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A realistic approach to the electronic theory of bond-coordination defects in chalcogenides, based on self-
consistent pseudopotential calculations, is used to study glassy Se. The results of the pseudopotential calculations
are interpreted in terms of simpler tight-binding models. The onefold and threefold coordination defects are both
found to give rise to nondegenerate, nonhydrogenic gap states, whose properties are unique to the chalcogenides in
several respects. The existence of 7 interactions between nonbonding orbitals at defect sites is found to be crucial to
an understanding of the electronic structure. These interactions are responsible for large charge transfers between
atoms and consequently large energy shifts of atomic valence orbitals, which make these defects quite unlike those in
other semiconductors. The origin, character, energy location, and localization of the defect states associated with
bond-coordination defects, and with defect pairs and certain relaxed defects, are discussed.

I. INTRODUCTION

In recent years a variety of unusual experimen-
tal phenomena in chalcogenide glasses'™ have been
attributed to the presence of structural defects
such as under - or overcoordinated sites.*® This
approach had its origins in the suggestion of An-
derson that a negative effective correlation energy
U, deriving from strong electron-phonon coupling,
could explain many of these experiments.” Street
and Mott then proposed that the negative U is
caused by lattice distortions at dangling-bond
sites,*® and subsequently Kastner, Adler, and
Fritzsche extended this idea by focusing attention
on pairs of threefold and singly coordinated chal-
cogens (valence alternation pairs or VAP’s) as
the active negative-U centers.® )

While the defect model is used today to interpret
much of the experimental work on chalcogenide
glasses, it.is not universally accepted.'°™? Some
alternative models'® ! propose a smooth distribu-
tion of bond strengths so that the coordination num-
ber of a weakly bonded atom may not be well de-
fined. In these models, the gap may be explained
as being due entirely to two-electron effects as-
sociated with the negative U; the one-electron
gap is completely washed out by large numbers
of weak bonds. The defect model, on the other
hand, assumes that the intermediate cases (weak
bonds) are less likely than the extreme cases
(broken or extraordinary bonds, i.e., coordina-
tion defects). This perspective follows from an
implicit principle of chemistry that covalently
bonded atoms always seek one of a few natural
bonding configurations. Furthermore, it provides
a direct identification between the gaps in the
amorphous and crystalline phases. We shall adopt
the viewpoint of the defect model here. For def-
initeness, however, we define a bond to be broken
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when the bond length corresponding to the deep
minimum in the radial distribution function is
exceeded, which occurs at 3.0 Ain glassy Se.'3

The existence of the negative U appears to be
unique to the chalcogenide glasses.* Pnictides
and tetrahedrally coordinated amorphous semi-
conductors apparently do not have the steric free-
dom to allow sufficient lattice relaxation and can-
not easily form extraordinary bonds because of
the unavailability of nonbonding orbitals.® In addi-
tion, it has recently become clear from theoretical
work that bond-coordination defects in chalcogen-
ides are unique in several other respects.'* For
example, we will show below that anomalous 7
interactions with nonbonding orbitals on sites
neighboring the defect play an interesting and
crucial role in the electronic structure of the
defects. Moreover, we show that this and other
factors conspire to give the neutral dangling-bond
(onefold) defect in selenium an extraordinarily
low energy of formation.

The excitement surrounding the unique properties
of defects in chalcogenides has motivated us to
undertake an in-depth theoretical study. To ob-
tain a satisfactory understanding of the basic phys-
ics underlying the structure, ground-state prop-
erties, and elementary excitations of these de-
fects, it is necessary to develop a theoretical
description which is realistic. Owing to the in-
herent nonperiodicity of the defect problem, this
has been an elusive goal. We have approached
the problem by employing a powerful combination
of realistic self-consistent pseudopotential
(SCPSP) calculations on periodic “superlattice”
structures containing defects and by employing
flexible tight-binding (TB) techniques which can
be used to solve nonperiodic single-defect struc-
tures. As a consequence, a theoretical descrip-
tion with several novel and unexpected aspects is
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now emerging. In this paper we present this the-
oretical description in some detail and review the
calculations on which it is based. We shall re-
strict our attention to a-Se as a model system.
(In a later paper we will discuss the analogous
defects in glassy As,Se,, emphasizing similari-
ties and important differences.)

In this paper we consider three kinds of theo-
retical calculations. The SCPSP calculations
employ a realistic Hamiltonian and are self-con-
sistent, but the structure, being periodic, is
approximate. Defect states get broadened into
bands, and therefore these results do not lend
themselves to direct interpretation. However,
the SCPSP results were then used as the basis
for the fitting of a TB Hamiltonian, which was
then applied to more realistic nonperiodic single-
defect structures. These “realistic tight-binding”
calculations reproduced all of the essential fea-
tures of the SCPSP results. Moreover, they pro-
vided a good physical description of the nature
of the defect states. Finally, in order to under-
stand how these defect states arose, we carried
out extremely simplified TB calculations on the
single-defect structures. While many of the fea-
tures of the realistic calculations were lost, this

‘exercise was nonetheless very useful in develop-
ing a physical intuition about the problem.

Since the purpose of this paper is to present
the theoretical understanding which has emerged
from this work, the discussion of the SCPSP re-
sults and the fitting of the realistic TB Hamilto-
nian to these results is deferred to Appendix A.
In Sec. II we discuss the nature of the electronic
states at unrelaxed onefold and threefold defects.
We begin with the extremely simplified but intu-
itively accessible TB model and then discuss in
some detail the new physics which arises in the
realistic TB calculation. In Sec. III we extend
the work to include more complicated defect
structures, including close defect pairs and cer-
tain kinds of relaxations. In both Secs. II and III
we refer to an empirical method for estimating
defect total energies which is described in detail
in Appendix B. The method used to obtain the
density of states for these defect structures is
generalized to the case of nonorthogonal basis
orbitals in Appendix C. Finally, in Sec. IV we
summarize and discuss the implications of the
work.

