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The band structure of tellurium has been investigated by the orthogonalized plane-wave pro-
cedure using a Hartree-Fock-type potential, with a parameter introduced to incorporate con-
sistency effects. The calculated band structure provides good agreement with a number of ex-
perimental results for energy differences involving the valence and conduction bands, obtained
from reflectance measurements. The good agreement with experiment leads us to conclude that
the electronic wave functions obtained from the present work are satisfactory. These wave
functions are used in the following paper for a ﬁrsl-principles analysis of the '25Te nuclear quad-

rupole interaction in tellurium.

I. INTRODUCTION

There has been considerable interest'™ recently in
the nuclear quadrupole interaction of '**Te in telluri-
um. The understanding of the origin of the nuclear
quadrupole interaction of 'ZTe in crystalline telluri-
um is of great interest because this interaction has
been observed recently' =3 in both crystalline and
amorphous tellurium and also in selenium and sulfur.
Thus '2Te can be used as a probe to investigate the
electronic distribution around the tellurium atom in
different environments. With this aim in mind, in
earlier work, we had attempted? to study the electron
distribution associated with the tellurium atom and
the corresponding '**Te nuclear quadrupole interac-
tion in tellurium, selenium, and sulfur using a semi-
empirical molecular orbital approach with clusters of
large numbers of atoms to simulate the infinite atom
environment in the solid. While such an analysis has
been reasonably successful in explaining the absolute
strengths of the nuclear quadrupole interaction and
the trend of variation in going from tellurium to sul-
fur, it was felt that a more rigorous calculation in
crystalline tellurium involving the electron distribu-
tion obtained from first-principles band-structure cal-
culations would further enhance the understanding of
the electronic structure of tellurium and also provide
a test of the validity of the cluster-type analysis,*
which, although semiempirical in nature, has the flex-
ibility to be usable for both regular crystalline as well
as noncrystalline environments.

With this aim in mind, we have carried out an in-
vestigation of the electronic structure of crystalline
trigonal tellurium by the orthogonalized plane-wave
procedure.” The reason for using the orthogonalized
plane-wave (OPW) procedure is that electron densi-
ties using OPW wave functions have been found® to
provide a successful explanation of the nuclear quad-
rupole interaction in a number of noncubic metals
using recent developments’ in the procedure for

first-principles incorporation of antishielding effects
in the calculation of field gradients in metals. The
following paper will deal with the study of the field
gradient in tellurium while the present paper is con-
cerned with the band-structure investigation. We
shall make comparisons between the predictions from
our band-structure results and pertinent experimental
data®® from reflection spectroscopy and ultraviolet
photoemission measurements to obtain a test of the
accuracy of the calculated band structure and hence
indirectly of the associated wave functions. We shall
also make comparisons of our OPW band-structure
results with earlier results!®~!” by other procedures.
Such a comparison is of interest not only because an
OPW investigation of the band structure has not
been attempted in the past, but also because we have
used a different potential than that used in earlier'®
calculations, particularly with respect to exchange.
For the exchange potential, we have avoided the use
of the statistical exchange approximation'® which has
been found!® to be inappropriate for study of hyper-
fine properties, involving the immediate vicinity of
the nucleus where there is rapid variation in the elec-
tron distribution. )

Among earlier band-structure investigations are
those of Reitz'® and Beissner!'' which employed the
tight-binding and pseudopotential methods, respec-
tively. Both these investigations were, however, re-
stricted to the band structure along the A axis of the
Brillouin zone (BZ) and hence could not address the
question of the location of the band-gap minimum
which has been considered to occur at the symmetry
point H not covered in these calculations. Later,
band-structure calculations employing the linear com-
bination of atomic orbitals (LCAO),'? Kohn-
Korringa-Rostoker (KKR),'* pseudopotential,'® and
modified augmented plane-wave (APW)'® methods
have been carried out along the I', A, S, and P sym-
metry axes. These calculations have all given broadly
similar band structures for tellurium and with the ex-
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ception of the APW calculation, were able to explain
the location of band gap and its magnitude?’ reason-
ably well. The APW method gave the result that
there are two band gaps of approximately the same
magnitude at neighborhoods of the points / and Z, a
result that has not been experimentally verified.

In Sec. II, the crystal structure and Brillouin zone
of tellurium are briefly described. Section III
describes the method of band-structure calculation
including the calculation of the potential employed in
this work. In Sec. IV our band-structure results are
discussed and comparison is made with optical data
and the results of earlier band calculations. Section
V summarizes the main conclusions of our work.

