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This paper presents a study of the nature of electron-optical phonon coupling in two-dimensionally confined
systems (e.g., inversion or accumulation layers in metal-oxide-semiconductors, heterojunctions, and superlattices of
polar semiconductors) and shows that magneto-optical anomalies in two dimensions provide a powerful tool for
their investigation. Several models of electron-optical phonon coupling are studied. These include coupling with (i)
three-dimensional optical phonon with fixed k„ the wave vector normal to the two-dimensional plane of
confinement, (ii) three-dimensional optical phonons with arbitrary k, due to the loss of wave-'vector selection
rules in finite structures, (iii) interface optical-phonon modes, and (iv) purely two-dimensional optical-phonon
modes. Where appropriate, zone-folding effects are explicitly taken into account. Resonant magneto-optical
absorption studies are shown to be a means of unambiguously probing the electron-phonon coupling in these
novel materials. Within the framework of the Frohlich model and including only the resonant self-energy
diagram in the theory, it is shown that at resonance the relevant cyclotron peak splits into a doublet. The
resonance effect is found to be much sharper in two dimensions compared to the bulk case, a consequence of the
lack of k, continuum of electronic energy. For a given magnetic field of strength B, the resonant splitting is
proportional to B'" for two-dimensionally confined carriers, in contrast to the B'"behavior in the bulk. The
proportionality factor depends on the specific phonon mechanism considered. The spectral weights of the split
peaks are evaluated. 'Allowing, phenomenologically, finite width of the resonant Landau levels, as well as for the
Landau level from which optical transition originates, the expressions for optical absorption and Raman
scattering are obtained. The significance of electron-light vertex correction is investigated and shown to be
important under certain conditions. The possibility of a resonant splitting in two dimensions in direct
intersubband transition without any magnetic field is also investigated.

I. INTRODUCTION

In the last ten years there has been an increas-
ing interest in the study of two-dimensionally
confined electronic systems occurring near vari-
ous semiconductor interfaces and on the surface
of liquid helium. This interest is partly moti-
vated by the technological significance of some of
these two-dimensional systems, in particular the
metal-oxide- semiconductor (MOS) structure, but
is also due to the possibility of applying physical
laws to real systems with dimensionality less than
three. Many of these systems provide us with an
essentially two-dimensional electron or hole gas
(2DEG) in which the effective-charge carrier den-
sity can be experimentally varied over a wide
range. This in itself is of considerable fundamen-
tal interest since carrier density is the crucial
parameter in studying many-body interaction ef-
fects. Furthermore, by decreasing the electron
density sufficiently, one expects to effect igner
crystallization in such systems.

Silicon MOS inversion layers and the electrons
trapped on liquid-helium surface by the image
potential have so far been the most studied exam-
ples of two-dimensional electronic systems. The
former system provides us with a quantum elec-
tron gas whereas the latter is a classical electron

gas. The electron- electron interaction eff ects
have been studied as a function of electron density
and temperature, and the exchange and correla-
tion effects have been found to be important in
determining the electronic structure of inversion
and accumulation layers in silicon MOS systems,
both at zero and at finite ' temperatures. Evi-
dence for Mott-Anderson localization has also
been seen in the same system at low densities
and temperatures. Recently, Wigner crystalli-
zation in the classical regime has been observed
:i.n electrons on the surface of liquid helium.

The scope of studying two-dimensionally con-
fined charge carriers has recently been enhanced
by the advances made in the experimental realiza-
tion of such systems in superlattiees, heterojune-
tions, and quantum wells made of lattice-matched
semiconductors. ' These new systems offer not
simply another means of achieving 2DEG, but of
creating situations with potentially new physics.
Of the two superlattice systems on which studies
have been reported so far, namely the GaAs-
Qa Alp „As system" "and the InAs-QaSb system
the former has been combined with the notion of
modulated doping to create a 2DEG confined in the
GaAs layers by the barriers provided by the ad-
jacent 6~lq, As layer s. This spatial separation
of charge from the ionized donors (in Ga, Alq „As)
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results in electron mobilities higher than the
Brooks- Herring limit for bulk semi conductor s."
One of the important features of these new sys-
tems is that they are made of ID-V compound
semiconducting materials which are weakly polar
in nature. Thus the electron-optical phonon inter-
action is expected to play some role in determining
the properties of these systems. However, unlike
the silicon inversion layers, the small effective
mass and reasonably large static lattice dielectric
constants of these materials make it unlikely that
electron-electron interaction effects would be an
important factor in deciding their properties.
The electron-acoustic phonon {bulk and interface)
interaction has been shown ' to be of signifi-
cance in understanding the dc as well as finite fre-
quency transport and cyclotron resonance pro-
perties of the silicon inversion layers. It may
also be of relevance to the newer class of systems
of interest in this paper. At low temperatures,
however, the electron-optical phonon interaction
is not expected to play an important role in silicon
in view of the small coupling strength and large
optical-phonon fr equencies involved. Thus this
new class of lattice-matched DI-V compound semi-
conductor heterojunctions, superlattices, and

quantum wells along with the inversion layer formed
on the InSb surface {and the anticipated GaAs
MOS structure) provide us with systems in which
the eLectron-optical phonon interaction and its in-
fluence can be studied in reduced dimensionality.

There is already some evidence ' pointing to
the possibility that the electron-optical phonon
interaction does indeed play a significant role in
the properties of these systems. It has also been
conjectured that the nature of electron-optical
phonon coupling in these systems is quite different
from the bulk situation. There is strong evidence
toward the involvement of an I 0 phonon in GaAs
quantum-well laser operation. Laser operation
can occur below a confined-particle transition with
phonon participation. In constrast, it should be
noted that the LO-phonon sideband plays no signi-
ficant role in the laser operation of bulk GaAs,
which is expected because of the small electron-
phonon coupling of this weakly polar material.
The prominence of phonon-assisted recombination
in quantum-well heterostructure has been ascribed
to the breakdown of translational invariance and
momentum- conserving selection rules. Recently,
r esonance- enhanced normal and umklapp Raman17 &8

processes have been observed in GaAs-Ga„AL, ,As
superlattices resulting from the wave-vector-
dependent Frohlich-type electron- LO-phonon in-
teraction. Zone-folding effects in a superlattice
and the loss of translational invariance in z direc-
tion in a quantum well have been speculated to

lead to an enhancement in electron-optical phonon
coupling by opening up several phonon channels
which would otherwise have been absent or inactive
due to selection rules.

In this paper we study electron-LO-phonon in-
teraction in these novel two-dimensional systems,
emphasizing in partiuclar the features pertaining
to two- dimensional confinement. Coupling of the
confined charge carriers to ordinary bulk phonons,
as well as to interface or other types of two-di-
mensionally confined phonons, is considered in
Sec. II. Effects of zone folding, specific to super-
lattice structures, are explicitly taken into ac-
count. We find that under certain circumstances
the coupling strength may indeed be enhanced due
to the novel structure of these systems. We shall
use Frohlich theory in describing the electron-
LO phonon coupling in these systems. It should,
however, be remarked that the continuum approxi-
mation implicit in the Frohlich theory may not be
adequate to describe electron-I. O phonon coupling
in superlattice structure due to the rather large
size of the unit cell in the z direction {taken to be
the direction in which the superlattice is grown).