II. ONEFOLD AND THREEFOLD DEFECTS

Our model for the glass will consist of defects
embedded in an otherwise perfectly coordinated
continuous random network which will be referred
to as the “bulk.” For the case of glassy Se, this

consists of infinite chains (and perhaps some
eightfold and larger rings) packed in such a way
that bond angles and bond lengths remain approxi-
mately those of the crystalline structure. The
first step, clearly, is to model the electronic
density of states of the bulk. Because the inter-
chain bonding is weak, having considerable van
der Waals character, and because the gross fea-
tures of the density of states are expected to be
determined by the short-range order (i.e., the
local bonding configuration), we model the bulk
random network by focusing on a single “average”
chain embedded in the glass. Similarly, an N-
fold coordination defect is modeled by attaching
N such bulk chains to the defect site. For defi-
niteness we choose a chain identical to that in the
trigonal crystal, keeping in mind that bond-angle
fluctuations and dihedral-angle disorder may
broaden the resulting density of states slightly
and introduce narrow band tails. Thus, within

a first-neighbor tight-binding point of view, our
model for the electronic structure of the bulk
has reverted to that of trigonal Se, although the
results must be interpreted with the philosophy
outlined above in mind.

The electronic structure of these trigonal chains
is by now well understood.'®!® In the valence re-
gion, one finds a 4s -like band fairly well separated
from three 4p -like bands. The latter consist of
filled-valence and lone-pair bands and an empty
antibonding conduction band.

The origin of the distinct p bands may be under -
stood by referring to Fig. 1(a). Here we have
taken an extremely simplified model for trigonal
Se which nevertheless contains much of the es-
sential physics. The helical chain is chosen to
have bond angles and dihedral angles of exactly
90°, and we use a simple nearest-neighbor tight-
binding model with just the three valence p orbitals
on each site. Because of the geometry, there are
no interactions between the systems of p,, p,, and
b, orbitals, so that the three subsystems become
decoupled and degenerate. It thus suffices to con-
sider only the system of y orbitals shown explicitly
in Fig. 1(a). The only free parameters in the mod-
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FIG. 1. Structure and interaction diagram (double
line V,, single line V,) for (a) helical chain, (b) onefold
defect, and (c) threefold defect.
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el are a o-bonding interaction integral V, and a
weaker T interaction V. If we represent these
schematically by double and single lines, respec-
tively, we obtain the interaction diagram shown
at right in Fig. 1(a). '

The origin of the three p bands now becomes
clear. In the limit V, -0, the o-bonded pairs of
orbitals decouple from the remaining nonbonding
orbitals (NBO’s or “lone pairs”). The latter give
rise to a discrete lone-pair level at the unpertur-
bed p energy, while the former produce bonding
and antibonding (0 and o*) levels below and above
the lone-pair level, respectively. For V,#0 these
three discrete levels must broaden into bands;
the resulting density of states is easily calculated
and is shown in Fig. 2(a). The o and lone-pair
bands are filled, while the o* band is empty. Note
that the widths of the bands are determined not
simply by a direct 7 interaction, but rather by a
weaker effective interaction of order_V‘f/ V4, be-
cause of the alternation of bond orbitals and NBO’s
(separated by energy V). This fact will be crucial
to the understanding of bond-coordination defects.

Let us consider the simplest such defect, a
onefold coordinated (dangling-bond) site terminat-
ing a chain in the bulk. This is shown in Fig. 1(b)
along with the appropriate interaction diagrams
for the systems of x, y, and z orbitals. Note that
the three subsystems are still decoupled but no
longer identical; each is terminated in a different
fashion. The p, system ends on ¢ and o* orbitals
which contribute featurelessly to the bonding and
antibonding bands. Similarly, the terminal non-
bonding y orbital contributes to the lone-pair band.
Of special interest is the system of x orbitals
which terminates on a pair of NBO’s connected by
adirect 7interaction. Recallthatthisisa stronger
interaction than the effective interaction which
determines the lone-pair bandwidth. As a result
the two NBO’s are split into 7 bonding and 7 anti-

(B)NMJ]L )
6 K 0 3

Energy (eV)
FIG. 2. Local density of states averaged over sites
near defect. Using simple TB Hamiltonian: (a) bulk,
(b) onefold defect, and (c) threefold defect. Using real-

istic TB Hamiltonian: (d) bulk, (e) onefold defect and
(f) threefold defect.

Density of States (arb. units)

bonding combinations [henceforth 7(NBO) and
T*(NBO), respectively], giving rise to localized
states above and below the lone-pair band edges.
This is shown in Fig. 2(h), where the model of
Fig. 1(b) is solved exactly using Green’s-function
techniques. If the defect is neutral, the m(NBO)
state above the valence-band maximum is half
filled (i.e., contains a hole). This defect state
will be localized strongly to at most two sites.

At this point the existence of localized states at
the onefold defect is a consequence of the unique
direct 7 interaction between NBO’ s on neighboring
sites.

Consider now the threefold defect shown in Fig.
1(¢). The geometry has been chosen such that
there is an exact symmetry of 120° rotation about
an axis passing through the threefold site. The
decoupled systems of x, y, and z orbitals are
once again identical, restoring the threefold de-
generacy. We observe a behavior analogous to
that at the onefold site. This time there is a pair
of o* orbitals (and a pair of ¢ orbitals) shown by
arrows which are connected by a direct 7 inter -
action. Once again the splitting exceeds the band
width, and we expect a pair of threefold-degenerate
localized states [m*(c*) and 7(o*) in our notation]
to emerge from the antibonding band edges, and
similarly for the bonding band. Figure 2(c) shows
that this is indeed the case. The threefold degen-
erate m(o*) state below the conduction-band mini-
mum contains a single electron if the defect is
neutral. Note that this state will be highly de-
localized, sharing its character among at least
the seven central atoms near the defect.

