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Magnetic correlations in two-dimensional spin-glasses
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By a recursive method numerically exact free energies are calculated for square L && L Ising

lattices, with 6 ~ L ~ 18, for several kinds of frozen-in bond disorder: (i) bonds +J with vari-

ous concentrations of negative bonds; (ii) bonds distributed according to a Gaussian distribu-

tion. Ground states of these systems are identified, the response to "ordering fields" is studied,
and the correlation function (SaStt ) r is calculated as a function of temperature for various dis-

tances R in- the lattice. This correlation is found to decay strongly (presumably exponentially)
with increasing R even at temperatures distinctly below the apparent freezing temperature Tf of
previous Monte Carlo simulations; this "freezing transition" is hence unambiguously identified
as a nonequilibrium effect. However, the correlation length is found to become long ranged at
low temperatures, and it is suggested that a phase transition still occurs at T =0; awhile in the
Gaussian model the spin-glass order parameter q ( T =0) =1, it is found that q = 0 in the +J
model where rather a power-law decay of correlations (SoSR) r a occurs. Performing Monte
Carlo simulations for precisely the same systems, the cooling times necessary to reach the true
ground states of the system are identified, as well as the simulation times necessary to reach
thermal equilibrium for the correlation functions. These times are found to increase so strongly
with L that for systems of macroscopic size the correct thermal equilibrium is probably ir-

relevant for experimental purposes. Rather a statistical mechanics based on the many long-lived

rnetastable states would be required.

I. INTRODUCTION

The appropriate theoretical description of spin-
glasses is a problem of strong recent efforts and
much controversy. ' ' In their pioneering paper' Ed-
wards and Anderson suggested that the frozen-in
state of spin-glasses is characterized by a nonzero lo-
cal order parameter q = ((S,) T),„,where ( ),„

means averaging over the quenched disorder.
"Freezing" of the spins at the freezing temperature Tf
would then be a phase transition like other phase
transitions which occur in thermal equilibrium. It is
this behavior which is believed to occur at least in the
mean-field limit, although a mean-field theory which
becomes rigorous for long-range random interactions
has not yet been established. ' ' However, it is al-

ready clear that the mean-field predictions are not in

agreement with experiment, ' and it is necessary to go
beyond the mean-field limit. At present there is no
consensus about what then happens:

(i) Monte Carlo simulations of Ising models where
nearest neighbors have either a random Gaussian ex-
changes " or exchange +J (random-sign model)""
first were interpreted in accord with the Edwards-
Anderson hypothesis. Anomalous slow relaxation
phenomena, which are seen in the simulations,
have then been interpreted as evidence against an

Edwards-Anderson transition. '4 However, many ar-
guments have been given' " that the interpretation
of Ref. 14 is not conclusive —perhaps the most con-
vincing argument being the similarity of the results
obtained to those at d = 5 spatial dimensions, where
Edwards-Anderson transition is generally accepted.
From various treatments' " " it seems plausible
that the simulations so far studied only the initial

stages of relaxation towards equilibrium in these
models, and hence have little bearing on the question
of what happens in equilibrium. It is an open ques-
tion to identify the times necessary to simulate equili-
brium properties of spin-glasses.

(ii) The renormalization-group approach has also
yielded quite ambiguous predictions for the lower
critical dimensionality d„below which Tf —= 0. Real-
space methods for Ising spin-glasses yielded
2 ~ d, ~ 3. The reliability of this approach is hard to
ascertain, however. The more reliable e expansion in
terms of e = d —d' ~here d' is the upper critical
dimensionality (d'=6 here ) relies on the replica
method and an expansion in powers of q, which
seems to be of doubtful validity below Tf as instabili-
ties occur."' A certain version of replica symmetry
breaking removing some of these instabilities yields
d, = 4 (Ref. 27) but this scheme needs further justifi-
cation. ' The result d, =4 seems to be corroborated
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by high-temperature series expansions for both the
+J model" and the Gaussian model, '9 but these (re-
latively short) series are quite irregular and hence,
hard to analyze. In addition, it is conceivable that
the "susceptibility" X sq

= k ((T X(( ((SpSR ) ),„

remains finite at the spin-glass transition. '5

(iii) A third approach concentrates on ground-
state properties, starting from the fact that a consid-
erable fraction of the bonds remains "frustrated. "'
Analysis of ground-state properties is useful to esti-
mate the concentration of negative bonds for which
one just can no longer have a ferromagnetic ground
state. " ""In addition, one finds that even for
d = 2 there are large "packets of.solidary spins" in the
spin-glass ground states, i.e., groups of spins that al-
ways keep the same relative orientation in the ground
states. "'3 Since these packets overlap, the signifi-
cance of this observation for the question if a transi-
tion occurs is not clear." Also the suggestion that in
spin-glasses for d =2, 3 the boundary energy at T =0
vanishes'4 does not give a conclusive answer to this
question. 3' Finally we note that approaches where
frustration is treated as a field in a continuum
description' have not settled this problem either:
On the one hand, a fixed point corresponding to a
transition to order like in a Mattis spin-glass" is
shown to be unstable against frustration below d = 4
(Ref. 37); on the other hand, for Heisenberg spin-
glasses it was suggested that d, =3 (Ref. 36), and one
expects that in the Ising case d, is the same' or
lower. Note, however, that this gauge-field ap-
proach also needs further clarification. Finally we
note that at T = 0 and d = 2 a paramagnet-spin-glass
transition was also identified from systematic series
expansions for diluted spin-glasses. "

In the present paper, we wish to contribute to clari-
fy some of these questions by studying the statistical
mechanics of two-dimensional Ising spin-glasses more
carefully. In Sec. II we describe methods to calculate
the partition function of L && L lattices (with L up to
18) exactly, as well as certain response and correla-
tion functions. In Sec. III the results for the +J
model are compared to Monte Carlo calculations for
precisely the same systems, in order to unambiguous-
ly distinguish nonequilibrium phenomena from

equilibrium properties in the simulations. ' The time
scales necessary to get meaningful equilibrium results
are identified. In Sec. IV the same is done for the
Gaussian model. Extrapolating our results for vari-
ous L to L ~ we conclude that neither of these
models exhibits order at nonzero temperatures, but
both of them have a transition at T =0. In Sec. V
the transition ferromagnet-paramagnet is studied for
the +J model as function of temperature and concen-
tration of the wrong bonds. Section VI contains our
conclusions.

