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Theory of donor f1uorescence in the diffusion limit
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Time dependence of fluorescence from donors is studied in the diffusion limit when there is a large number of
donors in the sphere of influence of an acceptor. The average t-matrix approximation is used to derive the Laplace
transform of the normalized intensity in this limit. The time dependence of the decay of the fluorescence is
compared with experimental data on Prp95F3 Ndpp5 and also with the results of the diffusion model of Yokota and
Tanimoto.

I. INTRODUCTION

The quantity of interest is the normalized fluores-
cence intensity E(t), which is essentially the sum
over the P„'s. The radiative part exp(-@st) is
factored out to give

E(t) = e~&'j(t),

where f(t) is obtained from Eq. (1) after setting
y„= 0 and averaging over all trap configurations.
For simplicity we suppress the notation ( ~ ), in-
dicating a configurational average.

As has been pointed out in Ref. 1, the exact cal-
culation of f(t), generally a formidable problem,
is possible for all values of trap concentration
c„either if there is no donor-donor transfer or if
the donor-donor transfer is very rapid. For the
regime intermediate between these limits the
average-t-matrix approximation' (ATA) has
proved to be a very useful technique as long as
c„«l. The Laplace transform f(s) of f(t) is

(s)=f(sac Q t„.(s)
l ~ l'

(3)

In a recent paper' the time dependence of the
donor fluorescence from inhomogeneously
broadened levels has been studied in considerable
detail. A random distribution of acceptor ions
acting as traps for the excitation is assumed. The
starting point is, as in some of the past work, ' '
a set of coupled linear equations for the probability
P„(t) that ion n is excited at time t, all other ions
being in the ground state. If X,„is the rate of
transfer of excitation from a donor at n to a trap
at o, and W„„.the rate of donor-donor transfer,
the dynamics of the system of optically excited
ions is described by

dP „(t) yz+X„+ W„„- P„ t + 8'„.„P„.t .

l' are obtained as a solution to the equation

t[[.(S)=Xd[f)[[.-QX, [ g[[» (S)t[»[.(S) .
l

(4)

When the donor array has translational symmetry
the elements g«, (s) are given by

(~)=—Ze""' "'g(k ~)
D

where

II. RESULTS

In this section we develop a theory appropriate
for the case of a large number of donors in the
sphere of influence of an acceptor. We relax the
restriction of nearest-neighbor transfer and con-
sider the continuum limit of Eq. (3). The counter-
part of Egs. (3) and (4) in the continuum approxi-
mation are, respectively,

d(k, s)= (s+PtV„„[)—cos[k (i„—r„.)][
n

The ATA has been successfully used in Ref. 6 to
analyze the fluorescence of donor arrays which
form simple cubic, face-centered-cubic, and body-
centered-cubic lattices. Nearest-neighbor trans-
fers between donors and between donors and ac-
ceptors was assumed throughout the analysis.

To construct a theory not restricted to nearest-
neighbor transfers we must take into account the
fact that the nature of the transfer depends crucial-
ly on the number of donors in the sphere of influ-
ence of an acceptor. When the number of donors
in the sphere of influence of an acceptor is large,
the diffusion model of Yokota and Tanimoto' is
applicable. On the other hand, if the number of
donors in the sphere of influence is small, the
hopping model introduced by Burshtein' is appro-
priate. It is our aim in this paper to analyze the
former situation in the light of the ATA.

The elements t».(s) of the t matrix associated with
a single impurity at site o and donors at sites l and and
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t(r, r', s) = v(r) 5(r —r') (14)

dr" v(r) g(r, r",s)t(r", r', s), (8)

T(r, s) fd=r'j(r, r'; s). (9)

Using Eqs. (8) and (9) we then obtain

T(r, s)=v(r) fr-'dv(r) (rd, ', r) s( T', r),s(10)

where

g(r r' s)= — dke"" 'g(k s)(2~)3
'

t t

with

g(k, s) = (s+ Dk') ' . (12)

The constant D can be identified as the diffusion
constant appearing in an equation of the form

9
DV g(r, r') ——g(r, r')= —5(r —r'). (13)

Here g(r, r') is the inverse Laplace transform of
g(r, r', s). For a set of donors forming a lattice
D is obtained from the small-k expansion of Eq.
(8):

where n„ is the concentration of acceptors and

v(r) is the donor-acceptor transfer rate at a sep-
aration x. Motivated by the technique used in
Ref. 5 to handle Eq. (4) we define a quantity
T(r, s) as follows:

assuming cubic symmetry. In general, the exact
value of D for a disordered system is unknown.
Often it can be inferred from comparison with ex-
periment. This will be discussed later.