At this point we have seen that onefold defects
will tend to produce highly localized defects at
the lone-pair band edges, and that threefold de-
fects will give rise to much more delocalized (but
still nonhydrogenic) gap states at the bonding and
antibonding band edges. Before carrying the dis-
cussion further, it becomes essential to improve
drastically upon the simple model presented above.
We will extend the above discussion by-using a
much more realistic tight-binding model, but in
doing so a fundamental question emerges: How
can we be sure that a tight-binding model which
has been fit to the bulk density of states will be
valid in the neighborhood of the defect? The only
way to answer this question is to appeal to realis-
tic first-principles calculations on defect struc-
tures. This has been done in Appendix A, where
we have applied self-consistent pseudopotential
(SCPSP) calculations to crystalline Se and to peri-
odic superlattice structures containing defects.
We fit a tight-binding Hamiltonian to the bulk crys-
tal and then determine what modifications to the
TB model are necessary to give accurate results



2930 DAVID VANDERBILT AND J. D. JOANNOPOULOS 22

for defects. We find that it is only necessary to
adjust the diagonal Hamiltonian matrix elements
on the defect sites themselves. The onefold atom
has its self-energy shifted upward by 1.25 eV,
while the threefold atom is shifted downward by
the same amount.

The SCPSP calculations are used to verify the
existence of these self-energy shifts in Appendix
A, but they can be understood physically in the
following way. Suppose we break a single bond in
an infinte Se chain, producing two onefold defects.
The two electrons which were shared in the o-
bonding orbital each singly occupy a new NBO on
the onefold sites. In a simple picture of atomic
orbitals, one would then have a hole localized
completely on one of the two NBO’s on the defect
site, and each atom would be individually charge
neutral. However, we have shown above that one
of the NBO’s at the defect interacts strongly with
an NBO on the neighboring site, so that in fact
the hole is shared between the two sites contribut-
ing to the m*(NBO) defect state. This would lead
to a charge of +0.5 e on the second-to-last and
last atoms, respectively. Now the Coulomb inter -
action shifts the self-energies upward on the ter-
minal atom (and downward on the penultimate one),
causing the m7(NBO) state to reside mostly on the
neighboring site and the 7*(NBO) state to reside
mostly on the defect site. The charge transfers
and self-energy shifts now adjust themselves self-
consistently. When a realistic calculation is done
[including, for example, the fact that the T (NBO)
defect state decays into the bulk], the net result
is that the charge transfers are small and the
self-energy shift is large only on the defect site
itself (see Appendix A).

The situation for the threefold defect is again
analogous. The defect atom shares three of its
electrons in ¢ bonds; if the fourth electron could
be localized to the defect site, each atom would
be individually neutral. Instead, the electron is
shared in the highly delocalized m(oc*) defect state.
The self-consistent process leads to a lowered
self-energy on the threefold atom which strongly
reduces the amount of charge transfer from the
defect site.

When these self-energy shifts are included, we
obtain the realistic tight-binding Hamiltonian pre-
sented in Table I. The TB model includes s as
well as p states with s -p interactions, overlaps
between orbitals on neighboring sites, and self-
energy shifts of +1.25 eV on onefold and threefold
sites, respectively. The defect structures to be
considered are identical to those of Fig. 1 except
for the distortion necessary to obtain the experi-
mental bond angle of 102.54° and the dihedral angle
of 100.27°17%18

TABLE I. Tight-binding Hamiltonian for selenium.
E is diagonal matrix element, V is nearest-neighbor
interaction, and S is nearest-neighbor overlap. A, is
change in Eg and E, at m-fold defect site.

E E, Ay Aj
—-13.00 eV -1.10 eV +1.25 eV -1.25 eV
Vss Vsp VM)G Ver
—-2.27 eV -2.07 eV —2.97 eV -1.19 eV
SSS SSP SPPO SPP’N
0.08 0.08 0.13 0.15

These structures have been solved within the TB
Hamiltonian. The introduction of overlaps intro-
duces subtleties which are discussed in Appendix
C. The results are shown for the bulk chain, one-
fold defect, and threefold defect in Figs. 2(d),

2(e), and 2(f), respectively. The effect of the
self-energy shift can be seen dramatically in Fig.
2(e). The m(NBO) and m*(NBO) states both have
substantial character on the defect site and so
are strongly influenced. The former moves up

in energy and becomes a resonance just above

the lone-pair-band minimum, while the latter
moves deep into the gap, forming a state near
midgap. This state is highly localized to the de-
fect atom, having 68% of its character there and
21% on the neighboring site. Remarkably, there
is a second state emerging into the gap just above
the valence-band maximum. This corresponds

to the terminal nonbonding y orbital of Fig. 1(b)
which is also severely influenced by the self-ener -
gy shift.

Consider now the threefold site, Fig. 2(f). Re-
call that the simple model of Fig. 2(c) gave rise
to threefold-degenerate defect states above and
below both the bonding and antibonding bands. Now
taking the bond angles and dihedral angles different
from 90° breaks the threefold degeneracy of these
states. The m(o*) state in the fundamental gap,
for example, splits into a nondegenerate (A -like)
state deeper in the gap and a twofold-degenerate
(E-like) resonance above the conduction-band min-
imum. The self-energy shift tends to move these
states further downward in energy, but the effect
is not dramatic because no state is primarily
localized to the defect atom. The defect state
occurs 0.55 eV below the conduction-band edge
and is highly delocalized, having no more than
about 15% of its character on any one site.

In order to appreciate the uniqueness of these
defects in chalcogenides, consider for a moment
the corresponding defects in pnictide or tetrahe-
dral semiconductors, e.g., a-As or a-Si. First
of all, overcoordinated sites are not expected at all
in Si. If they exist in a-As, their properties would



be determined by the exceptional sp, hybridization
at the defect site. Pollard and Joannopoulos' have
shown that the central o* bond orbitals, composed
of sp, and p orbitals on the fourfold and neighbor -
ing sites, respectively, are split by the dehybrid-
ization interaction into a T,-like resonance in the
conduction band and an A -like gap state near the
conduction-band edge. The gap state is essentially
localized to the fourfold site and its immediate
neighbors and has no p character on the defect
site. This state is thus completely different from
the overcoordinated a-Se defect state in origin,
character, and symmetry. Thus the chalcogenides
are the only systems where one finds such an
elegant correspondence between the properties of
under - and overcoordinated defects.