II. RECURSIVE METHODS TO CALCULATE
PARTITION FUNCTIONS, SELECTED

GROUND STATES, AND RESPONSE AND
CORRELATION FUNCTIONS AT FINITE

LATTICES

where the sums (ij ) run over nearest-neighbor pairs
in the lattice. For computational reasons, which will

become clear later, we apply periodic boundary condi-
tions in the horizontal lattice direction (where the lat-
tice linear dimension is L), but free boundary condi-
tions in the vertical one (where the lattice linear di-
mension is K). We attempt to calculate the free en-
ergy numerically exact for one set of interaction
parameters and fields {J&), {H;{,normalized per site;
1.e.,

kgT
(, },( /)

=
Ig ), ( /)

(2)

The problem of averaging Eq. (2) over the disorder
in the system according to suitable distributions for
P(ij) and/or P(H;) will be treated later. We first
note that the partition function appearing in Eq. (2)
can be written as follows, denoting by Sk& the spin in
the kth line and Ith column, and J= J/k((T, —
H =—H/k((T, Jk( „connecting spins Sk(, S „:

We consider the Ising Hamiltonian with arbitrary
inhomogeneous nearest-neighbor interaction {J~J) and
field {H;}for a L x K square lattice

3:= —X JJS,Si —XH;S;

)J))H)= X X X X
{S11}{S1~) (S1~} {S~1) {S)~) (S/)('1} (SI(,g )

L

Q exp(J(( ((+,S«S«+() exp(H((S(() exp(J((, (S((Sp()

t

Q exp(Jq( q( (Sq(Sq(+() exp(H„S„)exp(JQ( 3(Sp(S„) ~ ~ ~

I.

IIe"p( JKI Kl+(SKIS((l+() exp(HK(S((l )
I~1

(3)
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we compute Zp l «H 1
recursively similar to a

(j (

method applied earlier for homogeneous systems. '
The first step is to compute the "horizontal factor"

L

II exp(J11, 11+1 1f 11+1)exp(H1I 1I
l~l

for all 2L states of the {SII). It is the storage require-
ment for this factor which prevented us from study-
ing L larger than L = 18 (while there is much less
difficulty to go to larger K). Then we calculate the
first "vertical factor" exp(J11 21S11S21) for the two
possible choices of S2~ =+1. Since for our choice of
boundary conditions we have then taken into account
all interactions of S~~, we can already now perform
the trace over Sj~. For the further calculation we
hence keep terms for all the states of {SIII&2) and

S21. Then the second vertical factor exp(J12 22S12S22)
is calculated for the two states of S22, and the trace
over S~2 is performed, etc. When S2L is reached the
trace over all {SII) is completed and we now compute

the horizontal factor

g exp( J2I, 2I+IS2IS 2I+1) exp( H2IS21)
l

for all 2L states of the {S21). Adding the vertical fac-
tor exp(J21 21S2IS21) for the two states of S31 we may
take the trace over S2~, and thus step by step take the
trace over the spins in the second row, and after that
of the third one, etc. Thus we obtain Z«J ~ «H ~

nu-ij' i

merically for arbitrary values of the interaction
parameters (and temperature T ). By computing
lnZ«J

~ «H l for a set of neighboring temperatures we
(j (

get internal energy per spin U and specific heat per
spin C by numerical differentiation with very good
accuracy. Similarly we can obtain arbitrary suscepti-
bilities by recording the free energy for a set of
neighboring values of the appropriate field and by
taking the suitable derivative numerically.

It is also convenient to calculate correlation func-
tions between the last spin (at site K, L) over which
the trace is taken, and any other spin (at site i,j )
We start from the identity

Z =Trlq s l exp( —3'/ks T) = Tru s„,l exp( K'/ka T)—(2 coshHxL)Trs +, ( I + SILL tanhHIIL ), (4)

where (assume HXL =0)
- eff

HgL = Jjg ) «S+L —$+ Jlt;L g]Sg) +Jg )L gLSg (L

We now define a restricted partition function Z',
where the spin S«kept fixed at S« = 1, and hence
note

Z'=Z(1+ (tanhHxLn) ) =Z(1+ (SINAI ) ) . (6)

We now consider the derivatives with respect to a lo-
cal field Hj,

0 lnZ'
S (S,JSXL) —(SII) (SIrI)

eH,, " I+ (S

82 lnZ'
1 —(S;,S )

2

$Hij Hj 0

Hence the desired correlation function (S„"S„L)',
which when summed over all separations yields the
susceptibility k& TXEA mentioned in the introduction,
is simply obtained by our method by computing re-
stricted partition functions for a set of small H;, close
to H„=0to take the deri"vate defined in Eq. (8).

Somewhat more involved is the identification of
ground states. We start by storing the n states of the
first line having the lowest energies (typically
n = 10'). We combine these states with all 2L states
of the second line, and keep out of these n2L states
again n states, which now have the lowest energy.

This procedure is repeated line after line, until one
completes all K lines, and one ends up with a set of n

low-lying states for which the configurations of all K
times L spins are known. We compare the total en-
ergy U(m) for each of these remaining n states {m)
with the total ground-state energy KLU ( T = 0)
= KLF (T = 0), which we obtain from Eqs. (2) and
(3): If U(m) equals this ground-state energy, then
m is a ground state, while otherwise m is (at best) a
low-lying metastable state. If it happens that no
ground state is found for the chosen n (or too few of
them), the procedure has to be repeated with larger
n.