~fter developing various models for electron-
LO-phonon interaction, in Sec. III we shall con-
sider the problem of resonant coupling of elec-
tronic Landau levels with the LO phonons in the
presence of a static magnetic field normal to the
two-dimensional plane of confinement. The study
of the phenomenon of resonant coupling of Landau
level with the longitudinal-optical phonons in a
bulk semiconductor received considerable impetus
with the observation of anomalous magneto-opti-
cal interband absorption behavior in InSb, report-
ed a little over a decade ago. Subsequent studies
clarified various aspects of this phenomenon as it
affects impurity absorption, cyclotron reso-
nance, and combined resonance. A systematic
theoretical study of the phenomenon in free-26-28

carrier systems has led to a classification of the
relative importance of self-energy and electron-
light vertex corrections in the various phenomena
noted above. It should, however, be noted that
the resonant coupling of Landau levels with LO
phonons was first discussed in the context of the
dc magnetoresistance, the phenomenon in that con-
text being called the resonant magnetophonon ef-
fect. Both, the magneto-optical anomaLies and the
resonant magnetophonon effects being manifesta-
tions of the same basic physics, are undoubtedly
present in the two-dimensionally confined systems
of interest in this paper. We will, however, focus
our attention on the finite-frequency manifestation
of this resonant phenomenon since the magneto-
optical anomaly, we show, offers a unique means
of extracting information regarding electron-LO-
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phonon coupling in these new and novel two-dimen-
sionally confined systems. We show that the
situation in the two-dimensionally confined sys-
tems is different from the bulk and the results
presented in this paper reveal several points of
departure from those for the bulk materials. In
particular, the resonance splitting of a Landau
level is shown to be much sharper in two dimen-
sions compared to the bulk case.

In Sec. IV, we calculate the magneto-optical
absorption in the presence of the resonant coup-
ling between LO phonons and the Landau levels.
We allow for collisional damping in our theory by
introducing a finite width to the I andau levels in a
phenomenological fashion. We show that magneto-
absorption should exhibit anomalies in the form of
split peaks near the resonance and that the sylit-
ting is proportional to the effective electron-yho-
non coupling strength. We conclude this section
with a consideration of the effect of including
phonon-induced electron-light vertex correction
in the theory.

We conclude in Sec. V by emphasizing how an
experimental investigation of anoma1ous magneto-
absorption {cyclotron resonance) in intersubband
electronic transitions under resonance condition
can be successfully used to extract information
about electron-phonon coupling strengths in these
two; dimensionally confined polar systems.

II. ELECTRON-LO-PHONON INTERACTION IN 2DEG

The carriers in these confined systems occupy
two-dimensional subbands where their motion
parallel to the interface is "free," whereas their
motion in z direction {normal to the interface) is
confined. It is important, however, to clearly
recognize certain differences between a single
two-dimensionally confined layer {such as inver-
sion layers, accumulation layers in heterostruc-
tures, or a, few quantum wells) and a repeated
structure of these layers such as the superlattice
{see Fig. l). In the former case the notion of a
wave vector k, in the direction normal to the two-
dimensional layer does not exist, whereas in the
latter case it does. Another difference of practi-
cal significance is the possible importance of the
full Bloch waveform of the electron wave function
in superlattices. As we have noted before, this
may make the usual continuum approximation im-
plicit in the Frohlich model inadequate for describ-
ing the electron-phonon coupling in superlattices.
For the inversion layers, the description of the
z dependence of the electron charge distribution
has been sought in terms of an envelope function
characteristic only of a particular subband not
independent of k, , the wave vector in the two-
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FIG. 1. Schematic representation of two-dimensional]y
confined electronic states in (a) GaAsIGa Alt „As quan-
tutn well and (b) GaAsI Gas Alt „As heterojunction (this
is similar to the inversion or accumulation layers in
MOS systems). Each two-dimensional subband (E~, E2,
etc. ) shown splits into Landau levels under a normal
magnetic field.

dimensional plane. The inversion or accumula-
tion layer problem is usually treated within effec-
tive-mass approximation and a continuum de-
scription of electron-phonon interaction remains
valid. However, for superlattices the charge dis-
tribution within the unit cell may depend strongly
upon the particular k, value via the Bloch form
of the wave function. " The electron-optical pho-
non coupling in such a situation needs to be care-
fully investigated.

The electronic charge density at any point R
= {r,z) is given by

p.,{...) =- „-+ZAN,"; {.)~„- {')
$ aJ Qtg

-f(j-fl').rgt g {I)q$ qjp

where r and q, q' are the two-dimensional position
and wave vectors, respectively. A is the total
area and C„IC„)is the creation {annihilation)
operator for an electron {or a hole) with two-di-
mensional momentum q in the ith subband. We
take e =1 throughout this section. For a finite
structure {in the z direction) such as inversion
layers, i stands only for the quantized subband
{denoting quantization of z motion in the potential
well), whereas for a repeated structure like the
superlattiee it may be considered to incorporate
the wave vector k, . $;;{z)in Eq. (l) is the en-
velope wave function describing the z motionof the
quantized subbands (the motion in the two-dimension-
al z-yplane being assumed to be described by the plane
wave e'~'). For the sake of simplicity we assume
$,.;{z)to be independent of q. This is strictly valid
for the inversion layer situation due to the vanish-
ing of wave functions at the z =0 plane. However,
no generality is lost by setting )I,{z)=- $, {z). In-
clusion of q dependence in $ within the formalism
developed here can be achieved without much diffi-
culty.

Equation (l) for the electronic charge distribu-
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wheretion suggests that its coupling with the ionic charge
may be dependent upon the particular distribution
that the latter may take. Consequently in the
following, we consider the form of electron-phonon
coupling arising from phonon modes in two broad-
categories as follows: (i) coupling of the confined
electrons with bulk &0-phonon modes and (ii) coup-
ling with quasi-two-dimensional phonon modes,
i. e. , phonon modes which reflect peaking of the
ionic charge displacement within the confined re-
gion in which the electrons reside.

(i) CouPling with bulk Lo phonons. The simplest
case to consider is the coupling of those confined
electrons to bulk I 0 phonons. We assume that the
bulk phonons are unaffected by the existing one-
dimensional potential in these systems. Then the
electron-phonon coupling with a two-dimensional
momentum-exchange k can be easily obtained by
using the Frohlich model. We get

M„(k, k,) =[(2m/V)~„(e-„'- ~,')]'"
xf,,(k,)(k' ~ k',) ', (2)

fl; (8= f «( « (;('~)(;(~)e"'"(;(~ )( '(» ). '

The integral over z, z' extends over a small region
of space due to the two-dimensional confinement
in these systems, For comparison, we recall
that the Frohlich interaction between electrons
and LO phonons in three dimensions, is given by

where q in Eq. (7) is the three-dimensional mo-
mentum exchange.