Secondly, even the undercoordinated defects are
unique in the chalcogenides. The situation is
sketched in Fig. 3. Ina-As or a-Si, one finds
neighboring p or sp, orbitals split into ¢ and o*
bond orbitals, which are then broadened into va-
lence and conduction bands. A dangling bond
simply gives rise to a p or sp, orbital which is
not bonded away by the o interaction and which,
therefore, remains sitting near midgap. Because
there are no such nonbonded orbitals on neighbor -
ing sites with which to interact, these defect states
are initially strongly localized to the defect atom.
Thus no self-consistent charge transfers or self-
energy shifts are expected. This is in complete
contrast to the case of the chalcogenides, where
the availability of neighboring NBO’s and the unique
7 interaction give rise to the rich structure de-
scribed above.

Bishop, Strom, and Taylor?® have identified the
photoinduced electron spin resonance (ESR) center
in selenium as a gap state localized primarily to
a single nonbonding orbital. This fits in nicely
with our picture of the onefold defect and indicates
therefore that onefold defects may be preferred
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FIG. 3. Sketch of the gap region for undercoordinated
defects in group IV, V, and VI semiconductors. The
valence and conduction bands are shown schematically.
Dashed lines correspond to defect states or resonances.
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to threefold defects in the glass. This would be
surprising, however, in light of the suggestion
by Kastner ef al. that the lowest-energy neutral
defect would be threefold coordinated.® This was
based on the observation that the threefold defect
has an extra bond compared to the onefold, and
that consequently the electronic energy of bond
formation would favor the threefold. From ele-
mentary models based on discrete bond-orbital
energy levels, the energies of the onefold and
threefold defects were estimated to be ~3-4 eV
and ~1 eV, respectively.®

However, such an analysis omits the ion-ion
repulsion which stabilizes the bonds and fails to
take into account the broadening of molecular-
orbital levels into bands and the existence of gap
states and resonances near defects. The calcu-
lated density of states in Fig. 2(e) or 2(f) contains
all the information necessary to sum correctly
the latter one-electron energies, and the additional
repulsive term can be empirically modeled as a
constant correction per bond. This is carried out
in detail in Appendix B.

The resulting total energies of the onefold and
threefold defects are estimated at 1.17 and 1.56
eV, respectively. Three effects are responsible
for this remarkable lowering of the energy of the
onefold site. Firstly, the ion-ion repulsion large-
ly compensates for the loss of electronic binding
energy when a bond is broken. Secondly, the hole
which is constrained to lie at the NBO level in
the simple models rises from midband to the va-
lence-band edge and beyond in our calculation.
Thirdly, the partial 7 bond between the defect
site and its neighbor along the chain stabilizes
this defect even further. The net result is that
the onefold defect has its energy lowered by about
3 eV. The first and second effects have analogs
for the case of the threefold defect which raise
and lower the total energy, respectively. The net
result is a slight increase of ~0.5 eV in the defect
formation energy.

The energy estimates given here apply only to
neutral defects. In order to address such questions
as the negative U or the luminescence Stokes shift,
it will be necessary to identify the lowest-energy
charged defects as well. On the one hand, it may
be that the defect retains its basic bonding con-
figuration upon change of charge state, with only
modest changes in bond lengths and bond angles
(bond relaxations). On the other hand, the large
Stokes shift would argue that a bond-switching or
coordination relaxation can take place. This would
be the case, Ior example, if the lowest-energy
positively charged defect were threefold coordi-
nated. An investigation of charged defects is cur-
rently underway in order to resolve such ques-
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tions.

Because bond relaxations away from the crys-
talline bond lengths and angles could cause reduc-
tions in the neutral-defect energies (on the order
of a tenth of an eV), and because of our rough
model for AU, the energies reported above are
not final and merely point out the need for more
realistic calculations. In particular, lower defect
energies are needed if ~10'7 cm™ defects are to
be frozen in at the glass transition temperature.
We have recently extended the self-consistent
pseudopotential calculations to the evaluation of
neutral-defect total energies and relaxation ener -
gies.?! We found sufficiently low energies to give
10" em™ coordination defects. However, we
wish to emphasize the inadequacy of simple mod-
els which are based on bond-orbital levels, or
which neglect repulsive interatomic terms, and
to point out the plausibility of having the onefold
be the favored neutral defect in the glass.

III. COMPLEX DEFECT STRUCTURES

So far, the discussion has been limited to in-
dividual onefold and threefold sites, the simplest
structural defects. However, once the TB Hamil -
tonian has been established, it is straightforward

_to make the extension to more complicated defects
and interacting defect pairs. In particular we
shall discuss nearest-neighbor onefold and three-
fold pairs (“intimate valence alternation pairs,” or
IVAP’s),® the transition from threefold to onefold
coordination, and dihedral-angle variations for the
simple defects.

Because onefold and threefold defects are ex-
pected to be oppositely charged, the resultant
Coulomb attraction will tend to favor close defect
pairs.® The extreme form of this pairing is the
IVAP shown in Fig. 4(c) [together with isolated
onefold and threefold defectsin Figs. 4(a) and 4(b)
for comparison]. Here the onefold and threefold
defects are nearest neighbors. The defect states
associated with the two defect sites remain, but
are shifted closer to the band edges. For the one-
fold defect, this occurs because the strong direct
7 interaction, which previously pushed the defect
state deep into the gap, disappears due to the ab-
sence of an available NBO on the neighboring three-
fold site. Similarly, the electron trap state be-
comes more shallow in the IVAP because the strong
direct m interaction connects only one pair of o*
orbitals, rather than®three, in the neighborhood of
the threefold site.