So far all results refer to one fixed set of interac-
tion parameters {JJ) (and fields {H;)). We wish to
obtain average quantities

where P (J&) is the probability distribution which
describes the bond disorder in the spin-glass. 44 In the
+J model, P(J;, ) is given by

P(J;;)= (I —x)5(J; —J ) +xg(JJ+J), (10)

i.e., x describes the concentration of negative bonds.
In the Gaussian model, P(J,, ) is given by

P(J&) = (I/Jm) exp[ —(J& —J)2/2(AJ)2]

J being the mean and AJ the width of the distribu-
tion.
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Unfortunately, it is impossible to perform also this
averaging in Eq. (9) exactly in the cases we are in-
terested in. Hence this averaging is done approxi-
mately, by generating a number M of characteristic
realizations [J&), where random numbers are used to
generate [J&) from the appropriate distribution [Eq.
(10) or Eq. (11), respectively]. Hence Eq. (9) is re-

placed by

M

(( )) = —X( )}J}M ij nt

r

(12)

Since the various [J&) are statistically independent
of each other, also the averages ( ) }J } are sta-

ijm
tistically independent quantities. Hence the error in-
volved in replacing Eq. (9) by Eq. (12) is found from
standard statistical analysis (these are the error bars
quoted in the following sections).

It should also be noted that not all kinds of disor-
der lead to errors of this kind. Applying'our method
to the Mattis spin-glass, which is related to an Ising
ferromagnet via gauge transformations, 30'8 it is clear
that all gauge-invariant quantities are obtained
without any error from a single realization [Ji) al-

ready.
For the nontrivial distributions [Eqs. (10) and

(11)]we again are interested in gauge-invariant
correlations and susceptibilities only. For these quan-
tities it is only the gauge-invariant part of the disor-
der which matters. On a square lattice this is not the
concentration of negative bonds x, but rather the
concentration of frustrated plaquettes xF,' which is
related to x via (for an infinite system)

xr =4x(1—x) [x'+ (I —x)']

Hence we have chosen our sets [Js) for the

averaging in Eq. (12) such that they precisely satisfy
Eq. (13) also in our Jinite systems [where Eq. (13)
would hold on the average but not necessarily for
each individual realization: in fact, since the Mattis
disorder is a subclass of the disorder described by Eq.
(10), for small x some realizations in a finite lattice
would have no frustration at all, and hence yield very
atypical results]. Hence, precisely speaking, we are
not using Eq. (10) but rather a modified distribution
P' (J& ) defined by

P'(Ji) = P (i~)5(xr —4x (I —x) [x'+ (I —x)'])

(14)

P'(J&) reduces to P(Jo) in the thermodynamic limit,
and is a valid model distribution for disorder in a
spin-glass as well as Eq. (10), of course. It turns out
that use of Eq. (14) reduces the errors involved in

Eq. (12) significantly, and between 15 and 100 reali-

zations were sufficient to reach the accuracy shown
here [direct use of Eq. (10) would have required
about 10 times more computational effort to reach
the same accuracy]. In the symmetric Gaussian
model we also used a restricted distribution complete-
ly analogous to Eq. (14).

III. NUMERICAL RESULTS FOR THE SYMMETRIC
+J MODEL AND A COMPARISON WITH

MONTE CARLO SIMULATIONS

1
For the symmetric +J model we have x =x& = —,.

Figure 1(a) shows internal energy U normalized per
bond (E = 2U, and hence for periodic boundary con-
ditions and/or infinite systems F. is the internal ener-

gy normalized per site) Monte Ca. rlo data were gen-
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models plotted vs inverse linear dimension L. (c) Entropy plotted vs temperature. Triangles denote Monte Carlo results of
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crated for precisely the same lattice (i.e., same size
and same choice of the (J;,) ) and are included for
comparison. Starting the Monte Carlo run from one
of the ground states found from the exact calcula-
tion, it turns out that the energy always comes to
equilibrium nicely, using an observation time of
20000 Monte Carlo steps (MCS)/spin. The same is

true for temperatures ks T/J & 0.8 starting the simu-
lation from a random initial spin configuration, while
then for ks T/J ~ 0.4 the deviation of the internal
energy from its equilibrium value is quite pro-
nounced.

There has been considerable discussion in the
literature" ""' "' "' concerning ground-state
properties obtained from Monte Carlo simulations.
Hence we investigated the circumstances under which
one can reach true ground states from Monte Carlo
simulations which are started with random initial
states. We found the following procedure relatively
efficient: the system is immediately quenched to a
temperature somewhat above the apparent freezing
temperature (which is about ks T/J = 1.4 in this
case"), e.g. , to ks T/J = 1.8, and from there the tem-
perature is reduced linearly with time until zero tem-
perature is reached after some chosen cooling time t, .
Then the system is allowed to evolve at T = 0 about
100 MCS/spin, and one asks whether the ground
state has been reached.