For the case of the superlattice, in addition to
the modifications in the electron-phonon coupling
strength arising from charge confinement effects,
we also have the formation of mini-Brillouin zones
in the k, direction due to the introduction of the
new superlattice period. However, noting the ex-
pected ' insignificant influence of this minizone
formation on the bulk optical-phonon branch, we
may, in considering virtual processes requiring
summation over all k„choose to consider it to
lie within the original Brillouin zone, thus allow-
ing for umklapp processes for electron-phonon
scattering. Alternatively, one could incorporate
the entire bulk optical-phonon branch via a sum-
mation over the appropriate number of phonon
modes within the minizone. This is referred to as
the zone-folding effect. In general, frequencies
of these modes wil1 be different due to the disper-
sion of the LO-phonon mode which we assume to
be small. It is important to note that since the
effective coupling strength given by Eq. (5) in-
cludes a sum over all k, (and not just the unit
minizone}, it contains both the normal and the
umklapp processes involving phonons with arbi-
trary k„with zone-folding effects already built
into it. It is only for the processes involving fixed
momenta (e. g. , k, =0 for processes involving
zone-center phonons} that the zone-folding effects
will give rise to an explicit enhancement of the
electron-phonon coupling strength via an increase
in the number of phonon branches alone.

(ii) Coupling with quasi -two-di mensional Photons.
We assume that the LO phonons are quasi-two-
dimensional in nature like the quantized carriers
themselves. In order to describe the quasi-two-
dimensional phonons, we introduce a phonon enve-
lope function g (z) giving the decay in z direction
of polarization charge density of the &th quasi-
two- dimensional LO-phonon branch. Employing
the Frohlich scheme of expressing the polariza-

where

Equation (2) gives the matrix element for coupling
between a phonon of momentum (k, k,), with k,
as the z component of phonon momentum, and a
two-dimensionally confined electron which scat-
ters from subbandi to subbanB j with emission (or
absorption) of a three-dimensional phonon. V is
the total volume and co«, E„, »d &() are the IO-
phonon frequency and the high- and low-frequency
dielectric constants, respectively. The leading
order-coupled electron-phonon processes involve
the square of the matrix element in Eq. (2). Such
an effective coupling strength, for example
V„., (k,k, ), is thus given by

(4)V,), (k, k,) =M„(k, k,)M,* (k, k,) .

It signifies scattering of an electron from i to j
with emission of an I 0 phonon of momentum

(k, k,) and the subsequent absorption of the phonon

by another electron which gets scattered from l to
m.

For systems without translational invariance
in the z direction, k, in Eqs. (2)-(4) becomes
completely arbitrary. In that case, one sums
over k, in Eq. (4) to obtain the effective electron-
phonon coupling with the exchange of two-dimen-
sion momentum k. Neglecting LO-phonon disper-
sion and summing over all k„we find,

&2m, , f„,(k).
V&gg ~(k) —

I ~r. o(e
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tion in terms of charge density, and introducing
standard phonon field operators (in two dimen-
sions), we can express the effective coupling
strength between the confined electrons and the

quasi-two-dimensional phonons as

( )=Z f d& f &&' &(i&) &(z) &(&'')& (&')( I &zi J~ dzaR (zi)a (~2)~* *" ' "
) (9)

The position of the peak in &i (z) will naturally be
governed by the specific nature of the quasi-two-
dimensional vibrational modes that may exist in
these systems. For example, an interface phonon
is characterized by an &i„(z) which peaks at the
interface. From Eq. (9) it is clearly seen that
maximum electron-phonon coupling is obtained
when the quasi-two-dimensional phonons are peaked
at the same place where the electronic charge
density [given by ~

g(z)
~ ] reaches a maximum.

The influence of the electron-phonon interaction
manifested in the measurements on these systems
is then via an effective coupling strength which is
an average over various phonon modes and their
coupling with spatial distributions of electrons.

The above considerations based on the Froh-
lich model clearly bring out certain special fea-
tures of the electron-LO-phonon interaction in
these quasi-two- dimensionally confined systems.
The form factor arises only because the carriers
in these systems are quantized into two-dimen-
sional subbands. Zone-folding effects may give
rise to a strong enhancement in the coupling
strength in superlattices via the formation of new
phonon branches. Lack of a wave-vector-conserv-
ing selection rule in the z direction makes it pos-
sible for phonons with all k, to take part in the
interaction process. This enhances the coupling
strength even further. Significant effects may
arise from the coupling of the confined electrons
to quasi-two-dimensional phonons (possible inter-
face modes) which may exist in these systems.

III. LANDAU-LEVEL-LO-PHONON COUPLING IN
2DEG

In the presence of a static magnetic field B in
normal direction (taken to be the z axis), each
two-dimensional subband i splits into a series of
Landau levels described by the Landau index n.
Assuming parabolic band's, the one-electron wave
function describing the carrier motion in the pres-
ence of the magnetic field is given by

q,.„,(r, z) = e'""u„(x+kf') (,.(z),

where r—= (x, y) is the two-dimensional position
vector and u„(x+ kl ) is the harmonic-oscillator
wave function with a, displaced center, l = (&:h/eB)'&'

being the radius of the classical cyclotron orbit.
The corresponding one-particle energies are given
by

E,„,= (n. +z)K&d„+E, .,

where &d„=(eB/m&c) and B& are, respectively,
the cyclotron frequency and the subband bottom
energy of the ith subband; m& being the effective
mass for parallel motion. Equation (11) shows
the well-known degeneracy of the Landau levels
with respect to k which has lost the significance
of a free momentum and now gives the position
of the center of the cyclotron orbit in presence of
the quantizing magnetic field.

Neglecting electron- electron interaction eff ects,
the Hamiltonian for the interacting electron-pho-
non system in the presence of the quantizing mag-
netic field can be written as

H =Q [E, +5(u„(n+ —,.')]C;„C;„
ink.

+Q h(u&. ob;b;

+ Z A'«& &&„&(q)C, C, „,)) (b; + b;)
f t flit Qq

(12)

The first term in Eq. (12) is the Hamiltonian of a
free 2DEG in a magnetic field, C&~ (C,„~) being
the creation (annihilation) operator for the quan-
tum state (ink). The second term is the energy of
the free 10 phonons. For simplicity, we consider
only one kind of I 0 phonons with dispersionless
frequency cur„o. The phonon wave vector q is a
two- or three-dimensional wave vector, depending
on the nature of the phonon involved.