For an overall neutral IVAP the defect states
near the valence-band edge are-occupied and the
state near the conduction-band edge is empty.
Thus, when a pair of isolated neutral onefold and
threefold defects are brought together in this fash-

(0]

15 -10 -5 0 5
Energy (eV)
FIG. 4. TB density of states for (a) onefold defect,
(b) threefold defect, and (c) IVAP. The structures are

shown schematically. Dashed lines represent the gap
edges.

ion, an electron transfer from the threefold to the
onefold state occurs. Surprisingly, all sites re-
main individually almost neutral. This is a re-
markable consequence of the self-energy shifts,
together with the fact that the defect states are not
strictly localized to the defect site.

From experiments on transport properties during
thermal cycling below the glass transition tempera-
ture, Abkowitz* has found a close correlation be-
tween a population of electron traps 0.33 eV below
the conduction-band edge and hole traps 0.25 eV
above the valence-band edge. In light of our re-
sults, these experiments can be plausibly ex-
plained by assigning both states to IVAP’s, whose
density in the glass presumably varies with tem-
perature according to the free energy of defect
formation.’ The method of Appendix B gives a
total energy of 1.22 eV for this defect. (Recall
that the total energies of the onefold and threefold
defects were 1.17 and 1.56 eV, respectively.) This
indicates that the IVAP (which is really a defect
pair) is comparable in energy to an isolated one-
fold or threefold site and may therefore occur at
comparable densities. The energy of 1.22 eV is
still too large to allow a sufficient number of de-
fects to be frozen in at the glass transition, but
it could be reduced substantially by minimizing
with respect to bond relaxations in the defect vicin-
ity. In any case, a quantitative comparison with
the results of Abkowitz would require a more real-
istic calculation than we have performed.

An interesting feature of glassy Se is the possi-
bility of interconversion of onefold and threefold
defects. Figure 5 shows the density of states in
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FIG. 5. Change in the density of states as a onefold
site bonds to a nearby twofold site. V;, is the onefold-
twofold interaction in units of the normal nearest-neigh-
bor interaction (a) onefold defect and intact chain, (b)
weak interaction, (¢) moderate interaction, and (d) three-
fold defect.

the defect region as a onefold atom swings over
and bonds with an atom of a neighboring chain,
creating a threefold defect. As one creates the
threefold defect, two NBQO’s interact and contri-
bute a o and o* state. One of these can be clearly
seen moving from the lone-pair to the bonding
band in Fig. 5. In the fundamental gap, however,
the deep defect state simply changes from being
an NBO-derived state to being a o*-derived state
while shifting only very slightly in energy.

Finally, in Fig. 6 we show the energy location of
the deep defect level as a function of dihedral-angle
variations for isolated onefold and threefold de-
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FIG. 6. Energy levels of defect gap states as a func-
tion of dihedral angle on (i) the next-to-last bond for the
onefold defect and (ii) the three bonds connecting to the
defect site for the threefold defect.

fects. This case has been chosen as a likely ex-
ample of possible relaxations at the defect site
because the constraint on dihedral angle is not ex-
pected to be as strong as that on bond length or
bond angle. Note that the onefold level is not
strongly affected, while the threefold level is
quite sensitive. In both cases the eigenvalue has
a minimum near the crystalline dihedral angle.
For neutral defects these levels are singly occu-
pied, suggesting that the dihedral angle probably
does not deviate greatly from the unrelaxed value.
This has been verified in the case of the onefold
defect.?

IV. SUMMARY AND CONLCUSIONS

We have developed an approach to the study of
structural defects in chalcogenides which makes
use of flexible tight-binding techniques while re-
maining grounded in realistic self-consistent
pseudopotential calculations. A variety of defect
structures are studied. The neutral onefold co-
ordinated defect gives rise to a deep-hole trap
state near midgap. This state is highly localized
near the defect site, as it derives from a 7-anti-
bonding combination of nonbonding orbitals on the
defect site and its neighbor along the chain. The
neutral threefold defect produces a less localized
but nonhydrogenic nondegenerate electron-trap
state below the conduction-band edge, which de-
rives from a m-bonding combination of antibonding
orbitals. The IVAP gives rise to both of these
defect states, but they are closer in energy to the
band edges.

The results emphasize the unique nature of de-
fects in chalcogenides as opposed to other amor-
phous semiconductors. In particular, the avail-
ability of nonbonding orbitals on sites neighboring
the defect atom allows the formation of an anoma-
lous 7 bond at the undercoordinated defect and
gives rise to the positive self-energy shift. We
find a remarkable degree of analogy between the
behavior of the onefold and threefold defects. The
latter has an anomalous 7 interaction between
antibonding orbitals which gives rise to an elec-
tron trap and a negative self-energy shift. This
parallelism can occur only in the chalcogenides,
where overcoordinated defects can form freely
because no s-p hybridization is required. We ex-
pect that defects in a-As, a-Si, and even a-AsSe,
will be quite different in electronic structure than
those in Se.
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APPENDIX A: SELF-CONSISTENT
PSEUDOPOTENTIAL CALCULATIONS

To provide a realistic foundation for the tight-
binding Hamiltonian of Table I, we have carried
out self-consistent pseudopotential (SCPSP) cal-
culations on a variety of periodic structures con-
taining bond-coordination defects. In this appendix
we describe the structures which have been solved,
discuss the method, review the results of these
calculations, and present the fitting of the TB
Hamiltonian to the SCPSP results.

In Fig. 7 we show trigonal Se and two periodic
structures containing defect pairs. The defect
structures have unit cells containing six atoms,
instead of the usual three, and are made simply
by adjusting some of the atomic positions so as to
break bonds or form new bonds. The structures
are chosen so that all of the bond lengths and bond
angles match exactly those of trigonal Se (which
we take to be 2.390 and 102.48 A, respectively).l™!8
In model A, each unit cell contains a onefold de-
fect and a threefold defect as third neighbors along
a chain; model B represents the IVAP. We have
also solved structures, not shown here, which con-
tain 11 atoms per unit cell such that each cell
contains two identical onefold defects (or two iden-
tical threefold defects). The latter results merely
verify that the coexistence of onefold and three-
fold defects together in model A has no influence
on the important physics (e.g., the existence of
self-energy shifts). For our purposes here, it
will be sufficient to focus only on-a comparison
between the results for the trigonal crystal and

TRIGONAL Se

MODEL A

MODEL B

FIG. 7. Periodic structures to which SCPSP can be
applied. Dotted circles represent unperturbed lattice
positions.

for model A.