II. CRYSTAL STRUCTURE AND BRILLOUIN ZONE
OF TELLURIUM

The crystal structure of tellurium has been
described in detail in the literature.?! We present
here a few details of the structure and Brillouin zone
to facilitate the description of our band-structure cal-
culations. In the tellurium lattice, the atoms are ar-
ranged on spiral or helical chains at the center and
corners of a regular hexagon. The chains have a
threefold screw axis corresponding to the crystal ¢
axis, and the unit cell has three atoms whose posi-
tions using a rectangular coordinate system are given

by: -
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FIG. 1. Brillouin zone of tellurium showing symmetry
points and symmetry lines.
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All the atoms in the entire crystal can hence be gen-
erated from these three atoms by adding a lattice
translation vector R, defined by

R=iTi+mty+nt; , (4)

where /, m, n are integers and —t'l, Tz, _t'3 are the
primitive lattice vectors defined by

Ti=—taT-alviT | (5)
Tz=aT (6)
_t°3=cf(‘ . (7)

In the above equation, T, T X are the orthogonal
unit vectors defining x, y, and z direction, respective-
ly, a, c, and u are lattice parameters whose values are
4.4572, 5.929, and 0.2633 A, respectively,? at 298 K
and standard pressure and are the values used in our
present work. The basis vectors 75,- in the reciprocal
space which determine the Brillouin zone are given
by ‘
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The Brillouin zone of tellurium, which is hexagonal,
is shown in Fig. 1. The irreducible wedge,

. 1 . .
respresenting - of the Brillouin-zone volume, for
the calculation of properties requiring the knowledge
of the wave functions is shown in Fig. 2. More de-
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FIG. 2. Irreducible wedge corresponding to Tli Brillouin
zone used in the band calculations.
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tails about the symmetry properties of tellurium can
be found in the earlier literature.?

III. PROCEDURE

For obtaining the energy bands and Bloch wave
functions for the system, we have to solve the one-
electron Schrodinger equation given by

Hyp(T)=E¢ye(T) . (1

There are only a few instances in the literature,
where self-consistent Hartree-Fock calculations, with
or without correlation have been carried out. Among
these are calculations in very simple metals such as
alkali metals,?*?° especially lithium and the ferromag-
netic transition metals,?® iron, cobalt, and nickel.
More often, one makes a local approximation?®’ to the
exchange interaction, including the Slater-type free-
electron approximation'® that has often been em-
ployed. For the local approximation one can write,
using Rydberg units,

H=—=V2+V(T) . (12)

where the potential
Vit)=3 3v(Ir-R, -7, (13)

is periodic in the crystal lattice, R, representing the
position of the center of the /th unit cell and 7;, the
position of the vth atom in the unit cell with respect
to the center of the /th cell, there being three atoms
in the unit cell in tellurium. We shall discuss the
form of the potential we have used subsequently in
this section.

For the sake of completeness, we shall first briefly
review the OPW procedure used in our work. The
basis set for the variational solution of Eq. (11) in
the OPW procedure is of the form:

—- 1 - _
Fopw (K, r)=mexp(/k-r)—jzu?j¢?j(r)

(14)

where ) is the volume per atom and N is the
number of atoms in the lattice, while the <b—k-j(?) are
tight-binding core wave functions given by

b (F)=—1 ﬁ ﬁe"r'ﬁ"e’??fv &, (F=7,,)
i QN7 SS

(15)

In Eq. (15), ¢,(T —7,,) represents the jth atomic
core wave function centered at the position of the vth
site in the /th unit cell. The summation over j runs

over all the cores s, 2s, 2p, 3s, 3p. 3d, 4s, 4p, and 4d
in tellurium, the Ss and 5p electrons being handled as
band electrons. The quantities uy; in Eq. (14) refer

as usual to the orthogonalization parameters given by
12

. JeFTo e (16)

3
Qo

In the secular equation
Det|Hppy — ESpy| =0 (17)

obtained by minimizing the energy with respect to
the coefficients ¢ (k + K, ) in the linear combination
of OPW functions

lll?(?)=2('(T(.+K")F()pw(l_('+ﬁn,?) s (18)

the matrix elements of the Hamiltonian are given by

How = (Fopw(K +K,,. T
—~V2+ V(T) | Fopw(k+K,. T)) . (19)

In view of the form of the OPW functions in Eq.
(14), the matrix elements #,, in Eq. (19) involve
component matrix elements such as
(A|=V?2+V(r)|B) where 4 and B can both be
plane waves, or both be tight-binding core functions,
or, either 4 or B can be a plane wave and the other a
tight-binding core function, referred to, respectively,
as PW-PW_ core-core, and PW-core terms. The latter
two types of terms involving the core states can be
substantially simplified?” using

