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Slater-Koster parametrization for Si and the ideal-vacancy calculation
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A Slater-Koster Hamiltonian for Si is constructed using four (one s and three p) orthogonal orbitals per site. This
Hamiltonian reproduces reasonably accurately the empirical pseudopotential band structure not only for the valence
but for the conduction band as well. It also determines correctly the position of the bound level of an
unreconstructed vacancy demonstrating thus that the efFects of electronic self-consistency are minor.

I. INTRODUCTION II. SLATER-KOSTER INTERPOLATION

Koster and Slater' proposed in 1954 a Green's-
function method for the calculation of the changes
in the electronic structure of perfect crystals
caused by the presence of localized defects. The
first numerical implementation of this method was
made by Callaway and Hughes' on silicon. How-
ever, the fir st- principles numer ical evaluation of
the matrix elements in a Wannier representation
made this approach too complicated.

Recently, due to the work of Bernholc et al.'
and that of Baraff and Schluter, "significant pro-
gress has been made in performing realistic de-
fect calculations. These authors have presented
similar formalisms and actual calculations which
seem to indicate a level of accuracy approaching
that of band-structure calculations for perfect
crystals.

The purpose of the present work is to show that
for Si an accurate orthogonal basis Slater-Koster'
parametrization can be obtained, which when used
in the Koster-Slater' impurity method gives re-
sults in close agreement to the self-consistent
calculations of Refs. 4, 5, and 6. The orthogo-
nality of the basis is a clear numerical advantage
especially in attempts to treat disordered Si by an
effective Slater-Koster (SK) Hamiltonian. On the
other hand we recognize that the orthogonality
assumption, which implies no atomiclike basis,
makes it difficult to estimate modifications in the
matrix elements resulting from structural
changes.

Our SK Hamiltonian produces a very good fit to
the pseudopotential band structure of silicon, '
and reproduces fairly accurately not only the
band gap but the conduction band as well, unlike
all the previous attempts.

In Sec. II we describe our Slater-Koster inter-
polation scheme and in Sec. III we apply it to the
ideal Si vacancy problem.

Since Slater and Koster7 proposed the use of the
tight-binding method as an interpolation scheme
there have been many attempts to apply this idea
to the band structure of silicon. ' " Most of these
calculations give a good description of the valence
band but the band gap is too wide and the conduc-
tion band too narrow. For example, the calcula-
tion of Chadi and Cohen' and also that of Chadi"
gives a gap of 3 eV and no reasonable representa-
tion of the conduction band. However, Chadi" has
'succeeded in obtaining the correct gap and con-
duction band by a different approach in which he
used as adjustable parameters the exponential de-
cay constants of Slater orbitals together with an
empirical pseudopotential Hamiltonian. We con-
sider this method as not falling into the same
category as SK fits and, therefore, we will not
compare with it except to say that our results are
in close agreement.

The SK fit which has been repeatedly quoted in
the literature as giving a realistic tight-binding
Hamiltonian is that of Pandey and Phillips. ' This
calculation overestimates the gap to 1.4 eV and
gives a very narrow conduction band. As stated
by the authors, their calculations are not reliable
for the conduction band. We will give a detailed
comparison with Pandey and Phillips (PP) after
we have given details about our own calculation.

Our SK fit uses an orthogonal basis set of s and

P functions, thus our nonsymmetrized Hamiltonian
is an 8&& 8. We have used, as adjustable parame-
ters, 20 three-center interaction integrals which
include first, second, and third neighbors. These
parameters were determined by nonlinear least-
squares fit to the local pseudopotential results of
Pickett. ' This step was done after reducing the
8 && 8 secular equation by symmetry following the
original paper of Slater arid Koster' and also that
of Dresselhaus and Dresselhaus. ' This block
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TABLE I. Comparison of Slater-Koster parameters
for Si expressed in eV.
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diagonalization of the 8 & 8 matrix is essential for
obtaining a reliable fit. We have fit in this way
all eight bands of Pickett's calculation' for a grid
of 20 0 points in the irreducible Brillouin zone.
The rms fitting error was less than 0.25 eV for
the valence bands which is slightly better than the
0.30-eV value quoted by PP. For the conduction
band our fitting errors were 0.36 eV (5th band),
0.50 eV (6th band), and 0.90 eV (7th and 8th bands).
Pandey and Phillips' do not give rms errors for
the conduction band; our own estimates using their
parameters and the pseudopotential results of
Pickett' are 0.7 eV (5th band), 1.5 eV (6th band),
and 3.5 eV (7th and 8th bands). It is clear there-
fore that our own SK fit is of superior accuracy.
We attribute this improvement to our inclusion, in
contrast to PP, of the third-neighbor interac-
tions. In Table I we list our SK parameters
following the notation of the SK paper' and com-
pare them with those of PP. The PP parame-
ters have been converted from the two-center to
the three-center notation in a straightforward

FIG. 1. (a) Energy bands for Si resulting from our
Slater-Koster Hamiltonian. (b) Energy bands for Si
from the pseudopotential calculation of Pickett.