The last term in Eq. (12) describes the inter-
ation of the Landau-level electrons with the LO
phonons. In general the interaction vertex
g&;&.&&„„.& (q) carries four subscripts indicating that
an electron could be scattered from the Landau
level n in subband i to I andau level n' in subband
i' due to interaction with an LO phonon. The ef-
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fective coupling in Landau representation is given

g'«;&&„„&(q)=~«(q) J~ dxu„(x)e" 'u„. (x —q„l'),

N+ gl
I

/

N

"«&
~

N

N-1 - 4XXXAXXXAXVXV:Ai AiiiY

where ~«(q) is the basic electron-LO-phonon
coupling strength in these two-dimensionally con-
fined systems, as discussed in Sec. II. Putting
the forms for three-dimensional bulk LO phonons
and quasi-two-dimensional phonons in Eq. (13) we
can evaluate the respective coupling strengths in a
Landau-quantized situation.

Electron —LO-phonon interaction will change the
Landau-level energies from that given by Eq. (11)
by dressing the electronic Green's function of the
system. Without this interaction, an electron in
the state (i,u) is degenerate in energy with the com-
posite state of an electron in (i, n —I) level plus
one LO phonon of energy w« ——~,&. The resonance
condition e» ——«&„=eB/m, c which gives rise to
the energy degeneracy, can be rather easily
achieved in the HI-V semiconductors by changing
the magnetic field in the (1-10)-tesla region. Ob-
viously this degeneracy will be lifted by the elec-
tron- LO-phonon interaction. In the resonance
situation this lifting of degeneracy takes place
even if the electron- LO-phonon interaction is
weak. It is referred to as "resonance splitting"
since the degenerate level splits into two branches.
Such a resonant coupling can manifest itself in an
experiment involving cyclotron transitions to the
nth Landau level. Such transitions may involve
initial and final Landau levels belonging to differ-
ent subbands (combined intersubband cyclotron
resonance"), or it may originate from the n —1
level in the same subband (ordinary cyclotron
resonance). Th e relevant magnetoabsorption
peak should split into two peaks around ~

&
——~«

due to the resonant coupling, provided the broad-
ening of thepeaks is less than the energy separa-
tion of the split levels (Fig. 2). From the experi-
mental point of view, the complications of observ-
ing cyclotron resonance in the reststrahlen region
suggests the use of the combined intersubband
cyclotron resonance technique. In some of these
two-dimensional systems intersubband combined
cyclotron resonance has already been observed.
Similar resonant effects have been observed in the
bulk. ' However, the two-dimensional confine-
ment we are considering here gives rise to fea-
tures quite different from the corresponding bulk
problem.

To investigate the resonant effect quantitatively,
we consider the self-energy (Fig. 3) contribution
to an electron in the state (i, n) from virtual states

N PXX%XXVXAVVXV;AXAI0

FIG. 2. Schematic representation of the resonant mag-
netophonon splitting of the Nth Landau level when it is
degenerate in energy with (N- 1) level plus one LO pho-
non. No is the level from which an optical transition may
originate.

of the composite system consisting of an electron
in (i, n —1) and an LO phonon. In doing so we are
already anticipating the resonance-splitting pheno-
menon since we neglect contributions from all
other self-energy processes. Our rationale for
doing that is the basic assumption of weak elec-
tron-phonon coupling in the systems we are con-
sidering. We assume that nonresonant self-ener-
gy corrections to electron- LO-phonon coupling
in these systems are rather small (supported by
the very small differences between the polaronic
mass and the band mass in III-V semiconductors
such as InSb, GaAs, etc.) and interesting qualita-
tive effects arise only at the resonance which
couples two adjacent Landau levels only. Of
course, in principle one could consider multipho-
non resonances occuring at multiples of cyclo-
tron frequency, but we neglect them as higher-
order processes. The weak nature of electron-
LO-phonon coupling provides the justification for
neglecting vertex corrections which are essentially
higher order in coupling constant. The leading-
order self-energy correction is then defined by the
simple diagram shown in Fig. 3(a), and is given
by

Z ~ (Ad&) =— ~ G&,„-&('f &d& —$V )
fv a

+ la'«;&&„,-»(q) I DLo(f & q)

(14)

where t" and DLo are, respectively, the noninter-
acting-electron Green's function and the LO-pho-
non propagator. P=(k~T) is the inverse tem-
perature and i&d, =(2l +1)&&i/ph, iv = 2m&&i/pIf,

with l, m=0, +1, +2, . . . are, respectively, the
odd and even imaginary frequencies at which fer-
mion and boson functions are defined.

We can perform the discrete frequency sum over
iv in Eq. (14) using the standard Poisson's sum
formula. ' We get
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where

[f(x) =e'"+ I] ' (15)

is the Fermi distribution function. Also, Su,. „
=E,.„~—p, , where p. is the chemical potential. Re-
placing the internal Green's-function Landau in-
dexfrom n -1 to n' and summing over alln"s we

get the result for the total self-energy contribution
from all the Landau levels.

%e have already assumed that only the resonant
contribution to Z„, from n' =n —1 is the dominant
one. One might expect the diagonal contribution
to the self-energy from the term n'=n will be
quantitatively the most dominant one. This is
indeed the case away from the resonance. But the
assumption of weakly polar feature of the system
makes such corrections insignificant compared to
the resonant contribution coming from the n'=n
-1 term shown inEq. (15). In Appendix A, we
show explicitly that the diagonal contribution to
the self-energy does not give rise to the reso-
nance- splitting phenomenon.

The sum over q in Eq. (15) is over all three-
dimensional wave vectors for coupling with bulk-
like LO phonons, whereas, it is over all two-di-

mentional q if coupling with quasi-two-dimensional
phonons is being considered. To be specific we
first consider the coupling with the bulk LO pho-
nons, in which case using Eqs. (2) and (13) we get

3/'2

R(g g)(fi, ti-1) q = 1/z

x ~f....-(~) I,f sfl tel j
where

e' m
Q

2k(d z,p) 6 6p )

is the dimensionless Frohlich coupling constant.
The form factor f;,„,„q(Q) in Eq. (17) is a function
of the conserved two-dimensional wave vector Q
and depends on the electronic subband quantiza-
tion and the external magnetic field through the
Landau indices. It is given by"

I

f&, , -i@~= ~ ' f& f *'dli~(&/)l 8 '' '!4(&'&~I'

x ( ) '( t q2I2)[g 1
(

x q212)]2 -1/2qn-1&t
nl

(a)

0

JO
/' For an explicit evaluation of the wave-vector sum

in Eq. (17) one must know the subband structure
explicitly. In the purely two-dimensional limit,
the form factor within the large square brackets
in Eq. (19) is unity whereas in the realistic situa-
tion of a quasi-2DEG it is less than one. & in
Eq. (19) is the associated Laguerre polynomial.