The self-consistent pseudopotential approach has
been described in detail elsewhere.? The selen-
ium cores are represented by a local ionic pseudo-
potential which has been chosen once and for all
such that when self-consistently screened, the
valence levels match the published Herman-Skill-
man eigenvalues for the atom.?* (Throughout this
appendix, screening is calculated by using Slater
p'/® exchange, with a coefficient @ =1, for the
exchange-correlation term.) Once fit to the atom
in this way, the pseudopotential is used without
modification for all subsequent crystal calcula-
tions; in this sense, these are first-principles
calculations.

The crystalline pseudopotential is just the sum
of the ionic pseudopotential on each atomic site
plus the screening from the valence electrons.
These electrons are represented using a plane-
wave basis. All plane waves with ¢ <3.67 A"! have
been included, and those with ¢ <5.93 A"! have been
included in Lowdin perturbation theory® when
solving for the wave functions. For trigonal Se,
this corresponds to 70 and 300 plane waves, re-
spectively; for model A, 140 and 600. The charge
densities are averaged over the Brillouin zone
using Chadi’s special-points scheme,® with 3 and
8 k points in the irreducible Brillouin zone for
trigonal Se and model A, respectively.

The density of states for trigonal Se is shown

[a) (c) Model A: Pseudo

(a) Trig: Pseudo

r

o}

=

(d) Model A: TB

N
o

'
N
[e)

'
o
04
[0}

Energy (eV)

FIG. 8. Theoretical electronic density of states for
periodic structures: (a) SCPSP applied to trigonal Se,
(b) tight-binding fit for trigonal Se, (c) SCPSP applied
to model A, and (d) tight-binding fit for model A.
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in Fig. 8(a). One finds filled s, p bonding, p lone-
pair bands, and an unfilled p antibonding band.

In Fig. 8(b) we show the density of states for the
tight-binding Hamiltonian of Table I. The fitting
has been done by artificially reducing the SCPSP
band structure to a 1-d band structure E =E (),
by averaging over all k, for each &, (the orienta-
tions are with respect to the chain axis). The TB
Hamiltonian was then adjusted to match the band
edges of this 1-d band structure as closely as pos-
sible. As can be seen from Figs. 8(a) and 8(b),
this results in satisfactory agreement between
the full SCPSP and TB densities of states.

Figure 8(c) shows the SCPSP density of states
for model A. Because of lowered symmetry, the
s-like band has broken into three subbands. In
the p region, gap states have been broadened into
defect bands (by interdefect interactions), and the
gaps have thus been obscured. In Fig. 8(d) we
show the corresponding TB calculation on the same
structure. Now the self-energy shifts in the Hamil-
tonian of Table I come into play. These were
chosen by actually integrating in real space to cal-
culate the diagonal matrix elements of the con-
verged self-consistent potential between atomic
(Herman-Skillman)?* orbitals centered on each
atomic site. The calculated self-energy shift on
the onefold site was 1.27 eV, on the threefold site
-1.24 eV, and the other four sites ranged from
—-0.38 to 0.28 eV. For simplicity we have ignored
the self-energy shifts on twofold coordinated sites
and approximated those on the defect sites as
£1.25 eV. A comparison of Figs. 8(c) and 8(d) in-
dicates that this fitting is adequate. Note, in par-
ticular, the agreement in the s region; without
the self-energy shifts, there was little resemblance
here between the SCPSP and TB results.

An approximate measure of the charge on each
site in model A was obtained by integrating the
SCPSP valence-charge density over a sphere, with
radius equal to half the bond length, centered about
each atomic site. (Such an estimate is somewhat
arbitrary, but should at least reveal any large
charge transfers.) Each site was found to be in-
dividually neutral to within £0.06 ¢. This is sur-
prising because a charge transfer from the three-
fold to the onefold site would have been expected
on the basis of simple chemical arguments. The
lack of charge transfer is a result of the compen-
sating effect of the self-energy shifts, which tend
to attract electrons to the threefold site and repel
them from the onefold site. Thus, the SCPSP cal-
culations on model A can be considered to refer
to neutral defects. The SCPSP method has been
extended to allow the calculation of total energies
for structures containing defects; this work will
be reported in a later paper.?

APPENDIX B: EMPIRICAL TOTAL-ENERGY
CALCULATIONS

Once we have obtained the density of states in
the vicinity of the defect from the realistic tight-
binding calculation, it is relatively straightforward
to find the band-structure energy Egg which is just
the sum of filled one-electron levels. However,
the total energy is not simply Egg, but contains
the repulsive Coulomb interactions between ion
cores and other corrections.

In order to write down the total energy, we adopt
the Hartree-Fock-Slater point of view and consider
the system to be composed of valence electrons
and frozen ion cores of charge Z =+6 for Se. Then
the total energy is #’

E-Y f dw;*(?)(—;g%v%Vm(ﬂ)w,-(?)
+§}:fdeH(F)|<P,-(?)|2
4 Jarv.®n®

2ZZ .
+%Z~:€—?=Ess+U, (B1)

&R, - R,

where V, and V,, are the Hartree and Slater ex-
change potentials. The corrections to Egg have
been lumped together in the term U. Since

I L -
EES=Z:€I'=Zfdrw?(r)(—é—;’n—vz-'-vion(r)
i i

V) Vm(?))w,-(?),

(B2)
.we can write
v=3 [ail-3v, @) -1V, @ |y,
i
Y paacaan (B3)

&R, -R,|

The term U thus contains corrections due to over-
counting of the Hartree and exchange-correlation
energies [the Coulomb repulsion between each pair
of electrons was counted twice in Eq. (B2)] and
the repulsive ion-ion interaction. There is little
hope of evaluating this term directly within the
tight-binding model, so we turn instead to a rough
empirical approach.

