7'I/p. "
In our model we restrict the calculations to the
case of 13 particles within 17 wells, resulting in
a fractional occupancy of p =0.765, very close to
the experimental value. We have verified that
differently sized models with about the same p
give very similar results.
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[Eq. (5.1}]and C~=~em&umoa' as the energy barriers
for the sinusoidal and parabolic potential, re-
spectively.

In Figs. 1 and 2 we show how the total number
of stable configurations depends on the strength
of the interaction relative to the strength of the
periodic potential for the sinusoidal and the
parabolic potential. The number of states is
normalized to that of the interactionless system
(i.e., 2380). To display the energy spreading of
the states, Figs. 1 and 2 also give the number
of states existing in the 13-particle system with a
total energy up to 1, 2, or 3 barrier heights. The
results describe the complete transition from a
nearly interactionless highly disordered system
to a strongly interacting and highly ordered sys-
tem. The plateau in the total number of states
between 1.3 (C,/C, - 3 for the sine-wave potential
and between 3- C,/C~- 5 for the parabolic po-
tential is due to the fact that in these ranges there
remain all configurations with vacancies as next-
nearest neighbors or further apart.

Once the various stable configurations with the
associate energies are known, one can compute
the configurational contribution to the specific
heat. This problem has been specifically dis-
cussed in Ref. 2 where it is shown that small
groups of configurational states are a realization
of the two- (or few-) level systems introduced
phenomenologically by Phillips and Anderson
et al."to explain the linear specific heat observed
at low temperatures (0.1-1 K) in disordered sys-
tems. " In this respect we remark that, in our
model, the gap between two configurational states
can become extremely small, keeping the pa-
rameters within a reasonable range. ' In con-
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FIG. 1. The upper line shows the relative number of
stable configurations as a function of the ratio between
interaction energy and potential barrier for the case of a
sinusoidal potential. The other lines give the number of
states with a total energy to 1, 2, or 3 barrier heights
k:,).
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FIG. 2. Same as Fig. 1 for a piecewise quadratic po-
tential.

necting these configurational excitations to the
low-temperature extra-specific heat, one should
also note that at very low temperature (7( 1 K)
thermodynamic equilibrium cannot be reached
for all the configurations and the statistical prob-
lem has to be factorized into the groups of con-
figurations for which equilibrium is achieved.
This is necessary to obtain a linear specific heat.
In Ref. 2 we have simply used Boltzmann sta-
tistics and, in fact, it was not possible to obtain
a linear contribution to the specific heat over an
extended region of temperatures. For the case
of hollandite, these configurational excitations
are, in addition, expected to produce a peak in
specific heat at intermediate temperatures'
(40-100 K).

B. Displacive order and effective diffusion barriers

To given values of C, and C, (C~} and a given
temperature corresponds a completely def ined
state of order of our model system. It is interest-
ing in this respect to look in Figs. 3 and 4 at the
relation between the ratios C,/C, (C,/C~) and the
displacement of ions adjacent to a vacancy in the
ground state of our 17-well model system. The
ground state is given by the most regular distribu-
tion of vacancies, e.g., on the sites 1, 5, 9, and
13, the displacement is then taken as the average
displacement of the ions in wells 2, 4, 6, 8, 10,
12, 14, and 1t.

As discussed in Sec. IV the barrier for diffusion
is given by the difference of the energy of the
total system between an initial equilibrium con-
figuration and a saddle-point conf iguration. In
configuration space this saddle point is located
on the border between the volumes assigned to the
initial (o.) and the final (a') equilibrium configura-
tions. In our model there is a great number of
such saddle paints, each connecting two adjacent



2996 H. U. BEYELER, L. PIKTRONERO, AND S. STRASSLER 22

~0.8

o) 0.6

L

~aQ4

0.2

0.1

ground-state
total potential
energy: Uo

0.0
0

0.0

c /c&

FIG. 3. For the sinusoidal potential we show here (a)
(right) the average fractional displacement (b, ) of the ions
adjacent to a vacancy in the ground state and (b) (left) the
effective barrier height for diffusion (U~~i/C, ) as func-
tions of the ratio between interaction energy and potential
barrier.
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FIG. 4. Same as Fig. 3 for a piecewise quadratic po-
tential.