It turns out that the t, necessary to reach the
ground state has a distinct dependence on the size of
the system. Using t, =10' MCS/spin for a 6 & 6 lat-
tice it turns out that the system not only reaches one
of its ground states during the run but there are so
many of them that one reaches for every one of
them also the "opposite" one (which is constructed by
changing signs of all the spins in the ground-state
configuration). For 8 x 8 and 10 x 10 one no longer
reaches both a ground state and its opposite one, but
still t, ) 10 MCS/spin is sufficient to reach many
ground states. Much shorter t, (of order 10' to 104

MCS/spin) are sufficient to reach just one of them.
For N = 12 x 12 and 14 x 14 runs with t, = 10
MCSlspin typically are no longer successful, one
ends up with metastable states whose total energy is
only slightly higher (e.g. , by 2J) than the true
ground-state energy, but which differ from ground
states by fairly large rearrangernents of spin clusters.
This observation is consistent with suggestions of
Dasgupta et al. ' and Rammal et al, With
t, = 2 x 10 —3 x 10 MCS/spin one reaches the
ground state in most cases, however, and the same is
true for N = 16 x 16. For N = 18 && 18 t, = 2 x 10 was
never found to be sufficient, and times t, =3 && 104—
6 x 10 MCS/spin were needed. For N = 24 & 24 a
time t, = 8 x 104 MCS/spin are needed; and for
N = 32 x 32 even times t, = 1 x 10'—2 & 10'
MCS/spin. Since we find the ground-state energy per
bond to be weakly dependent on N, we estimate by

extrapolation [Fig. 1(b)]

E(T =0)/J = —1.4+ 0.01

This estimate is slightly lo~er than previous Monte
Carlo estimates" 4', on the basis of our observations
we expect that in this work" ' no true ground states
were reached but rather low-lying metastable states.
The result of Ref. 31, where exact ground states are
also generated is E(T=0) = —1.4, and hence in

good agreement with our result. Figure 1(c) then
shows the temperature variation of the entropy per
spin. While at high temperatures our results agree
well with the Monte Carlo estimates of Kirkpatrick, "
our ground-state entropy is distinctly lower (S/ka
= 0.075) than his estimate [S/ks = 0. 1 (Ref. 12)].
The behavior of the energy as a function of size [Fig.
1(b)] suggests that the free boundaries allow the sys-
tem to better "accomodate" to the disorder; i.e., "frus-
tration" is less effective and hence we expect that our
method slightly underestimates S ( T =0), as the
ground-state degeneracy may be slightly reduced.
However, Vannimenus and Toulouse" obtain
S ( T =0)/ks = 0.07 by a different method using iat-
tices from 20 x 20 to 30 x 30, which fact suggests that
the Monte Carlo estimate is presumably somewhat
too large.

The times necessary to lose the influence of the
initial state at low temperatures (ks T/J « 1) are of
the same order as t, . In order to obtain reasonable
estimates for thermal averages, susceptibilities, etc. ,
much larger observation times are needed, however.
This is demonstrated in Fig. 2, where the Monte Car-
lo estimates of susceptibility ks TX(r) and an order
parameter component pi' ((S "]being the spin con-
figuration of the /th ground state) which is defined
as"

(16)

are plotted versus observation time t at a temperature
below the apparent freezing temperature. It is seen
that both X(r) and $2&(r) stay small up to about
t = 104 MCS/spin while then a "transition" to another
state occurs, where both X(r) and $2~~(r) have nearly
constant values for a time of order 104 MCS/spin,
before again a transition occurs. We interpret obser-
vations of this kind as follows: Some of the ground
states correspond to "valleys" in phase space, which
are separated from each other by fairly high-lying
saddle points. The transition seen in Fig. 2 corre-
sponds to a trajectory of the system in its phase space
passing over such a saddle point. If the system
would stay in one valley in the thermodynamic limit
an infinite time, the symmetry would be broken and
the order parameter P (Ref. 11) would hence be
nonzero. Comparison of the Monte Carlo data in
finite systems with the corresponding exact results
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shows, however, that averages where the system
stays in one (or a few) of these "valleys" yield unreli-
able results, Fig. 3. These data based on cooling
times t, -2 x 10' MCS/spin and observation times
t =2 x 10 MCS/spin are used to evaluate the
Edwards-Anderson order parameter q (t) (Ref. 46)
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FIG. 3. Spin-glass order parameters q (t) (left part) and
(right part) plotted vs temperature, as obtained from

Monte Carlo and exact calculations, for N = 16 x 16. Vari-
ous observation times are shown [data for t =2000
MCS/spin are for N =80 x 80 (Ref. 12); these data and the
full circles have random spin configurations as initial condi-
tion, while the others have a ground state as initial condi-
tion].

FIG. 2. Typical Monte Carlo run showing the time evolu-
tion of kz TX and p~~ for a 16 x 16 lattice at kz T/J = 1.0.
The steps during the cooling time of t, =2000 MCS/spin
after the start from a random initial configuration are omit-
ted.

and time averages of (}(j(t). For the latter, the par-
ticular ground state (S;("}was used as a starting con-
figuration, and the results were averaged over several
ground states. The results would seem to indicate
that an order parameter exists at low enough tem-
peratures, but dramatically disagree with the exact
result for the chosen realization }JJ},which is also in-

cluded. The exact result was obtained from the rela-
tions" 4'

Xp = O' F/8 (H '" ) '

(}(('—= k(( T X~/&

$S(((S(() (S S ) /A(2

Deliberately a realization }Jj}with fairly small Q(
was chosen to emphasize the effect that the Monte
Carlo method overestimates the ordering tendency
because the system stays in the vicinity of the start-
ing ground state }S,("},the corresponding "valley" in

phase space, for a long time. Of course, the same ef-
fect occurs, as is well known, 4' in Monte Carlo simu-
lations for systems with a phase transition at T, at
temperatures sufficiently below T, ; this fact allows
there the direct Monte Carlo estimation of the order
parameter (}(, while in an exact calculation for a finite
system there is no symmetry breaking, and hence
((i() =—0 and only ((}(2) is meaningful (with
limN „((}(')= ((}()', (Q) being the order parameter
of the infinite system, which then is well approximat-
ed by the observation (}( from a single "valley" be-
cause all valleys are equivalent). In our case where,
as we will argue below, no symmetry breaking occurs
at T & 0, the nonzero order parameter necessarily
obtained from observations from single valleys is
hence a spurious effect due to too small observation
times, as speculatively suggested in Ref. 14. The sit-
uation is particularly deceptive, as the apparent order
parameter q (t) (Fig. 3, left part) seems to be fairly
independent of the system size (as the N = 80 x 80
data of Ref. 12 included there show), and also there
is no systematic dependence on the initial state —even
data with random initial state give about the same

q (t). In our current interpretation, this means that
the system after some time just gets "locked in" in

some valley of the phase space and all valleys are suf-
ficiently narrow to produce about the same q (r).