In Fig. 9 we sketch the dependence of E, Egg,
and U as a function of bond length for a uniform
expansion or contraction of the trigonal crystal.
Here we have taken the atom as the zero of energy.
This corresponds to taking the bond length d — .
The cohesive energy of the crystal E, is given by
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ENERGY (arb. units)

FIG. 9. Sketch of contributions AEgg and AU to the
total energy per bond AE, as a function of bond length
d.

the minimum of E, which occurs at the equilibrium
bond length d,. We can expand AU as a function of
d about d, (Ref. 28):

AU =AU, +a(d -d,)
+3B(d - d,)?+higher terms. (B4)

Since AEB.S can be calculated as a function of d, it
is possible to obtain the constants AU,, @, and 8
if the binding energy and bulk modulus are known
experimentally.

Since it is very difficult to calculate U for an
arbitrary structural configuration, it is necessary
to introduce a simplifying assumption at this point.
Following Chadi® we assume

U=, AU(,), (B5)

where ! labels first-neighbor covalent bonds in the
material and d, is the corresponding bond length.
This approach has been used previously to esti-
mate the relaxed bond length at semiconductor
surfaces? where only @ and 8 need be known. In
the present context, however, we assume bonds
are either normal (d=d,) or completely broken.
Thus we need only find a way to estimate the equil-
ibrium value AU,. Having done so, we calculate
the total energy of any defect structure by integrat-
ing over the density of states to obtain Egg and
correcting by FAU, for each broken or extra bond
in the structure. (From now on, E, and Bgg will
always be referred to the energy of an equal num-
ber of atoms in the normally coordinated bulk as
the zero of energy.) We will describe the calcula-
tion of Egg in detail shortly, but let us first es-
timate AU,.

The most straightforward way to determine a
value for AU, would be to imagine the dissociation
of trigonal Se into separate atoms. Then E, is
the experimental cohesive energy per atom E,
=2.35 eV, and U=E, — Egg=—AU,. The determin-

ation of Egg is complicated, however, by the fact
that in our Hamiltonian, the atomic-orbital energy
levels on each atom are shifted as a function of the
coordination of that atom. The self-energy shifts
for threefold, twofold, and onefold sites are A,
=-1.25 eV, A,=0eV, and A, =1.25 eV. If there
were no self-energy shift on the free atom, we
would find Ezg=4.47 eV. A simple extrapolation
gives A,=2.50 eV, Epg=19.47 eV, and AU,=17.12
eV. However, we have little confidence in such an
extrapolation, and we prefer instead to find an
experimental reference which does not involve free
atoms.

This has been accomplished by considering the
dissociation of the trigonal crystal into free Se,
molecules instead of free atoms. To be precise,
we proceed conceptually in the following stages:
(i) dissociate the crystal into free atoms; (ii)
combine free atoms to form Se, dimers; and (iii)
adjust the bond length of the dimer to be d,. The
corresponding energy gains of the system, per
two atoms at 0 K, are (i) 2E,=4.70 eV (Ref. 29);
(ii) —72.96 kcal/mole =—=3.18 eV (Ref. 30); and
(iii) 0.46 eV from vibrational data.®® Thus for the
entire process E,.=1.98 eV. The calculation of
the corresponding Egg is straightforward. Apply-.
ing the Hamiltonian of Table I to the dimer, we
calculate Egg=17.83 eV and, therefore, U=E,

— Eg4=-15.85 eV. Since this corresponds to break-
ing one bond, we have finally AU,=15.85 eV. 1t is
this value we will use for all subsequent calcula-
tions of defect total energies.

Our goal now is to determine Epg and U for the
onefold defect, threefold defect, and IVAP of Fig.
4, Because two onefold (threefold) defects are
required to break (form) a single bond, we have
U=F3AU, and 0 for these three cases, respective-
ly. We turn now to a detailed discussion of the
evaluation of Egg. '

Recall that Egg is now defined with respect to
an equal number of atoms in the normally coordi-
nated bulk, as a zero of energy. Thus if N,(¢) is
the local density of states on the nth site and N°(¢)
is the local density of states at any site in the bulk,
we can write

Egg=3. f :F €6N, (€)de | (B6)

where € is the Fermi level and 8N,(€)=N,(€)
~N°¢€). The energy integral is carried out numer-
ically, and the sum over sites is typically well
converged (within ~0.01 eV) with the inclusion of
the first 10 sites extending down each of the semi-
infinite chains attached to the defect.

There is one fine point which arises in the eval-
uation of the energy integral. In the Green’s-func-
tion formalism, the density of states is
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Z Inla)l® B7)

No(€)=~ —€, +16’

where a are eigenstates of the system and 6 is a
small imaginary part which must be included in
the calculation. Thus each eigenstate contributes
to the total density of states as

1_ o
m(€—€,)?+0%"

This is a Lorentzian which goes to a delta function
in the limit 6~0. For calculational purposes, o
is chosen to be comparable to the energy mesh
spacing and is typically 0.04 eV. The fact that a
nonzero 5 must be employed in the calculation has
two unfortunate consequences. Firstly, the density
of states does not quite drop to zero in the gap re-
gions (see, for example, Figs. 3-5), so that it
can be hard to decide where to put the Fermi level
in the gap. Secondly, and more seriously, the
energy integral over the tail of the Lorentzian
goes as

1 ) de = j‘"‘di
_[w n(€—€ )2 4+ 62 TJ., €’

and is therefore logarithmically divergent.