configurations. For zero interaction, all parti-
cles see identical diffusion barriers C, and C~
for sinusoidal and parabolic potential, respec-
tively. We show here, in a specific example, how
the effective barriers with interaction can dras-
tically differ from the "naked" barriers given by
the framework potential. For this purpose we
focus on a single transition leading from one
ground-state conf iguration to an equivalent one
(see Fig. 5}. In Figs. 3 and 4 is shown the factor
by which the effective barrier is reduced below
the framework barrier in functions of the ratios
C, /C, and C, /C~, the ratio between interaction
and framework potential. We note that in the range
where the interaction just tolerates the existence
of next-nearest-neighbor vacancies the barriers
are typically reduced by a factor of 2.

It should be noted at this point that the effect
of the reduction of diffusion barriers due to the
interaction between particles has been studied

ground state
Uo

FIG. 5. Schematic illustration of the transition between
two degenerate configurations.

I"'(s}= Q Pg "(s), (5.4)

where P is probability for the system to be in
configuration e.

As shown in Refs. 29 and 33, hollandite ex-
hibits at room temperature a planar diffuse-scat-
tering pattern which could conclusively be linked
to the partial cationic order within the channels.
We base our analysis on the experimental inter-
ference function &(s) =CP,„,, (s)/(fK fg), where
C~ is a correction factor accounting for polariza-
tion effects at the monochromator and at the sam-

y various authors6, 7, ix and it seems to pla, y an
important role also in P-alumina. "

C. Diffuse scattering in hollandite

From our calculations the x-ray scattering of
a configuration n is given by

I "(s)= P fzf 1*exp[-2~is(x, —xI"')], (5.3)l, l

where f is the scattering factor of a potassium ion
(we neglect Debye-Wailer factors which do not add
any new local structure). The total static x-ray
scattering of the mobile subsystem due to con-
figurational disorder is then
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pie, and fK is the complex scattering factor of a
potassium ion. The diffuse-scattering intensity
has been determined on c*, the reciprocal channel
axis using Mo Ka radiation and an LiF mono-
chromator. For the quantitative analysis an ac-
curate knowledge of the true linewidths of the dif-
fuse structure will be crucial. For the present
work the scattering has thus been reexamined with
higher resolution in order to obtain a spectrum
whose features are not resolution limited. Figure
6 shows the new spectrum on which we base the
present analysis.

For the following discussion it is helpful to re-
call the two main conclusions from the earlier
interpretations of the diffuse scattering":

(i) The relative intensity of the diffuse peaks
at 0."I'7 and 1.'l'1 reciprocal-lattice units (rlu) indi-
cates that ions adjacent to a vacancy are displaced
towards the latter by about 0.24 lattice constants.

(ii} The distribution of the vacancies is far from
random; they favor mutual separations of four or
five lattice units.

We have determined the best fit to the diffuse
scattering by computing Eq. (5.4) for both the
sinusoidal and the parabolic potential. As to be
expected, the relative intensity of the diffuse struc-
tures is directly related to the ratios C,/C~ as
those ratios determine the displacements of the
ions. The best fit of the peak heights is achieved
with C,/C, =5 and C, /C~ =3.2, respectively. From
Figs. 3 and 4 we deduce relative displacement
of 0.23 and 0.24 for the vacancy-neighboring ions

in agreement with the value determined in Ref.
33. Figure 1 shows that for the sine-wave poten-
tial and the determined value of C, /C, there are
only very few stable configurations left; for the
parabolic potential there exist all configurations
with vacancies at least two lattice units apart
(Fig. 2}.