Not all quantities are seriously affected by such ob-
servation time effects. The specific heat, Fig. 4, is
neither sensitive to the initial condition nor the size
of the system, and for observation times considered
here it agrees well with the exact result. This is to be
expected, as the specific heat is mostly sensitive to
short-range correlations, which come in some sort of
"local equilibrium" fairly quickly.

As noted above, the exact calculation of finite sys-

tems yields (P) =—0 but on the other hand ((}(2) is
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several linear dimensions L. Error bars are calculated from
averages over 100 realizations li~j) for L = 6, 40 realizations
for L =12, and 25 realizations for L = 16.

—= ka TXa/N (18)

lim (k, TX,) = N (y)'
/V ~oo

(19a)

while in the case of phase transition at T, without or-
der parameter but infinite correlation length below T,
we expect that the sums in Eq. (18) will diverge for
N ~ to yield

lim (ksTX&) ~N", 0(x (1
/V ~oo

(19b)

Hence it is the size dependence of (tir2) which
matters, and which potentially can answer the ques-
tion whether an order parameter exists.

This consideration is illustrated in Fig. 5, where for
comparison we include results for the Mattis spin-
glass

3CjM= —J X e;aJS,S, , e;=+I
&;J)

(20)

the a; being random variables with (e, ),„=0.As is
well known, the disorder contained in Eq. (20) can

where NG is the number of ground states of the sys-
tem. From Eq. (18) we conclude that even for an
ideal paramagnet, in the absence of any correlations,
the self-terms yield X& = I/ks T and hence
(tit') =1/N. In the presence of correlations of finite
range, X& may be strongly enhanced such that (p') is
of order unity for a small system. In the case where
an order parameter exists we have

lim ((ter')a),„=0;
rsV ~oo

(21)

i.e., no order even in the ground state. Note that

be "gauged away" by transforming to pseudospins
S,

' = a;Srr and X& in Eq. (18) thus just becomes the
ferromagnetic susceptibility of the equivalent Ising
ferromagnet, and (ter) its magnetization. Figure 5

vividly illustrates that in this case the finite lattice
results unambiguously show that there is an order
parameter. (tirz) independent of lattice size at low

temperatures. While above the transition (which oc-
curs at4' ks T,/i =—2.27) there is a fairly strong
dependence on size due to the large short-range or-
der' contributing in Eq. (18), below T, the effects of
short-range order are much less dramatic as the
long-range order saturates. Clearly, if a transition oc-
curs at T, where the correlation length diverges there
are strong finite-size effects in the vicinity of T,
which are well understood. Below T, the correla-
tion length decreases again and hence the finite-size
effects have to become smaller as the temperature is
lowered. This behavior is clearly borne out by our
results for the Mattis spin-glass.

The situation for the Edwards-Anderson +J spin-
glass is very different. It is seen that ((ter') r),„al-
ways remains fairly small, and shows a pronounced
size dependence at all temperatures. ' ( (p') r), „

steadily decreases as N is increased. The saturation
value ((P') a),„decreases so strongly that we suggest
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this result also implies that the Edwards-Anderson
order parameter

q= —X(S;)r1

l
, av

(22)

is zero for T =0: Suppose q would be nonzero; this is.

only possible if a finite fraction of individual sites i
has (S;) rz & 0 in each realization {Jo}.Then there is
a finite fraction of the Nz pairs ((S;)(SJ) )z which is
nonzero either. Hence we have the following identi-
ty, in the limit N

128—

96—

T-—-o» T&o

64—

Symbol L

x 6
12
16

'= —X(S;)' —X(S)'1 2 1

, av, ~ , avI

—X ( g) r =, X (S;S))r, (23)
1 2 1

J , av

since lims (S;S~) r' = (S;)r (Sj) r, where R is the
distance between sites ij; in the thermodynamic limit
individual realizations {Jo) lead to q}J } (1/N )

/J

x X, (S,) rz which differs from q by a negligible

amount only, and hence q' = (q }J } ),„holds. Now
IJ

we immediately realize that Eq. (18) reduces to the
right-hand side of Eq. (23) for T = 0, and hence then
the order parameters q, p become identical.

While the data quite clearly rule out the case Eq.
(19a) it is much harder to decide whether X& in Eq.
(18) is finite, and hence ((pz) ),„nI/N, or whether
Eq. (19b) holds. If the correlation length f& is finite,
one expects that X& becomes independent of
N = L x L if L exceeds g& distinctly. This question is
more clearly analyzed if we plot X& rather than
((P') ),„,Fig. 6. It is seen that data for L = 6, 12, 16
still are nearly identical for ksT/J =1.3, the apparent
freezing temperature of the Monte Carlo simulation.
For ks T/J =0.7 data for L = 12, 16 still are nearly
identical, while X& for L = 6 is distinctly smaller.
Tentatively one can conclude that g& is less than six
lattice spacings at ks T/J =1.3 and less than 12 at
ksT/J =0.7. Thus one has a smooth increase of
correlation length, which (probably) diverges at
T =0. Evidence that X& actually is infinite at T =0
has also been inferred from systematic series expan-
sions. 4'

While X& = XEA at T = 0, this relation is no longer
true at nonzero temperature. It is conceivable that
(S,S)) T is long ranged although (S;SJ)0(S;S&) r is

not. ' In the case where an order parameter exists
this would mean that the "state vector" in phase space
which corresponds to an ordered phase "changes
direction" when the temperature is raised. Such a
behavior is known to occur in helical magnets. "
Some evidence for such a behavior was also seen in
the mean-field limit of spin-glasses. Therefore it is
most important to study the correlation (S;S&)r
directly, by help of Eq. (8).