For our purpose we write Eq. (17) as

(b)

where

g(~i)(n, n-&) q —
& n ~ (2o)

Np)( 'j'Nl + Np)I, 'i' N) + ~ ~ ~

„„=(
","",.'IE(,"-')

dz dz' $) z e ''"' z'

(c)

FIG. 3. (a) Dyson's equation for the resonant self-
energy between the (N —1) Landau level+1 LO phonon
with the Nth Landau level {double and single lines denote
dressed and' free-electron Green's functions, respec-
tively, whereas the dashed line is the LO-phonon propa-
gator). (b) Lowest-order diagram for absorption in the
long-wavelength limit. (c) Phonon-induced electron-light
vertex correction.

(+ ) (1q212)[g1 (zq2I2)]2 -1/2Q l

n

The important point to note is that the quantity
A;,„ is proportional to the electron-phonon coup-
ling strength in the system. Using Eq. (21) in Eq.
(15), we find that the resonant self-energy cor-
rection itself is proportional to the relevant elec-
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~s,n(z~r) = .
i+r —~., -t —(dLO

(22)

The singularity at i&a, = ~, ,„z+ ~« in Eq. (22) is
a direct manifestation of the resonant Landau-
level-optical-phonon coupling in the system.

The interacting Green's function including the
resonant coupling is given by a solution of Dyson's
equation. In our case, we include only the reso-
nant self-energy term and Dyson's equation can be
solved for the (i, n) level to give

tron-phonon coupling strength.
The resonant splitting phenomenon and the as-

sociated magneto-optical anomalies show up in
processes involving transitions to the level n when
it is resonantly coupled with the composite state
of an LO phonon and the level n - 1. Thus the
physically interesting situation for the resonance
process occurs when the levels n, n —1 are unoc-
cupied, i.e. , when they lie above the chemical
potential. Using Eq. (20) in Eq. (15), and assum-
ing ~;,„z& 0, we get (in the &-0 limit)

p, ,„((u)= zz((u —(u', ,„+X)(X'+ 4A, ,„) '"
X[5(Q) R~) $(Qp Q) )] (27)

p, ,„((u)= —,'zz11+
n)

1 + — + 15(~ —~,)
la 2v'A, „QA],„)

X+ I
1 — + 15(4) Q) )

i~n ken

(23)

with

(d — 4)( „zA.+ v Az „+ 8 A. (29)

From Eq. (2V), the spectral weights of the peaks
at ~, and ~ can be readily obtained. Note that
&=0 signifies the exact resonances (&u„. =&u~o) and
thus we can have the following two situations:

(i) Resonant limit (1 /A& „«I). From Eq. (2'7)

we get

c, ,„(i(u,) = [z(u, —(u,. „—z, „(i(u,)] ' . (23)

Gz,z(z(d~) =(z(di (d&,z-z (dz. c)(zcoi (d+) (z(d~ (0-)

Use of Eq. (22) and some rearrangement of terms
in Eq. (23) yields

At exact resonance, ~= 0 and we get

p(,.(~)=!~[5(~ ~.) + &(-~ - ~ )]

andq

I~, —~ 1=2VA, „.

(30)

where

&+ = 2 (&z.n + &&.n-z + &L o)0 0

~ H(~;,.—~~..-z - ~z. o) +4A;..]"'.

(24)

(25) (32)

Thus at resonance the Landau level (i, n) splits
into two symmetric peaks with equal spectral
weight-the energy splitting being proportional to
A, ',„and hence to v o'. Near &-0,

1(u, —(u
1

= 2v'Az „+X /4v'A( „.

p,. „((u)=-21mo, ,„(i(u, -(u+ i5)1,.„. (25)

Introducing ~„=(&u;,„—&u, ,„z) and & = (&„—&z, o)
and using Eq. (24), in Eq. (26), we get

Equation (24) clearly demonstrates that the reso-
nant coupling has given rise to two peaks in the
interacting Green's function.

The strength of the quasiparticle peak is given
by the spectral function which is defined to be

Spectral weights of the two peaks, slightly off
resonance, differ from each other by a factor of
~/m, ,„.

(ii) Nonresonant limit (A. /A, „»1). Formally,
the interacting Green's function (Eq. 24) still has
two poles. But we show in the following that only
one of the poles carries any significant weight and
thus there is no resonance splitting phenomenon.
Doing the appropriate expansion (& /A, ,„»1) in
Eq. (2V), we get

p, ,„((u) = zz(1+ 2A,. /&') '[(1+A, „/A. ')&(&u —u&0 „-A, /x)+ (A, /x')5((u —(uo „+A+A,. „/x)] . (33)

We immediately note that the second peak at cu

= to, ,„-&- A, ,„/& arries an insignificantly small
spectral weight 0(A, ,„/& ) compared to the other
peak at ~=(&u, ,„+A,,„/X) which has a strength
close to unity. Thus, away from resonance, there
is really one quasiparticle peak shifted from the
noninteracting value v, ,„by an amount A'; „/A, due

to electron-phonon renormalization effect.
In the above analysis we have clearly shown that

the degeneracy of the two noninteracting states —an
electron in the Landau level (i, n) and the com-
posite state of an electron in Landau level (i, n —1)
and an LO phonon of energy ~«at co« ——~, &

—is
lifted by the Landau-level-optical-phonon interac-
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tion, and the simple pole of the noninteracting
Green's function at (d, ,„splits into a doublet given
by (~'),„+&&,,„) with equal spectral weight as a
direct result of the phonon-induced resonant coup-
ling. Optical transitions to the level (i, n) will
now show two peaks corresponding to the splitting
of the (i, n) level at the resonance point.

IV. RESONANT MAGNETO-OPTICAL ABSORPTION

The resonant splitting discussed in the last sec-
tion can be seen in optical absorption provided
certain conditions relating widths of the I andau
levels and the splitting itself are satisfied. The
relevant cross section for rnagnetoabsorption ex-
periment (or Raman scattering) is, in the long-
wavelength limit, provided by the imaginary part
of the polarizability function II(&d) of the coupled
electron-phonon system. In the lowest order, it
is given by the simple bubble shown in Fig. 3(b).
As noted before, since the observation of reso-
nant splitting is intimately connected to its magni-
tude being larger than the widths of the absorp-
tion peaks, we must take account of the Landau-
leve1 widths in calculating magnetoabsorption.

Note that the LO phonon themselves, even though
they are responsible for the splitting phenomenon
through the resonant Landau-level coupling, do
not give rise to any finite imaginary part of the
electronic self-energy. This is in sharp con-
trast to the corresponding three-dimensional bulk
situation and is a reflection of the quasi-zero-
dimensional nature of the dynamics involved. Con-
sequently, the resonance is much sharper in these
two-dimensional systems giving rise to delta-
function spectral peaks (in the absence of impurity
damping). Thus the resonant-splitting phenomenon
is inherently sharper in two dimensions compared
to the three-dimensional situation.