The absolute values of the potentials determine
the population of these configurations and there-
fore the amount of occupational disorder. Ex-
perimentally, information about the occupational
disorder and thus about the strength of the po-
tentials (relative to kT„@)is contained in the
linewidths of the diffuse structures. Although

every care has been taken to obtain a spectrum
not affected by experimental resolution, the error
margin in the linewidths is certainly larger than
that in the line intensities. Further, the model
system with 17 potential wells is just barely large
enough to describe the observed disorder; it
yields a resolution in reciprocal space of ~» rlu
and this is only slightly less than the widths of
the diffuse structures.

With all these precautions in mind, one deduces
C, -0.15 eV and C~-0.23 eV from the fit. From
Figs. 2 and 4 we may finally extract a reduction
factor for the effective barrier of 0.1 and 0.4 for
the sinusoidal and the parabolic potential, re-
spectively.

We have, to this point, purposely given in
parallel the data for both potential shapes in order
to display the range of uncertainty of the model-

L
CJ

J3
Cf

experimental

Ooo model with parabolic
potential

a, ~a, model with sinusoidal
potential

O
EP

~ ~
m~-e 8

!0

r.'
R~ g

A~Le
R~h a~ h

1

reciprocal channel axis {rlu }

FIG. 6. New refined diffuse x-ray scattering for hollandite. The continuous line refers to the experimental, data while
the pojnts refer to the theoretical models with long-range interaction as given by Eq. (5.5). (rlu= reciprocal-lattice
units).
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deriveP microscopic parameters. Microscopical-
ly, the framework potential is mainly determined
by the interaction between the potassium ions and
the surrounding oxygens. Steric considerations
show that for ions on top of the barriers the hard-
core repulsive interaction between potassium and
oxygen is dominant. We must thus expect the
walls of the potential wells to be steeper than
given by a sine function but certainly not as pointed
as a parabolic potential.

D. A more realistic interaction potential for hollandite

Our model [Eq. (2.1)] only includes short-range
interactions and it is not obvious that the true
Coulomb-type interaction between mobile ions
can be reproduced by effective short-range inter-
actions. We have thus repeated the numerical-
model analysis of the hollandite data using a long-
range ion-ion interaction of the type

(5.5)

where we derive &,«(x) from the picture of a di-
electric double cylinder": We assume that within
a radius x, around the channel axis the effective
dielectric constant &, is given by the electronic
polarizability of the potassium ions (the ionic
displacive contribution is not to be included, as
the model explicitly contains the displacive short-
range order) Outside. ro the dielectric constant
~, is assumed to be that of the bulk framework
structure. From this model follows the effective
dielectric constant for the interaction between
two charges on the cylinder axis straightforward-
ly. For small separations it is equal to &;, for
large separations it approaches &,. The transi-
tion occurs at r-ro. For hollandite we assume
c,. -2, e, -100 (deduced from the far-ir reflec-
tivity). The large framework polarizability is

due to a strong coupling of the oscillation of the
Ti atoms within the oxygen octahedra to electronic
states. ~, should be of the order of the distance
between the channel axis and the closest Ti atoms,
i.e., x-3-4 A. For these numbers the inter-
action between nearest- and next-nearest neighbor
is just in the transition range of &,ff(r) (1 lattice
unit in hollandite is equal to 2.97 A). Thus the
interaction sensitively depends on the value of ~,.

As a test of the sensitivity of model-derived
microscopic parameters on the particular form
of the ion-ion interaction, and in order to obtain
a most realistic set of parameters for hollandite,
we have repeated the fitting procedure using Eq.
(5.5) as interaction and considering xo as an ad-
justable parameter. The best-fitting diffuse spec-
tra are shown in Fig. 6. The model parameters
are given in Table I. Comparing the parameters
to, those corresponding to short-range interactions
it becomes evident that the inclusion of the long-
range interaction requires a substantial lowering
of the framework potential in order to arrive at
the degree of disorder reflected in the diffuse
x-ray scattering. For the sinusoidal potential
this effect leads to a situation where there exist
only 12 stable configurations; these do not enable
a fit of the observed linewidths. One has thus to
conclude that within our model the experimental
data are not consistent with a sinusoidal potential.
On the other hand, the fitted parabolic potential
certainly represents an upper bound to the true
potential.