32—

X~~X~
XW

x» 0~XX» x~ 8~
I

0.5
I

1.0 5 "e '"

FIG. 6. Ordering susceptibility of the symmetric J spin-

glass plotted vs temperature for various L.

This correlation is shown in log-log form in Fig.
7(a). At the lowest temperature (at about 15% of the
apparent Tf seen in Monte Carlo simulations, cf. Fig.
3) the data yield a straight line, indicating a power-
law decay

((S;Sg) rz o),„~R~, R (24)

with p =0.4+0.1. At k Ts/J =0.5 (about 38% of the
apparent Tf) the correlation behaves very similar for
small distances, but at larger distances one sees a dis-
tinct crossover to a quicker decay. Replotting the
data in semilog form [Fig. 7(b)] it is clearly seen that
the data for ks T/J =0.5, 0.8 are consistent with an
exponential decay

( (S,Sg) r ),„exp(—R /gsA), R (25)

The different behavior of ks T/J =0.2 at this plot
could indicate that a phase transition from exponen-
tial decay to power-law decay occurs at some tem-
perature ks T,/J between 0.2 and 0.5, as in the two-
dimensional XY model. ' We consider this possibility
unlikely, for the following reasons: Our data for X&

have already indicated that (& becomes of order 10
lattice spacings at ks T/J =0.7, and is steadily in-

creasing with decreasing temperature. Due to Eq.
(24) we expect that GAEA ~ z g&, and hence at1

ks T/J = 0.2 we clearly have gsA » L. Hence for the
distances {ro{available we do not expect to see any
effect of the exponential decay, Eq. (25), and the
crossover from Eq. (24) to Eq. (25) occurs in Fig.
7(a) for much larger distances than are available
from this type of numerical calculation. If there were
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and hence x =p/2.
The behavior found here is of the same type as in

the (fully frustrated) Ising antiferromagnet on the tri-

angular lattice, where" p = l.

Symbol kBTIJ

IV. NUMERICAL RESULTS FOR THE SYMMETRIC
GAUSSIAN MODEL AND A COMPARISON

WITH MONTE CARLO SIMULATIONS
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Again we start by comparing the internal energy
obtained from the exact method with Monte Carlo
results, Fig. 8(a). While the simulation data are in

fair agreement with the exact calculation at high tem-
peratures, deviations start relatively soon. below the
apparent freezing temperature (ks Tf//t, J = 1.0
here9), and at low temperatures the deviations are
quite pronounced. Our estimate, based on extrapo-
lating the average ground-state energy of L x L lat-
tices to L ~ [Fig. 1(b)t

0.47-
x

v

0.224-

0.2

0.5
0.8

0.105—

0.05
0 10 15 R

FIG. 7. Correlation function (SaSs) —= [(S,S&) r],„plot-
ted vs R in log-log form (a) and semilog form (b) for three
temperatures.

a phase transition from Eq. (24) to Eq. (25) at a
T, ) 0, the possible T, would be about —, (or less)

of the transition temperature of the corresponding
Mattis spin-glass.

Finally, we note the relation between the ex-
ponents x,p defined in Eqs. (19b) and (24). Since X&

for N ~ diverges, one can replace the summations
by integrals over the volume V of the system

E ( T = 0)/J = —1.31 + 0.01 (27)

is significantly lower than previous values
E(T =0)/J = —1.25 (Refs. 15 and 19). Our methods
to find the ground state in principle work here also,
but in practice. it was much harder to obtain the
ground states: we find that their degeneracy is only
twofold (i.e., reversal of the signs of all the spins),
but there are many metastable states with-only slight-

ly higher energy. This result, of course, has to be
expected: for a finite lattice we have a finite number
(2LK-K in our case) of exchange constants IJ~I
drawn from a Gaussian distribution. The energy is a
linear combination of these 2LK-K real numbers in
every spin configuration, where due to the pairwise
character of the interaction and S; = +1 the same
linear combination is obtained if S; —S; for all spins
simultaneously. On the other hand, the probability
that two different linear combinations have precisely
the same energy is zero. A higher degeneracy, how-
ever, may be recovered in the thermodynamic limit
where then low-lying metastable states may merge
with the ground state. Figure 8(b) shows the tem-
perature variation of the entropy. Since the ground
state is twofold degenerate, we expect
S ( T = 0)/ks = In2/W. The data are consistent with
this behavior. Disregarding this finite-size behavior,
we find that the entropy is represented by a linear
variation, S ( T)/ks = 0.3 ks T/AJ, over a wide range
of temperatures Since dS/d(k. rrT//tJ) =CA / Jk,sT
this fact implies also a linear variation of the specific
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FIG. 9. Average spin-glass order parameter ((4rz) ),
„

plgtted vs temperature for a symmetric Gaussian spin-glass
according to exact calculation for various L & L lattices and

Monte Carlo (Ref. 11). Error bars are calculated from aver-

ages over 40 realizations [Jp) for L = 6, 8, and 20 realiza-

tions for L =12.
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FIG. 8. (a) Internal energy of the symmetric Gaussian
model plotted vs temperature for a 16 & 16 lattice. Monte
Carlo data for the 65 x 65 system are from Ref. 9 and for
the 50 & 50 system from Ref. 15. (b) Entropy plotted vs
temperature for two L & L lattices.

I

heat at low temperatures, which agrees with its direct
observations (see Fig. 11 below).