We introduce damping in the theory phenomeno-
logically by giving a width I'&,„ to the Landau-level
energy &, ,„as {8,,„+iI",,„) This p. henomenologi-
cal damping can be considered to be due to the
background impurity and acoustic -phonon scattering.
The polarizability function, II„„(&u), involving
transitions from a lower I andau level &0 —=(j, n, )
to the upper level&=-(i, n) at resonance (v„=u&zo),
is then given by

II. .( )- — ~.' (B)G.(B+ )
" dE

Q ~ 2w 0

=((o- (oa)((u-(og-iv) '

X (CO —)d2 —t, l')

where &da
——()d),„-&u, „0), &q,2 = &u0 + ))A,. „, and y is

determined by the widths I"z,„, I",,„, and I"&,„z of
the three Landau levels involved. It is approxi-

Expression (36) shows that for the two resonant
absorption peaks to be well resolved, the reso-
nant splitting & =2v'&;,„must satisfy the inequality

For sufficiently pure systems at low tem-
peratures, it should be possible to satisfy this
condition. Thus absorption spectra under the
resonance condition would show two Lorentzian
peaks [given by Eq. (36)] at ~q, 2 indicating a split-
ting of the original cyclotron transition at the sin-
g1e frequency (do. This will show up in an experi-
ment as the magnetic field is swept through the
resonance value B„=m,.c~«/e to achieve the
condition &u« ——v„=eB/m, c

In the general situation away from resonance
(~ —~ ' +L p & 0), one can evaluate the polariza, -
bility function given by Eq. (34) by using the non-
interacting and the interacting Green's functions,
respectively. In the absence of any damping, we
get,

Imll„,„((u)~ —,'(&'+4A, „) '"
x)[(X + 4)i) „) + g]Q((g —g~)

+[(x2+4A),„) ~2 —x]5((u —)d2)], (37)

where

~) 2 =~0- —,'Xy —,'(X +4A, ,„) ' . (Sa)

In writing Eqs. {SV}and (38}we make use of the
definitions of z, given by Eq. (25). Notice that
for &=0 (i. e. , at resonance), Gq, 2 reduces to &dq, 2

and Eq. (37) reduces to

Imll„,„((u)~ —,'[6(~ —cu), ) + &(~ —(u2)],

which is the expected Y-0 limit of Eq. (36).
From Eq. (SV) we find that, off resonance (&
» A, ,„), only one of the absorption peaks (at 9)) is
predominant, whereas near resonance (X «&, ,„),
both the absorption peaks have almost equal
weight.

mately given by

(»)
We point out that the Green's function of the lower
level &0-——(j, n0) is taken to be noninteracting since
we are interested in the resonant-coupbng pheno-
menon only and assume the nonresonant electron-
phonon renormalization effect to be small in most
of these weakly polar quasi-two-dimensional sys-
tems under consideratign.

Thus the behavior of the absorption spectrum,
which is proportional to the imaginary part of the
polarizability function, is given by

Imri„,„((u)~ ((u —(u0)((o~ —(u2)
'
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g = ' A('~) (titfo) q (41)

For g very small, Eq. (40) gives the same ab-
sorption peaks as given by the poles of II~0~(&).
In general, however, solutions of Eq. (40) will be
shifted from the poles ~ = &uq, 2 of IIN ~(&u) (in the
absence of damping). In the general case, Eq.
(40) has to be solved numerically, and for large
g, may give results very different from those
given by the poles of II„N(&u). In Appendix B, we
consider a simple solution of Eq. (40) assuming
the shifts produced by the phonon-induced electron-
light vertex correction to be small.

V. DISCUSSIONS

In the previous sections we have shown that
electron- LO-phonon interaction in quasi-two- di-
mensional electronic systems in the presence of
a magnetic field may give rise to qualitatively
new features in magnetoabsorption. Under suit-
able conditions, a single absorption peak will split
into a doublet as the magnetic field is swept
through the resonance value &„ =m, &uLoc/e. The
peak-to-peak splitting at resonance is given by

In the above analysis the absorption peaks are
assumed to be given by the poles of the conducti-
vity function (equivalent to the polarizability func-
tion in the long-wavelength limit) described by
the leading-order simple bubble diagram shown in

0
Fig. 3(b). This is the leading-order irreducible
polari"ation diagram. The actual response func-
tion is however the corresponding reducible func-
tion, which consists of the series of bubble dia-
grams connected by I.O-phonon lines as shown
in Fig. 3(c). In the literature, ~ this has been
referred to as the phonon-induced electron-light
vertex correction since the electron- (external)
photon vertex is being corrected by virtual phonon
processes. Ordinary electron-phonon vertex cor-
rection is still being neglected as in Sec. III. The
process described by Fig. 3(c) has a very simple
physical meaning. The external photon induces
an electron-hole bubble [Fig. 3(b)], but a chain of
such bubbles may be formed by virtual phonon pro-
cesses and all of them have to be taken into ac-
count in considering the system response.

Summing the geometric series for all the bub-
bles, we get the reducible polarizability, 11„0~(cu),
of the resonance process, including the phonon-
induced electron-light vertex correction. The
absorption peaks are now given by the poles of

II~~(&) or equivalently by the equation

1 g DLo((u)IIN g((o) =0, (40)

where

2v'A.
&,„and is thus proportional to the square root

of electron-LO phonon coupling strength in the
system. Thus the phenomenon of the resonant
magnetoabsorption in two- dimensionally confined
charge carrier systems offers a unique way of
seeking information regarding electron-optical-
phonon coupling, including features special to
particular systems. This is particularly signifi-
cant in view of the rather unexpected experimental
indication towards an enhanced electron- LO-pho-
non coupling in these quasi-two-dimensional polar
systems, as reflected in luminescence experi-
ments on GaAs-Gaglqgs quantum wells. Reso-
nance splitting phenomenon as discussed in Sec.
ID and the associated magneto-optical anomalies
in absorption (or Raman scattering) experiments
as discussed in Sec. IV provide a means of experi-
mentally estimating the electron-LO-phonon coup-
ling strength. We point out that the resonance
splitting phenomenon is independent of the nature
of electron-LO-phonon coupling in the system and
takes place even when the coupling is weak. No
less significant is the fact that in these novel
quasi-two-dimensional systems, there may be
coupling between electrons and more than one kind
of phonons (interface phonons, surface and possible
others). These different LO phonons will in gen-
eral have different frequencies and hence the
resonance condition ~« ——~,&

will be achieved at
different magnetic fields. Thus a careful investi-
gation of the magneto-optical. anomalies should in-
dicate the importance of the different electron-LO-
phonon coupling.