We have corrected these problems by decon-
voluting the Lorentzian out of the density of states,
and subsequently broadening by a Gaussian of the
same width. Using standard fast-Fourier-trans-
form routines, we numerically transform the dens-
ity of states, divide and multiply by the transforms
of the Lorentzian and Gaussian, respectively,
and then reverse transform back to energy space.
Because the Gaussian falls off much faster in the
tail regions, the divergences disappear and the
density of states in the gap typically falls to a
value several orders of magnitude lower than it
did previously. This appears to be a simple yet
general technique for obtaining an accurate energy
integral.

The above program has been carried out to cal-
culate the total energies of the onefold, threefold,
and IVAP defects of Fig. 4. The results are shown
in Table II. The last three columns represent
total energy estimates of increasing sophistication.

TABLE II. Total-energy calculation for defects.
First two columns are contributions to Efg or Ej; last
three are total energy estimates of increasing sophisti~
cation. See text.

Egs(eV) U (eV) Egpo(eV) Egpg(eV) Er(eV)

onefold 9.09 —-7.92 3—-4 1.59 1.17
threefold —6.36 7.92 1 1.14 1.56
IVAP 1.22 0.0 ? 1.22 1.22

Egp, refers to “simple-bond-orbital” estimates®
which are based on discrete bond-orbital electron
levels and which neglect inter-ion repulsion en-
tirely. The quantity Efg=Egg—Z4, ., is essential-
ly our calculated E,, except that only that portion
of U necessary to cancel the strong effects of the
self-energy shifts in Egg is included. Thus E, ef-
fectively includes the ion-ion repulsion, while
Efg does not. Note the striking reversal in the
relative onefold and threefold energies in the last
three columns. The physical significance of these
results is discussed in Secs. II and III of the text.

APPENDIX C: SOLUTION OF THE CLUSTER-BETHE-
LATTICE WITH NONORTHOGONAL-BASIS ORBITALS

The solution of the Hamiltonian of Secs. II and
ITII, for a structure composed of a defect with
semi-infinite chains attached to represent the bulk,
is solved in the spirit of the cluster-Bethe-lattice
method (CBLM)3* 3% using Green’s-function tech-
niques. The method of the present calculation is
in fact identical to the CBLM for a system of two-
fold coordination, except that the solution has been
generalized to allow nonorthogonal-basis orbitals.
To our knowledge, such a generalization has not
been previously reported. Because there are many
systems for which the inclusion of nearest-neigh-
bor overlaps is natural and useful, we outline the
method in this appendix. The discussion will spe-
cialize to systems of twofold coordination, but the
generalization to higher coordination is straight-
forward.

We begin by defining the Green’s-function opera-
tor

|9

S(E) = (E - 50 2 oy (1)
JCis the Hamiltonian, the Iwa) are energy eigen-
states with eigenvalues E,, and the energy E
=€ +10 is taken to have an infinitesimal 1mag1nary
part. Then

_;1; ImtrS =Y 6(€ - E,) =n(€) (c2)

. [

gives the density of states. Now choose basis
vectors [i}., linearly independent but not neces-

sarily orthonormal, and construct the duals {i*>
such that

(* ,J> =05, (c3)
and therefore
2 lial=1. (C4)
i

Define the generalized Green’s-function matrix
elements as
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Gy =(*|S14). (c5)
Using Eqgs. (C1) and (C4), one easily shows
—(1/7)ImtrG =n(e), (C6)

so that the natural definition of the local density of
states is

~(1/1) MG =n,(€) . (€

Taking matrix elements, Eq. (C1) can be recast
into the form

‘Lj“,(i!E-JCIjx]‘*ls |k*y =5, (c8)
We define

Sy=Cli,

H,;=(il3| ), (€9)

Gu=t*I81i,

where the basis is assumed to have been chosen
such that the S;; and H;; are real. Equation (C8)
now becomes

Z(Esij_Hij)éjk=6ik' (c10)
3
G is related to G by
Gy =Eéikski' (c11)
k

‘We will proceed by solving first for é, then G.

In typical applications we label orbitals by a site
label “¢” and an internal label “a” which runs over
the N atomic orbitals on each site. In this notation,
each matrix element (H,;, S,;, etc.) is itself an
N XN matrix in the internal space. We adopt this
convention and furthermore restrict ourselves to
first-neighbor interactions and overlaps for the
purpose of this discussion. Thus for bulk Se,
which corresponds to a 1-d chain of sites, the
inputs are the matrices

So=5;,

S=5, 1,

E,=ES;;-H,, (c12)
V=H,; ;= ES; 11 -

Note that S, and E, are symmetric and that S,,, ;
=57, etc.

When attached to a defect, the chain segment
under consideration will extend uniformly to infin-
ity in one direction (i~ +=) and will be attached
to a defect at i=0. If we define the fields x; and ¥;
by

G, 1n=X;VTG

iy i-n

- A (C13)
Git,imn=XiV Gy, jun

for n>0, Eq. (C10) gives, e.g.,

- Vé i+l, i-n VTGi-l,i~n =0 ’
0

E.G

iy i=n

BoXier = VXV X1 - nvG i-1,i-n =Y

leading to

Xia= Eo= VX, VI,
X1 =Eo= VX, V). (C14)
By means of these recursion relations, it can be
shown that x; and ¥; are symmetric matrices and
are independent of n, as implied in Eq. (C13).
Furthermore, because the chain is semi-infinite
in one direction, we have X; =x =constant; this
does not hold true for the X;. The latter must be
calculated individually, starting at the defect and
moving down the chain.

In order to calculate the local density of states
on each site, we need

G,;=G;;S0+G, ;,,ST+G, 1S, (c15)
From Eq. (C10),

Eoéii - Vém,i' VTéi-l,i =1,
or

Gii=(Eo= VXV = VTR, M. (C16)
Also,

éi, w=Goy, )" =(V7G, )" =G, VX,

éi,i-l = (ém, i)T= (—)ZiVéii)T=éiiVT7i ’
S0 that finally Eq. (C15) becomes

G;;=G,;(So+VXVT+VTY,S). (c1m)

The generalization to the calculation of G, at the
defect site itself is straightforward.
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