Due to this low degeneracy of the exact ground
states the behavior of the order parameter is quite
different from that in the +J model, Fig. 9.
Although 16 realizations of a 16 x 16 lattice were
generated, due to the above mentioned difficulties

only for two of them a ground state was found, and
hence they are omitted here. But it is interesting to
note that even the 34 x 34 Monte Carlo data, "where
almost certainly not the projection on ground states
but rather on metastable states was used to compute
an "order parameter, " fit well to the picture. We
hence note that again there is a systematic trend with

the size of the system, which was not seen in the ear-
lier Monte Carlo data"" due to their large statistical
fluctuations and observation time and effects. How-

ever, from Fig. 9 we now conclude

lim ((trr')r p) =1, lim ((Q )r)p) =0; (28)
N ~oo N ~oo

i.e., at nonzero temperatures there is no order param-
eter in the Gaussian model either, while there is one
[in the sense implied by Eq. (28)] at zero tempera-
ture, in contrast to the +J model.

In Fig. 10 the data for k& TX& are given. The sus-
ceptibility increases smoothly with decreasing tem-
perature. Near the apparent freezing temperature
ks T/AJ = 1 the data for L = 8, 12 nearly agree while

the result for L = 6 is somewhat smaller. This indi-

cates that (& = L = 6 close to that temperature.
Again the Monte Carlo method, although it

overemphasizes the order due to restricted observa-
tion time, yields fairly reliable estimates for the
specific heat, Fig. 11. As expected, finite-size effects
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FIG. 10. Ordering susceptibility of the symmetric Gaus-
sian spin-glass plotted vs temperature for various L.

have little effect on the specific heat, as in the case of
the +J model. %e expect some systematic size
dependence at very low temperatures, from the argu-
ment about the degeneracy of energy levels given
above: for any finite system, the first excited energy
level differs from the ground state by a small but fin-
ite relative amount c(c ~ I/JN ), and hence the
specific heat must vary according to an exponential,
C/ks ~ exp[ cE(T =0)—/ks T j. In the thermo-
dynamic limit the gap may vanish and the specific
heat may vary according to a power law, C/ks Y~ T».

The numerical results of Fig. 11 at ks T )) cE (T
=0) suggest a linear variation (y =1), in surprising
agreement with experiment. 8'4 Note that in the +J
model excitations only in integer steps of J are possi-
ble and a strong exponential variation of C remains
in the thermodynamic limit (cf. Fig. 11).

The correlation function is nicely consistent with a
smooth exponential decay at all temperatures con-
sidered, Fig. 12, and from the above considerations
[Eqs. (22) and (23)j we conclude that the Edwards-
Anderson order parameter is zero for T W 0 while it
is nonzero at T = O. .Again it is not possible to clearly
distinguish whether Eq. (24) or Eq. (25) holds at very

low tt:mperatures, but for temperatures exceeding
20% of the apparent freezing temperature of the
Monte Carlo simulations the exponential decay, Eq.
(25), is already clearly favored. From Fig. 12(b), we
expect that at our lowest temperatures GAEA distinctly
exceeds the largest L's and distances R available, and
hence much larger systems would be required to
check the exponential decay unambiguously. Our
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FIG. 11. Specific heat of the symmetric Gaussian spin-

glass plotted vs temperature as obtained from the exact cal-
culation of various L x 4 lattices. Monte Carlo data for
L =34 from Ref. 11 are included for comparison, as well as
the specific-heat curve of the +l model.

GAEA
= XR ( (Sr'�) ),„/(NkBTXEA) (29)

one immediately obtains for a lattice of coordination
number z in leading order of high-temperature ex-
pansion

B
(30)

Hence for the symmetric +J model the asymptotic

findings corroborate recent studies by Reed, "where
Onsager's exact solution of the Ising model with

homogeneous exchange was generalized to lattices
where a L x L cell (with arbitrary couplings inside the
cell) is periodically repeated: for L ~ 5 he finds that
the temperature of the specific-heat singularity de-
creases strongly with increasing L, and his numerical
data would be hard to reconcile with a transition for
L ~ at ksT/J =1.0, although he cannot rule out a
transition at much smaller temperatures. %e hence
conclude that the apparent transition in Monte Carlo
simulations of two-dimensional Ising spin-glasses is
an observation time effect, but emphasize the
point" ' that the Monte Carlo evidence on this ques-
tion in itself is very ambiguous, and one must be
careful in drawing conclusions on other dimensionali-
ties.

Figure 13, finally, presents the temperature depen-
dence of the correlation length as estimated from
results as shown in Figs. 7 and 12. It is seen that the
data are consistent with a divergence of the correla-
tion length for T 0.

Defining a correlation length $E„from the second
moment of the correlation function
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V. ASYMMETRIC +J MODEL AND THE
TRANSITION. TO THE FERROMAGNETIC PHASE

In the asymmetric +J model it makes sense to
study the ferromagnetic susceptibility
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FIG. 12. Correlation function (SeSR ) 2—= ((S;SJ)r2),
„

plotted vs R in log-log form (a) and semilog form (b) for
se veral temperatures.

behavior of the correlation length is simply traA = 2J/
ks T while for the Gaussian model ga„=25J/ks T.
These forms are included in Fig. 13 to demonstrate
that for large krr T/J (or ks T/6J) the correct asymp-
totic behavior is approached. We did not attempt to
carry the high-temperature analysis to higher order as
already the series for XEA is quite irregular. "'

k, Tx, = k, T(B'F/BH') = X ((S,S, ) ),„/N

xF' = 0.33 + 0.03 (x, = 0.12 + 0.015) (31)

(while in the symmetric case we trivially have

XF = 1/ks T). Figure 14 shows our numerical results
for several concentrations x of negative bonds. Ar-

guing similarly as for X&- above, we conclude that
ks TXF/N is related to the square of the magnetiza-
tion M. It is seen that k&TX~ decreases monotonical-
ly with temperature, as well as with concentration x.
Within our accuracy there is no evidence of a double
transition paramagnet ferromagnet spin-glass (or
paramagnet7), seen in some experimental systems. a

In order to estimate from the data in Fig. 14 where
precisely the transition paramagnet-ferromagnet oc-
curs, a careful analysis of the size dependence is
necessary, of course. Figure 15 shows the concentra-
tion dependence of the magnetization at ks T/J =0.2
(which agrees with the ground-state magnetization to
within our accuracy, cf. Fig. 14). We estimate the
transition ferromagnet-paramagnet for
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which is in the range of previous estimates [x, = 0.1

(Ref. 32), x, = 0.145 + 0.005 (Ref. 33), x, =0.15
(Ref. 45), x, = 0.15—0.20 (Ref. 12)]. The resulting
phase diagram (Fig. 16) is hence qualitatively similar
to that obtained by Young" from real-space renor-
malization.