We believe that the experiment most suitable to
observe the splitting phenomenon in two dimen-
sions and to use it as a systematic tool for investi-
gating the electron-LO-phonon coupling is the
valence-to- conduction-band cyclotron resonance.
This wiQ avoid the complications arising, from
reststrahlen absorption in direct cyclotron reso-
nance (from n —1 to n within the same subband)
when ~, &

——~L&. 'Furthermore, these investiga-
tions do not require free carriers in the conduc-
tion-band Landau states. Consequently 1inewidths
arising from impurity scattering (even compared
to modulation-doped situation) is minimized, along
with thermal broadening by restricting measure-
ments at low temperatures. This is in contrast
to the dc manifestation of the phenomena whose
existence depends upon the presence of free car-
riers and relatively high temperatures for a sig-
nificant thermal population of relevant phonons.
We therefore suggest such studies to be carried
out on superlattices and heterojunctions such as
the GaAs-Alq Ga+s system.

We have emphasized in Secs. ID and BT that the
resonance splitting phenomenon is much sharper
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in two dimensions compared to the bulk situation
due to the absence of the continuum associated
with the z component of electron momentum in this
case. This enables one to use the splitting in
magnetoabsorption as an effective tool to estimate
the electron-LO-phonon coupling in two dimen-
sions. Another important difference is the fact
that the splitting at resonance is enhanced in these
two-dimensional systems compared to the three-
dimensional case. From Eq. (26) and (SV) it fol-
lows that the leading-order magnetic-field depen-
dence of the resonance splitting is 8," whereas
the dependence in the bulk case is B,' . Thus
other factors being identical, the magnetic-field
dependence of the resonance- splitting is enhanced
in two dimensions. This combined with the sharp-
ness of the splitting phenomenon (due to lack of any
s motion) argues strongly in favor of a study of
magneto-optical anomalies in these systems.

There are several directions in which the re-
sults of Secs. lII and IV can be refined, some of
which have already been noted. For a quantitative
comparison with experimental results, when they
are available, one must evaluate the explicit ma-
trix elements for the coupling strength. This in-
volves a knowledge of the subband envelope func-
tions which unfortunately are unavailable for the
most important III-V quasi-two- dimensional sys-
tems. One might have noted that we treat the
yroblem as a one-electron problem treating inter-
action with LO phonons only and neglecting all
electron-electron interaction and screening effects.
This is justifiable because the resonance splitting
phenomenon is independent of these effects. The
coupling strength will depend on screening (would
in general be reduced by it). Since in our theory
we do not pretend to calculate the coupling strength
quantitatively (and, as we have noted earlier, this
may indeed be a difficult task because Frohlich
theory itself may not be valid), we have neglected
screening from our considerations. Formal in-
clusion of screening in the theory is straightfor-
ward and we argue that the experimental investi-
gation of the magneto-optical anomalies would
yield the effective coupling strength including
screening and other effects. Exchange-correla-
tion effects from electron-electron interaction are
not expected to be important in these systems due
to the small effective mass and large dielectric
functions and consequently the small ~, values in-
volved. In the actual experimental situation,
neither of these two effects would probably play
any important role since the valence-to-conduc-
tion-intersubband magnetoabsorption experiment
in GaAs-G~lq~s or InAs-GaSb structures are
performed in the absence of any mobile charge
carriers. We have also neglected electron-phonon

vertex correction in our work. This is less justi-
fiable from a strictly theoretical ground since the
usual arguments of Migdal's theorem for the
smallness of such terms are invalid for the high-
frequency optical phonons. In addition, the vali-
dity of Migdal's theorem in these novel two-dimen-
sional systems has been questioned on the basis
of the fact that the relevant electron and phonon
energies in these systems may be comparable.
Consistency thus demands that the theory includes
all ladder-bubble vertex corrections to the simple
bubble of Fig. 3(b). This is an extremely difficult
task and we argue that as long as the electron-
phonon coupling constant is small, these higher-
order diagrams are negligible and we can work
within Migdal's theorem. If an experimental ana-
lysis along the line suggested here indicates the
coupling strength to be appreciable, one must try
to include the electron-yhonon vertex correction
in the theory. Before concluding we remark that
the level-splitting phenomenon due to the lifting
of degeneracy by the electron-LO-phonon interac-
tion should in principle be present in these quasi-
two-dimensional systems even in the absence of a
magnetic field. The degeneracy is then between
an electron in the ith subband and the composite
state of an electron in (i - 1) subband plus an LO
phonon of energy ~LQ under the condition ~LQ

But the continuum associated with the free
two-dimensional motion within each subband makes
the level-crossing phenomenon in the absence of
any magnetic field inherently much less sharp
than the corresponding situation in presence of the
magnetic field discussed in this paper. In Appen-
dix C we give a brief description of the situation
in the absence of any magnetic field.

Finally, it should be remarked that a resonant
Landau level-optical yhonon coupling and the con-
sequent level-splitting phenomenon is, in principle,
possible even when ~&Q ——n~„., where n is any inte-
ger (not necessarily unity) whence the Nth and the
(N+ n)th Landau levels (in the ith two-dimensional
subband) are coupled by an optical yhonon. In the
explicit analysis given in this paper, we consider
the most usual case of n=1. However, the same
analysis applies equally well when n is some other
integer. The spectral weights of the correspond-
ing splitting for n & 1 is expected to be less than
that for n=1 since it is energetically much more
favorable to couple two adjacent landau levels.
Actual observability in magneto-optical absorp-
tion of such "higher" (n & 1) resonances depends
crucially on the spectral weights and on whether
transitions to such eouyled levels for n» are
possible under any particular experimental situa-
tion. Recently static magneto-phonon resonances
have been observed in two-dimensional systems.
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Since the effect described in the paper is a high-
frequency generalization of the static resonances,
it can be hoped that the resonant splitting in mag-
netoabsorption would soon be seen in these sys-
tems and would lead to a precise estimate of the
electron-optical-phonon coupling strength in these
confined systems.

where

xg, 2 = [&d o+ (&dj„4A&„„) ] . (A4)

Other quantities in Eq. (A3) are the same as those
defined in the main text. Clearly in the weak-
coupling limit (aP»» 4A, „„},Eq. (A3) reduces to
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APPENDIX A

2m
P & inn (~) (1 2A /&& )

X 1 g Q(&d &d) X2)
0

LO

p 5((d —&d&,„—Xi)
A,„„ 0

4)z, p

with

(A5)

Here we consider the diagonal contribution to the
Landau-level self-energy Z&,„„(i~,) and show that
it does not lead to any resonance splitting pheno-
menon. Away from resonance however, this
gives the leading-order correction to the Landau-
level energy E;,„=E;+(n+ —,')K~„ In general, a
leading-order self-energy contribution Z, , „„(i&d,)
is given by

z,, „„(i(u,) =,- —„~ G, ,„.(i(u, —. iv )
&vm

Ig&&j)&nn') ( I) I +& 04&

(Al)

This most general self-energy element can thus be
off diagonal in both subband and Landau-level in-
dices. We can neglect the off-diagonal elements
in subband indices as being insignificant compared
to the intrasubband diagonal contribution and write

tnn' ~f tnn' ~k~ In Secs. HI. and IV of the main
text of the paper we are concerned with the reso-
nant contribution to the self-energy given by the
v'=n- 1 I andau level under the condition (d„
—+LO ~