[~ V24 V(T)ég, (D) =¢dp, (F) (20)

where ¢€; are core-state energies. These were taken to
be the same as those in the atom, since the differ-
ences of these energies from those in the solid state
due to differences in the potentials seen in the two .
cases have been found to be quite small in transition
metals,”® and these differences are expected to be
comparable in importance or even smaller for a
tightly-bound system involving s and p band electrons
as in the present case. The overlap integral S, is
given by

Spn = (Fopw (K +K,p. ) 1 Fopw(K +K,. T)) . Q1)

We shall discuss next our choice for the potential
v(r). Ideally, one would like to use a potential as
close to first principles as possible. As pointed out
earlier, the best way to do this is to use the rigorous
Hartree-Fock approach,?*~%° recognizing completely
the nonlocal nature of the exchange and not look for
an T-dependent potential but rather work directly
with the matrix elements of the multielectron Hamil-
tonian of the system. Such a process is very satisfac-
tory from a theoretical point of view but rather time
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consuming. A simpler approximation would be to
use for the potential a combination of the actual
Coulomb potential due to the conduction and core
electrons and the statistical free-electron approxima-
tion'® for the contribution of exchange interactions to
the potential. While this approximation is rather sim-
ple and speedy for computational purposes and also
provides reasonably accurate energy-band results,?’ it
leads to inaccuracies in the wave functions, especially
in the neighborhood of the nucleus,'® where the
charge distribution does not satisfy the criterion of
smooth and slow variation necessary for the validity
of the free-electron-like statistical approximation for
exchange. Unfortunately, the region near the nu-
cleus is the one we are most interested in for hyper-
fine properties. A good compromise in terms of ac-
curacy of the wave functions and economy of effort
is to use a local potential based on Hartree-Fock ex-
change as has been done in some instances earlier?’
in the literature. In contrast to good metals, where
the free-electron approximation is reasonable, in tel-
lurium one expects the wave functions to be more lo-
calized in nature. This was indeed found to be the
case from our calculation since a sizable number of
OPW functions were needed to obtain convergence in
the energy and wave functions in this system. In
view of this, a superposition of atomic Hartree-Fock
potentials at the lattice sites was expected to be a rea-

sonable choice for the potential in the solid. The po-
tential we have used is given by Eq. (13) with

Va (I) + Vo,
v(r) =
0, r>rws,

r= I'ws,

(22)

" rws being the radius of the Wigner-Seitz sphere
~around each atom and V,(r) a weighted admixture of
the one-electron Hartree-Fock potentials:

v5s(l'|)= 2<¢j("2) ¢j(/'2)>

J |
_ . AU
‘J\_:<¢,(,2) ¢,-(,2)> o) (23)

v5,,(l'1) = 2 <¢j(l'2) %l¢j(lz)>
Jj 12
¢, (r1)

jz<¢j(’2)|"1z ¢J('z)> 5y (1)

where j runs over all the cores 1s, 2s, 2p, 3s, 3p, 3d,
4s, 4p, 4d, and Ss and Sp electrons in the valence
shells of the tellurium atom. Thus vs; and vs,
represent, respectively, the potential seen by the Ss
and 5p electrons in tellurium atom. It was found that
vss (r) and vs, (r) were quite close to each other.
Consequently the exact fractional weights assigned to
vs, (r) and vs,(r) were not too crucial. The fractional

1
12

1
2

. (24)

TABLE 1. Comparison bewtween transition energies from present work, experiment, and earlier

calculations (in eV).

Expt.? OPWP APW¢ KKRY Pseudopotential® Pseudopotential

Gap transition energy close to

s axis 1.75 1.5
Energy difference between

lowest and next lowest conduction

band at H 1.3 1.41

Threshold for transition energy
between the second highest valence
band triplet and the lowest

conduction band 4.0 5.62

Transition energy from the top
of the valence band to the top

of the lowest conduction band 2.3 1.77

Energy differences between the
bottom of the conduction band
K#$ at K and the following
points

0.6 0.69 0.94 1.07

3.0 1.86 4.8

2.5 1.0 1.36 1.6

(i) I3 1.05 204 1.79 1.61 1.85
(i) H? 1.6 171 07 130 1.85 2.5
(i) Z¢ 122 165 1.72 1.98 2.25

¢Reference 15.
fReference 17.

‘Reference 16.
dReference 14.