Figure 17 finally analyzes the behavior of the
specific heat. It is seen that the position of the
specific-heat maximum coincides with the phase
boundary for small x only. Presumably the specific-
heat divergence is dominating the behavior in the
thermodynamic limit in a very narrow temperature
interval around the transition only, as it happens in

noncompeting dilute ferromagnets. " In a finite sys-
tem, such a singularity is completely wiped out by
rounding effects, but a broad background Schottky
anomaly remains (its maximum is not related to any
transition, cf. Fig. 14). This interpretation is corro-
borated by the fact that for larger x the specific heat
very quickly approaches that of the symmetric +J
model [which is also included in Fig. 17(c)). Figure
18 shows that the specific-heat maxima increase with
L for small x steadily, while for larger x they first in-
crease but then saturate: favoring again the in-
terpretation that in this case, the specific-heat peak is
due to (ferromagnetic) clusters occurring above the
transition (if a transition occurs at all).

FIG. 17. Average specific heat plotted vs temperature for
various concentrations x of negative bonds and three lattice
sizes: L =6, 50 realizations {a); L =8, 40 realizations (b);
L =12, 25 realizations (c). Arrows mark the position of the
phase boundary drawn in Fig. 16.

VI. CONCLUSIONS

%e briefly summarize the main findings of this
work as follows:
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(i) Both the two dimensional +J and the Gaussian
spin-glass model have a thermodynamic phase transi-
tion at zero temperature only, at nonzero ternpera-
tures all spin-glass order parameters are zero. In the
+J model the order parameters are zero even at zero
temperature, but there the correlation function
((S;S,) ),„decays with an inverse power law of dis-
tance, while in the Gaussian model at T =0 the order
parameters are unity. At nonzero temperature this
correlation function decays exponentially with dis-

tance, and the associated correlation length diverges
for T 0. The limiting high-temperature approxima-
tion (aA =2(J/ks T) [or 2(AJ/k Ts) in the Gaussian
case, respectivelyj gives a surprisingly good represen-
tation over a broad range of temperatures. The
divergence of the correlation length is hence much
weaker than in the (frustrationless) one-dimensional
case. Note that there the correlation length diverges
exponentially fast, as expected for a system at its
lower. critical dimensionality (lcd). Our results sug-
gest that the correlation length of the frustrated spin-
glass models diverges for T 0 as a power law of
temperature only, just as the one-dimensional n-

vector models for n ~ 2. Since there the dimen-
sionality is lower than the lower critical one (lcd = 2

there), our findings do not contradict the suggestion
that d = 2 is below, not at, the lower critical dimen-
sionality of a frustrated Ising spin-glass.

(ii) The entropy of the +J spin-glass reaches a
positive nonzero value at T =0 (S/ks =0.075), in

good agreement with estimates obtained by other ap-
proaches. In the Gaussian case we find S ( T = 0) = 0
(in the thermodynamic limit), and both S and the
specific heat vary linearly over a wide range of tem-
perature. This fact was not so clear from earlier
Monte Carlo studies of this model, which were ham-
pered by slow relaxation effects at low temperatures,
while at higher temperatures our results agree well
with the Monte Carlo estimates. For the +J model
the specific heat agrees nicely with Monte Carlo data
at all temperatures but there the specific heat varies
exponentially at low temperatures. Note that our
results for the entropy comply with the "rule" that a
nonzero ground-state entropy indicates absence of
ground-state order, while zero entropy implies order.

(iii) The phase boundary ferromagnet-paramagnet
of the +J model is estimated as function of the con-
centration x of negative bonds (Fig. 16). We find that

ferromagnetism vanishes at x, = 0.12, in fair agree-
ment with other approaches.

(iv) The time scales necessary to reach equilibrium
in a Monte Carlo simulation have been identified,
and they are found to increase dramatically with in-

creasing system size at low temperatures. Since there
are good reasons that the Monte Carlo dynamics of a
spin-glass simulates the actual dynamics reasonably
well (cf. .Ref. 11), we expect that also macroscopic
real spin-glass samples will be characterized by an in-

complete thermal equilibrium of the spins. The sys-
tem stays for a fairly long time in the vicinity of one
of its ground states (or low-lying metastable states)
until it experiences a transition into another preferred
"valley" in configuration space by a rearrangement of
large clusters of spins, The behavior differs from the
Neel picture of "magnetic clouds, "' however, because
the "clusters" are not isolated well-identifiable objects,
but rather interacting, overlapping, etc. , spins belong-
ing to one cluster at a time, may belong to another
one at a later time, etc, The gradual increase of mag-
netic correlations as temperature is lowered is much
more precisely characterized by the correlation length
studied for the present models. The peak in t'he fre-
quency dependent susceptibility for the present
models do set in at fairly well-defined "freezing tem-
peratures", as the mentioned Monte Carlo simula-
tions have shown: below these temperatures,
Edwards-Anderson-type order is metastable for fairly
long times (Figs. 2 and 3).

In conclusion then, we feel that the behavior of
two-dimensional Ising spin-glasses is fairly well

understood —although it would be nice, of course, to
make our calculations more accurate and go to larger
systems. However, since the present study needed
about 500 h computing time at an IBM 370/168
machine, a straightforward extension of our tech-
niques is not easy.
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