Next, we cast the integral equation

eik (r-r')
T(r, s)=v(r) -v(r) dr'dk, T(r', s)+D 2s

(15)
into a form free of any angular dependence. We
introduce the expansion

T(r, s)=L gh, (r, s)Y, „(Q);
l=o m=-l

where the Y, 's are spherical harmonics associa-
ted with direction of r. The unknown coefficients
k, (r, s) will be the solution of a new one-dimension-
al integral equation discussed below. We expand
exp(ik ~ r) and exp(-ik ~ r ) in spherical harmonics
to give

s"'=+Q 4sj'j(kr) Y', „((},)Y, (()),
l=o m=-l

(17)

dQq Y l 0 Yl. ~ 0 —5ll.6 (18)

can be used to perform the Q~, 0', and 0 integ-
rations to give

etc. , where the j, 's are spherical Bessel functions.
The solid angle 0, refers to k. The orthogonality
relation

h, „(r,s)=v(r)f Y, (())dts-, v(r} dr , r"4'j, (kr')j, (kr )h, „(r',s). '(4n )' dk
(19)

Also, since

dQ Yl 0 = V'4n 5l o5 (2o)

we obtain, using Eq. (16)

fdrT(r, s}=44v fdrr'h„(r, s). (21)

This last result may be used in Eq. (7).
Equation (21) suggests that it will suffice to focus attention only on h»(r, s) from now on. From Eq. (19)

we get, on defining h hpp,

k(r, s) = v'4}T v(r ) -v(r)(4~)', dr'r" dkk' " ", k(r', s) .

'The k integration is easily performed, giving

+r)
k(r, s)= v4}) v(r)-v(r) drt(e "("~ ( —e "'"+" ') —)k(rj, s),2v'sa

where

jc= E(s/D) .

(23)
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It is known from the analysis of Yokota and Tanimoto7 that for large f, or equivalently, for small s, f(s) is
given by

f (s) = (s+ 4mDn„a, ) '. (24)

Here a, is the scattering length in a potential v(i') of a particle of mass (2D) '."We now make the con-
nection between the diffusion model and our results as follows:

00

a, = ))'4w d~h(r, s=0)r',
4nD 0

where h(r, s = 0) satisfies the integral equation

( I i (~( l
&(~, s = 0) = )('4)T v(~) -v(~)l I &'(~+ ~' - l~ -~'l)l —l&(~', s = 0}

),2Di, i~ )

(25)

(26)

Equation (26) can be used as a check on the theory for a variety of transfer rates v(r), once the integral
equation for h(r, s = 0) is solved.

III. NUMERICAL SOLUTION

Gx dy
0

and replace it by an approximate representation
as follows':

G(r)dr fw, .s'G(r=, .),
0 & «-1

where the x; 's are the n zeros of the nth-order
Laguerre polynomial. 'The gg,. are weight factors
(also called Christoffel numbers) given by

(27)

„I„(~)
L'„(r,), r r)- (26)

L'„ is the first derivative of L„(r) The r, 's. and
w&'s are tabulated in Ref. 10. Using Eq. (27) with

Eq. (26), h(r, s) is obtained as a solution to the
matr ix equation

H= (I+M) 'V, (29)

I'he technique used for solving the integral
equations (23) and (26) is one that is closely rela-
ted to the evaluation of integrals using quadrature
formulas. ' %e consider the integral

Equation (31}combined with Eq. (21) determines
the Laplace transform f (s) described by Eq. 7 for
all values of s. The normalized fluorescent inten-
sity f(t) is obtained by numerically inverting Eq.
(7) 11

IV. DISCUSSION

We have computed a, for an exponential transfer
rate v(r) = V,e "~" using Eqs. (25) and (26}. The
exact result is"

1,[2(V,H2/D)i~2] .'

(32)

where K0 and I, are modified Bessel functions. As
shown in Fig. 1 the agreement of the theory with
the exact result is excellent over the full range of
the parameter D/(V, R') including the Born approx-
imation limit of

a,—2R'V, /D, D/(V, R')

Finally, the theory has been compared with ex-
perimental data on the transfer of electronic en-

where H and V are column matrices: IOO.O . ~ I I I ~ ~
I

H, =a(r, ),
V, = ~4m v(x,.),

1&zan.