_ %Reference 8.
YPresent work.
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weighting factors we choose are 33% and 67% for
vss () and vs, (1), respectively. The parameter V in
Eq. (22) was introduced for the following reasons.
For a rigorous first-principles calculation, one has to
incorporate self-consistency in the potential experi-
enced by the band electrons (both valence and con-
duction bands, if one is interested in transition ener-
gies) and many-body effects arising from dynamic
correlation between the electrons. As mentioned ear-
_lier above, such effects have been incorporated in a
first-principles way in the literature for only a few re-
latively simple metals. Such a procedure would be
beyond the scope of the present work. We have in-
stead attempted to incorporate these effects indirectly
through the empirical parameter V. The influence
of consistency effects is not expected to affect the
core-conduction Coulomb and exchange components
of the potential significantly, since the Coulomb in-
teractions involve only the core electron functions
which do not change appreciably from the free atom
to the solid, the core-conduction exchange terms in-
volving the conduction-electron wave function also
being relatively unaffected by consistency effects
since the differences between Bloch functions for the
band electrons and the 5s and 5p wave functions in
Egs. (23) and (24) are not significant in the internal
regions of the atom. The influence of correlation ef-
fects between core electrons and conduction electrons
is also not expected to be pronounced because it is
like an intershell effect which has been found to be
relatively unimportant from explicit calculations in
atomic systems.’® So whatever influence consistency
and correlation effects have is associated with the in-
teraction among band electrons. We have attempted
to incorporate them through the parameter V' by ad-
justing the latter to fit the experimentally derived
value of 0.34 eV for the fundamental band gap?
which occurs at the H point-of the Brillouin zone.
The value obtained for V; in this way was 0.36 eV
which is a reasonable order of magnitude. The ade-
quacy of this parameter was confirmed from compari-
son of theory and experiment for a number of
features of the valence and conduction bands in
Table I to be discussed in Sec. IV. The convergence
of our calculation of the band energies, with respect
to the number of OPW functions used in Eq. (18)
are discussed in the next section where our band-
structure results are presented.

IV. RESULTS AND DISCUSSION

The convergence of our band calculations was stud-
ied by examining the energies at typical points in
the Brillouin-zone wedge in Fig. 2, as a function of
the number of OPW functions. In choosing the
number of OPW functions, especially at symmetry
points, all vectors k +K having the same length were

included so as to retain the proper symmetry at these
points. The convergence criterion for energy was
0.01 eV, typically 55 and 54 OPW, respectively, being
needed at symmetry points I' and Z to reach the
chosen convergence limit. At general points with low
symmetry, usually about 60 OPW were needed to
reach the required convergence criterion.

The energy bands obtained from our calculation
are shown in Fig. 3. The first nine bands constitute
the valence bands that accomodate the 18 valence
electrons arising from six valence electrons in each of
the three atoms in the unit cell. The next three
bands represent the triplet of conduction bands. Our
calculated band structure, in terms of the overall ar-
rangement of, and separations between, the bands
agree reasonably well with previous'*™'7 band calcula-
tions, most of which have been nonrelativistic in na-
ture like the present investigation. Since the
methods of calculation are rather different for the
various available band structures including our
present one, it is not very meaningful to make de-
tailed comparisons at various points in the Brillouin
zone between the bands obtained from different cal-
culations. It is instead more enlightening to make
comparisons with respect to specific energy-band gaps
and energy differences that are available from experi-
mental measurements. We shall discuss this shortly,
but before that, to obtain a perspective of the overall
relationship between the band structures from dif-
ferent calculations, we would like to briefly remark
on some special points of agreement and difference
between our band structure and some of the others,
some examples of which will now be quoted. Thus,
in the I'Z direction, our band-structure results are in
better agreement with those from APW!6 and recent
pseudopotential'’ calculations than with those from
earlier KKR'* and pseudopotential'® work. For in-
stance, for the lowest valence band triplet, our results
show that at the I point and all through the line I'Z,
a A, level is the lowest one, in agreement with the
APW!'¢ and recent pseudopotential!’ calculations.

The lowest valence band is not available for the
KKR'™ and earlier pseudopotential'® calculations. For
the second triplet of valence bands, there is greater
similarity in our level arrangement with the results of
APW and recent pseudopotential calculations than
with the KKR results.!*

In the HK direction, our arrangement of the ener-
gy bands is in satisfactory agreement for the first,
third, and fourth band triplets with those from the
APW!® and recent pseudopotential!’ calculations as
well as the KKR'* and earlier pseudopotential'® calcu-
lations, only the second, third, and fourth triplets be-
ing available in the KKR calculation and the third
and fourth in the earlier pseudopotential work.