The diagonal contribution to the self-energy is
obtained by putting i =j and n' =n in (A 1) a,nd
after doing the frequency sum we get

Z&,„„(iM&) =A&„„(iQ)& —47 ~,„—QP o) &(A2)
where A,„„is obtained by substituting n for (n —1)
in Eqs. (20) and (21) of the main text. Quasipar-
ticle peaks are of course given by the solutions of
Dyson's equation. Putting Eq. (A2} in the Dyson
equation for the Green's function of the (i, n) level
and taking the imaginary part, we get the follow-
ing spectral function. '

p&, (&) =v(&dz. o- 4A&„„) (&d —&d&, —&dx o)

x[f&((u- &'d. —g~)- f&(x —(u& „-x2)j,
(A3)

&~nn
&a,2= Lo & — z

(dZ, O COLO
(A8}

Thus, provided&&„„«~«, the spectral function
(as renormalized by the diagonal part of self-
energy) has just one peak at v =~, ,„+x2= ur, ,„
+ O(A;„„/~z, o). Thus the diagonal part of self-
energy, as expected, takes no part in the reso-
nance splitting phenomenon. Its only role is to
renormalize the Landau-level energies by small
corrections in the weak-coupling limit.

2Q)L o 11-g ~, CI + =0, (Bl)
(&d —&dx, o)

where C is the constant of proportionality in Eq.
(34) which in general depends on Landau indices.
Equation (Bl) is a general quartic equation in ~
and may have more than two solutions. Also, ab-
sorption (given by ImII where II is defined in the
text) may show interesting structure as a function
of ~. In this appendix we assume g to be very
small (a reasonable assumption as argued in the
text) and shall calculate leading-order correction
to the absorption peaks ~ = (d~, 2 in presence of the
phonon-induced electron-light vertex correction.
We assume

(B2)

where z = u&q, 2 are the solutions to Eq. (Bl) when

g = 0. The basic assumption is I'&II « IzI. Put-
ting Eq. (B2) into Eq. (Bl) and neglecting terms of
0(0 ) and higher, we get

APPENDIX B

The absorption peaks, including the phonon-in-
duced electron-light vertex correction, are given
by Eq. (40) of the main text. Neglecting the phe-
nomenological damping, we can write Eq. (40) as
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g C1[28 —((d1 + (d2)]

4z —3g'(&u1+ 1»»2).+ 2z(tu14)2 (OLp)

C~ =2'«C .
Thus the absorption peaks in the presence of pho-
non-induced electron-light vertex correction are
at frequencies

Q3 =Z + g = (d y, 2 + ljg,2,

where

g Cl(&1 &2)
2 Z

~1(»d1 —~1~2 —2~L p}

and p2 is obtained by interchan ing ~~ —» in Eq.
(B6). Clearly the assumption q

~

« ~z
~

is valid
if g is very small.

APPENDIX C

In this appendix we consider the self-energy cor-
rections to carriers confined in two-dimensional
subbands due to electron- I 0-phonon interaction
in the absence of a magnetic field and investigate
whether a resonance situation is possible when
two subbands i and j are coupled by I 0-phonon-
mediated inter subband interaction with h &@1,p = (E,

E)
The leading-order self-energy correction to the

ith subband due to electron-phonon interaction in
the absence of a magnetic field is given by

interaction in two dimensions mediated by I 0-pho-
non coupling and is given by Eq. (5) or Eq. (8) of
the main text depending on the kind of LO phonon
involved. G~ in Eq. (Cl) is the noninteracting
electron Green's function for the jth subband and
is given by

G,. (k, i(u, ) =[i(u, —8 '(E,. +If 0 /2m; —P)]

(C2)

k is a two-dimensional wave vector and p is the
chemical potential.

We point out that it is the off-diagonal compo-
nent (V„,; with i & j) of the interaction that may
give rise to the resonant coupling in this situation
as well. Again, away from resonance (h&u„p 4 E,
—E,) such self-energy corrections will be negli-
gible compared to the diagonal term.

To evaluate the self-energy given by Eq. (Cl}
we express V„,, (q) as

(C3)

where F1;,1(q) contains matrix elements taken with

subband wave functions along with a multiplicative
polar coupling. We assume E;,, ;(q} to be a slowly

varying function of the wave number so that it can
be taken out of q integration in an averaged sense.
With these assumptions we can calculate Z;&(k, ice, }
given by Eq. (Cl). Actually, electron-phonon
self-energies are not very k dependent and hence
it suffices to calculate Z1;(k, i~, ) for k=0. We

get, in the T-0 limit,

1 d g (}o(» &)
p@Z i2 &2G1(k q» 2~»» it'

»»»)

x V;,;,(q)D1.p(i~„), (Cl)

where V... (q) is the effective electron-electron

Z1»(k= 0, i(d1 ——(0 +25) = 21+ iZ2,

where

1 qg- k~ 1 q2+k~
&g =+ —In + In

6'1+ ks 92

(C4)

(C5)

mhI" nk'
~2 — (+ +Lp) + + (dLp ~

+H( (d (dz p) ~+ + ~Lp
ml. m, 2m,. j -my 2m

(C8)

where + is some averaged value of I'&,, ; and q&,2
are given by the solutions of the equation (H is the
Heaviside unit step function)

with

q21,, =02+ (2m, /ff)((u~ (u„p), (cv}

h k~=2m, (i1 —E,.). (C8)

We are clearly concerned with the case where ~,.

In the resonant situation h~« ——&, —&~ and using.
this in Eqs. (C7) and (C8) we get

& q1,2=2m (@(u-E;+p, ), 2m. (K(u —E + p. -2E.).
(C9)

Use of Eq. (C9) in the expression for the self-
energy shows that no singular behavior of the
resonance self-energy results as a function of
frequency. This should be contrasted with the
case in the presence of a magnetic field [cf. Eq.
(22)] which is very singular ati &„=&,. „ if cuz, p

The quasiparticle spectral function in this
situation is clearly not a delta function (due to the
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actual damping caused by the LO phonons} and
even though the Dyson equation for the quasipar-
ticie cannot be explicitly solved in this case t due
to the logarithmic functions in Etl. (C5}], it is
clear that the sharp resonance splitting phenomen-
on of the situation under an external magnetic field
is just not present in this case.

It is obvious that without the magnetic field, the
two-dimensional continuum associated with the
wave vector q of the electrons makes it impossible
to have a sharp resonance splitting phenomenon.
In presence of the magnetic field the problem is a
quasi-zero-dimensional problem and the reso-
nance structure is sharp.

For a current status of the field, see the Workbook on
the Third International Conference on Electronic Prop-
erties of Two Dimensional Systems, Japan, 1979 [Surf.
Sci. 98, (1980)).
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