E. Conductivity

The very satisfactory agreement between model-
derived and experimental diffuse scattering sup-
ports the adequacy of the configurational model
for the description of the state of order in hollan-
dite. Independent of the specific type of frame-
work and interaction potential, the determined

TABLE I. In this table we summarize the "best-fit" parameters for the various models
considered in this paper. The most realistic is probably the case of parabolic background
potential with long-range interactions between the mobile ions.

Harmonic (short-range)
interaction

sinusoidal par aholic

Long-range interaction
EEq. (5.5) j

sinusoidal parabolic

Framework potential strength
(C, and Cp)

Barrier-reduction factor
Effective barrier height

Interaction strength CI
%0

0.15 eV

0.1
0.015 eV
0.23
0.75 eV

0.23 eV

0.4
0.092 eV
0.24
0.74 eV

0.08

0.231

0.144 eV

0.45
0.065 eV
0.242

see text
2.3 A
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parameters clearly show the eminent importance
of the ion-ion interaction. Through configuration
quenching and configurational energy splitting of
the stable states it leads to a relatively high de-
gree of order, but it also reduces the barriers
for diffusion by more than a factor 2 as compared
to the naked framework potential barriers. These
phenomena are of course greatly affecting the
dynamic properties of the system. %bile the con-
figuration quenching severely limits the number
of possible ionic jumps, the barrier reduction
greatly enhances the jump rates for those pro-
cesses that connect two stable configurations.
Taking the parabolic barrier of 0.065 eV as an
upper limit we conjecture that the real potential
barrier is in the range between 0.04 and 0.05 eV,
i.e., not too much above k~T at room tempera-
ture. Comparing this value to the activation en-
ergies of conductivity usually found in superionic
conductors (0.15-0.25 eV), it appears surpris-
ingly low, even lower than the barrier height in
the archetype superionic conductor o.-Agi (-0.07
eV) .

This surprising result calls for an independent
experimental verification. As shown in Ref. 34,
up to rather high frequencies the conductivity
of hollandite is dominated by the existence of ex-
trinsic barriers hindering the long-range ionic
motion in the channels. From a certain high fre-
quency on, the motion will be confined to the un-

perturbed segments between the extrinsic bar-
riers and one should then be able to observe the
intrinsic conductivity corresponding to that dis-'

cussed in Sec. IV. Estimates indicate that this
transition from the anomalous, defect-barrier-
dominated-conduction regime to the regular in-
trinsic diffusive regime should occur in the range

of 10'-10"Hz. Preliminary conductivity results
at 9&10' Hz in fact already indicate an intrinsic
activation energy of the order of 0.03'7 eV and a
conductivity (at T =300 K} o~ 0.5 (0 cm} '." Us-
ing the experimental value for the effective bar-
rier with a reduction factor s-0.5 we get a naked
barrier Je =0 03.7/s =0.074 eV. From Sec. IV we

have [Eq. (4.28}]

o=o,e ~&'"s f(s)pE

with

o, = e'a'n„/ksT .

(5.8)

(5.7)

a =2.97 A, p =0.'7'7 (5.8)

n„=n,(1 —p) =1.52X10" cm ', (5 8)

where n, is the density of potential pots. From
Eti. (4.2"l) we have then

f(s =0.5) =1.58.

With these values we obtain

o,(T =300 K)=6.8 (Qcm) '

and

o(T =300 K}=2.1 (Qcm) '.

(5.10}

(5.11)

(5.12)

Being aware of both the difficulty to obtain ac-
curate experimental conductivities at 10' Hz

and that to derive this quantity from a micro-
scopic theory we only use parameters derived
from structural data, the agreement can be
termed fair.

As discussed at the end of Sec. IV for p& 75 and
ksT/J'e&0. 1, we have F-1. The other parameters
are
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