There are differences in detail in the slopes of the
bands for the second triplet of levels between our
work and others.
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FIG. 3. Energy bands of tellurium.

In the other directions where results of earlier band
calculations are available to compare with our results,
there appears to be overall agreement between our
results and those of the other calculations excluding
the APW calculation for which results are not avail-
able from other directions besides I'Z and HK. The
agreement with the recent pseudopotential calcula-
tions is in general somewhat closer than with the
KKR and earlier pseudopotential results.

A more specific comparison between the results of
our band calculation and those of other calculations
and experiments can be made by considering features
of the energy bands that are available from recent
analysis of reflection spectra.® We have already used
the band gap between the bottom of the conduction
band and the top of the valence band at H for obtain-
ing the parameter V, in the potential in Eq. (22).

We shall make a comparison for the other transition
energies that have been measured. In the first row
of Table I, we have compared the gap transition ener-
gy represented by the energy difference between the
two adjacent S, levels of the highest occupied triplet
of band states in the neighborhood of the middle of
the ZH line. The next row represents the difference
in energy between the lowest conduction band at H
and the next higher one. The third row corresponds
to the threshold energy for the transition between
second highest valence-band triplet and the conduc-
tion band. From our band-structure results, the
proper quantity to compare this threshold energy with
is the energy difference between the second valence-
band triplet of states at the H point and the bottom
of the lowest conduction band at this point. The next
row represents the energy of transition from the top
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of the valence band to the maximum of the lowest
conduction band. From our band-structure results in
Table I, the appropriate energy difference to compare
this with is that between H3 in the valence band and
K$ in the conduction band. The final set of tiree
rows represents the energy differences between the
lowest conduction-band energy at the K point and the
corresponding energy for the I', H, and Z points.
Only the average of these three energies is available
from experiment for comparison.

The agreement between our results for energy
differences in Table I and those from other pro-
cedures follows the pattern found from the compari-
son of the band structures made earlier. Thus,
overall, there is better agreement between our results
and those from recent pseudopotential calculations
and to a lesser extent, the APW work than those
from the KKR and earlier pseudopotential calcula-
tions.

Comparing our results with experiment, we find
that there is good agreement with all the transition
energies listed, the agreement being most satisfactory
for the first two gaps, in Table I. The agreement
with experiment is overall more sa*‘sfactory than is
the case for the APW procedure'® which also employs
a real potential as is done in the present calculation.

" Thus, while the agreement between APW results and
experiment is comparable for the last four transition
energies in Table I, for the second gap corresponding
to the energy difference between the lowest and next
lowest conduction band at H, the APW result is only
about one half of the experimental result while the
OPW result in the present work is in good agreement
with experiment. Among the probable reasons for
the somewhat better agreement with experiment by
our OPW calculation is the difference in the pro-
cedures used for the band calculations in the two
cases and the difference in the potentials used. The
latter reason is perhaps more likely, since the valence
wave functions in tellurium appear to be localized in
nature, leading to a departure from the smoothness
condition necessary for the validity of the Slater ex-
change approximation'® employed for the potential
used for the APW calculation.

The good agreement between the results of the

OPW calculation for the band-structure dependent
properties in Table I and experiment also indicates
the appropriateness of choice of the form of the po-
tential in Eq. (22) involving the parameter V, for in-
clusion of correlation and consistency effects in both
the valence and low-lying conduction bands. It is
satisfying that while V', was obtained by adjusting the
band gap at one K point, one has obtained good
agreement over a number of different X points. This
indicates that the energy bands and wave functions
are satisfactory over the entire Brillouin zone, a fact
that is important for the study of the electric field
gradient at the nucleus contributed to by all the
valence-band electrons. It would be desirable in fu-
ture work to obviate the need for this parameter V),
by carrying out a self-consistent calculation of the
band structure, using the calculated band wave func-
tions to obtain a new potential and carrying out the
process iteratively towards convergence. This would
be a rather time-consuming procedure but it would
be interesting to see if one is able to obtain, by such
a process, a comparable agreement with experiment
as obtained in the present work using the adjusted
parameter V; in the potential.

V. CONCLUSION

In summary, the OPW calculation in the present
work has provided satisfactory agreement with the
experimentally observed features of the band struc-
ture. This satisfactory agreement, and the fact that a
potential has been used that is expected to be valid
over the entire Wigner-Seitz cell including the region
in the neighborhood of the nucleus where the elec-
tron density is rapidly varying, leads one to expect
that the wave functions obtained from the present
calculations would be suitable for analysis of magnet-
ic and nuclear quadrupole hyperfine interactions.
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