M is an n&&n matrix whose elements are

40 X

U
P IO.O—

- /
X

X—X

r e r'h(r, s) = e")w, r,'H, .
0 =i

(31)

M. 1
V(& )(S-II(ri rgl S )I&r;+ry&)-

f2{sD)1 , 2

x (~,/r, )e"& , .iv (30)

I is the n & n unit matrix. The matrix operation in
Eq. (29) provides H~'s which may be used as shown
below:

I.O
I ~ I IIIII I ~ I I I I Ill ~ I I IIII I I I ~ ~ III

O. l I.O lOO lOO.O lOQO.O

Dl {VOR')

FIG. &. 4we, vs D/{VOR ) for the exponential transfer
rate Voexp{-x/R). a is measured in units of RBVO/D.
Solid curve is the analytic result, Eq. (32). x denotes
the numerical results obtained using methods outlined
in Sec. III. The numerical results here and in Pig. 2
were obtained using a 15 point quadratures.
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v(r)=1/r', r~ ~,

v(r) = 0, x&r,

where x, is chosen such that

1 "
4 4nI,

=4mn~ x 'dh=
Og

(34)

ergy from Pr to Nd in Pr, ,F, :Nd„"." Following
Ref. 13 we assume a temperature-independent
donor-acceptor transfer rate of n/r' with n = 5.4
x 10"cm's '. Since the transfer rate v(r) can
not go to infinity as x- 0, a more reasonable
choice is

l.o

0.8
,

X-X~x
I l

0 02 OO O6

t (p.s)

,
X—X-

0.8 I.O

FIG. 2. f(t) vs t for Pr in Pro 95 F3. Ndsp p5 at 12.5 K.
Solid line is theory with. 0=12.3 x10 8 em2s; x experi-
ment. Broken curve Yokota- Tanimoto approximate
formula with D=12.3 x10 8 cm s

n~ being the number of Pr sites per unit volume.
Our estimate of x„3.1 A for PrF„ is the same as
that used by Hegarty et al." As discussed in Ref.
13 the coupling strength P of the donor-donor
transfer rate P/r' satisfies P «o. at the tempera-
tures involved (12.5 K) so that the criterion of
applicability of the diffusion model is met. 'The
measured time development of the integrated donor
fluorescence from the 'I', level of Pr is shown in
Fig. 2 along with our theoretical "best fit."'4 The
latter was obtained by assuming a and z, to have
the values given above and then adjusting the dif-
fusion constant to maximize agreement over the
entire range of observation. In this way we obtain
the value D=14.0x10' cm's ' for T=12.5 K.
This value is to be compared with the value D
= 8.5 x 10~ cm s ' inferred by fitting the asymp-
totic slope of in[1/f(t)j, A, to the equation'

(35)

The difference in the two values of the diffusion
constant is attributed to the fact that Eq. (35) ap-
plies to a transfer rate which varies as x ' 0~x
~ ~, in contrast to the more realistic behavior
which we assumed in our calculation [cf. Eq. (33)].
Kith the transfer, rate cut off at x, we obtain the
limiting slope ~=6.5n~&' 'D' '.

It is also interesting to compare our results for
f(t) with the following approximate formula of
Yokota and Tanimoto'

4&3/2
f(t) = exp — n~(o t)'/

3

1+ 10.87x+ 15.50x'~('
(X

1+ 8.743x j
where x =&& ' 't' '. Our theory is developed in the
Laplace-transform space whereas the result of
Yokota and Tanimoto is obtained by solving the
problem in the time domain. The prediction f(t)
from the Yokota-Tanimoto expression with D= 14.0
x 10~ cm's ' is shown in Fig. 2. The agreement
improves if we use D = 3.0x 10~ cm's ' for the
extrapolation.

V. SUMMARY

In summary, the ATA is found to provide a good
description of the time dependence of donor fluor-
escence in the diffusion limit when there is a
large number of donors in the sphere of influence
of the acceptor. We find excellent agreement be-
tween our numerical results for the scattering
length and the exact values obtained analytically.
Lastly, the ATA enables us to compute the donor
fluorescence at all times provided the strength 0.
of the DA transfer and the diffusion constant are
known. Alternatively, if n is known, an estimate
of D can be obtained by fitting the observed decay
curves.
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