manner. ' Figure l(a) shows our SK energy bands,
and Fig. 1(b), for comparison, the bands from the
empirical pseudopotential of Pickett. ' One can
see that we have even reproduced the plane-wave
character of the conduction bands in contrast to
the narrow conduction states given by Pandey and
Phillips. ' Our band gap from the SK bands is 1
eV wide, which is almost exactly the value from
the pseudopotential results. '

In order to calculate the densities of states (DOS)
we have generated from the SK Hamiltonian eigen-
values and eigenvectors for 89 k points. These
results were then used in the tetrahedron method. "
The resulting DOS are shown in Fig. 2 where one
can note that the well-accepted three-peak struc-
ture of the valence bands is reproduced as well
as a fairly accurate value for the gap and very
reasonable shape for the conduction bands. Also,
the angular momentum decomposition gives the
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FIG. 2. Total and angular momentum-decomposed densities of states for Si derived from our Slater-Koster Hamil-
tonian.

expected strong s character at the bottom of the
valence band and strong p character at the top of
the valence band and the conduction band. In Fig.
3 we present, calculated in the same way, the
DOS from the Pandey and Phillips' parameters.
The similarity in the valence band and the clear

I

disagreement in. the conduction band is evident.

III. IDEAL VACANCY IN SILICON

Bernholc and Pantelides' have given a clear sum-
mary of the Koster-Slater' theory, and performed
calculations of the ideal vacancy in Si based on the
SK parameters of PP." We have done calculations
along the same lines using the PP parameters,
for the purpose of checking our computer codes,
and also using our own SK parameters. We have
reproduced the results of Bernholc and Pantelides'
using the PP parameters. In particular, using the
PP parameters we find a bound state of T, ((-
like) symmetry at 0.27 eV above the top of the
valence band.

det 5, —P G' „(E)V .. . =0,

where G, „(E)=-(o.
~
(E -H') 'l n") is the unper-

turbed (crystalline) Green's function" and V,„,,
are the matrix elements of the perturbing poten-
tial. In the present case G, (E) is diagonal
when n, n" refer to the four orbitals of the same
site and V „,is diagonal and infinite when
n", n' refer to the four orbitals of the vacant site
and zero otherwise. Thus the equations deter-
mining the bound levels become

G (E)=0,
G, (E)=0,

(&)

(2)

However, using our own SK parameters we find
the bound state of T, symmetry to be at 0.75 eV
above the top of the valence band, i.e., much
closer to the conduction band rather than the
valence band. The bound levels are determined in
general as solutions of the equation
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FIG. 3. Total and angular momentum-decomposed densities of states for Si derived using the Slater-Koster param-
eters of Pandey and Phillips.

where G~, 0, are the p and s diagonal matrix
elements of G', respectively. In Fig. 4 we plot
the real part of G~ (ImG~ is zero in the gap) vs
E, showing thus the solution of Eq. (1) at E
= 0.75 eV. Qn the other hand, the plot of the real
part of G, versus E in Fig. 5 shows that Eq. (2)
has no solution, i.e. , no s-like bound level exists.

The important point in this section is that the
position of the bound state that we have calculated
(0.75 eV) is in close' agreement with the 0.8-eV
value reported by Bernholc et a/. 4 and obtained
from electronically self- consistent calculations.
Our value is also in good agreement with the 0.7-
eV value given by Baraff and Schluter" and also
by an electronically self-consistent approach.
This confirms the suspicion of Bernholc et al.4

that the position of the bound level in the gap is
determined mainly by the crystalline SK Hamil-
tonian. Indeed, the present calculation shows that
the effect of electronic self-consistency on the
position of the bound level is within the numerical

uncertainties of the calculation and thus can be
neglected. Hence, it appears to us that the
question of carrying the calculation to self-con-
sistency is of secondary importance. What is
needed is a tight-binding Hamiltonian which gives
the correct gap and a good representation of the
valence as well as the conduction band. With such
a Hamiltonian as a starting point the electronic
self-consistency effects seem to be of minor im-
portance. On the other hand, the effects of lattice
relaxation due to the vacancy (i.e. , the effects of
ionic self-consistency) are quite important as
suggested recently by White and Ngai" and demon-
strated by elaborate first-principles calculations
by Baraff pt al. and I iparl et al.

In conclusion, we have succeeded in construct-
ing an orthogonal s,p' basis Slater-Koster Hamil-
tonian for Si which reproduces reasonably ac-
curately the crystalline band structure not only of
the valence band but of the conduction band as
well. This Hamiltonian was shown also to be
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FIG. 4. The real part of the p-like Green function
G& plotted as a function of energy. Note that the gap is
in the range 0 «& 1.0 eV.

capable of calculating correctly the effects of un-
reconstructed vacancies. In forthcoming publica-
tions we employ this Hamiltonian together with a
coherent potential approximation approach to
study the electronic structure of amorphous and
hydrogenated amorphous Si. In such a compli-
cated calculation, the orthogonality and the small
number (four orbitals per site) of the basis of the
present SK scheme are very important advantages.
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FIG. 5. The real part of the s-like Green functions
G, plotted as a function of energy. Note that the gap is
in the range 0 «&1.0 eV.
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