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The analytic properties are examined for several multiple-scattering theories of liquid metals.

A condition is obtained for a positive density of states in terms of the properties of the kernel of
an integral equation obeyed by the self-energy path operator. It is found that this condition is

obeyed by the Gyorffy-Korringa-Mills theory as well as the quasicrystalline approximation. The
theories are reformulated in terms of relative coordinates and the implications of these results
on the conductivity problem are discussed.

I. INTRODUCTION

In recent years a number of multiple scattering
results' ' have been obtained for the problem of the
electronic structure of liquid and amorphous metals.
A question arises as to the analytic structure of the
theory and in particular whether a given result will

yield a positive density of states (DOS). Some im-

petus was given to such a question when it was found
that the modified quasicrystalline approximation'
(MQCA) gave a negative DOS for muffin-tin models
of liquid Cu, " and Ni, " in the region of the d reso-
nance. In addition, nonanalytic behavior was report-
ed for the Ishida-Yonezawa (IY) theory. " Schwartz
and Bansil have examined the problem, ""' and

they showed that the quasicrystalline approximation'
(QCA) of Lax gives the proper analytic structure of
the one-electron Green's function as do the coherent
potential approximation (CPA) and the average T
matrix approximation (ATA) for the case of the crys-
talline alloy. In response to analyticity problems
which arose for several alloy cluster CPA exten-
sions, ' Mills and Ratanavararaksa' have examined
the alloy case and, in addition to giving a proof of
analyticity for CPA and ATA, they have found an
analytic cluster CPA, which they call the traveling
cluster approximation. Their very interesting
methods are unfortunately not directly applicable to
the. liquid-metal problem because the latter involves
short-range order.

The work of Schwartz and Bansil has been based
on a term-by-term approach to the multiple-scattering
sequence, and Schwartz' has obtained a formal
result which is guaranteed to give a positive spectral
weight function. Unfortunately these results are
rather complicated. In the present work we shall take
a simpler and less ambitious approach. Since most of
the multiple-scattering theories can be formulated in

terms of an integral equation for the scattering path
operator" and a related self-energy path operator, '8

we will develop a criterion for analyticity based on

II. MULTIPLE-SCATTERING THEORY RESULTS

The problem we treat is that of an electron scat-
tered by an array of ionic potentials V; = V ( r —K, )
at positions R;, arranged in a distribution characteris-
tic of a liquid or amorphous metal. The Hamiltonian
we assume is

2

.'IC= + X~;=Xo+ V2' (2, 1)

the properties of the kernels of these integral equa-
tions and discuss the several theories on this basis.

Actually the MQCA does not fit into the integral
equation scheme. We have already addressed the
MQCA problem in terms of several simple models-
one involving a resonant atomic level, ' and the oth-
er a one-phase-shift muffin-tin model. ' " We have
concluded on the basis of these studies that the
MQCA fails because of an incomplete summation of
site-diagonal terms in the scattering path operator. In
fact we found that pr'operly constructed muffin-tin
versions of the QCA and IY theories, "as well as
the effective medium approximation (EMA)' gave no
difficulty with analyticity for the one-phase-shift
model.

In Sec. II of this paper we will formulate the prob-
lem, and summarize the several theories in terms of
integral equations for the scattering path operator and
self-energy path operator. In Sec. III we develop the
criterion for analyticity and discuss the various
theories in relation to the criterion. Section IV gives
a new formulation of the multiple-scattering series
which separates the ionic and relative electronic coor-
dinates, and we discuss here the relation of the
present results with the vertex function which is use-
ful for calculating transport properties. We next re-
call in Sec. V some results we had previously ob-
tained for the one-orbital tight-binding model, '
and present our conclusions in a final section.
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G = ((pt —X) '), , (2.2)

where the average is over ionic configurations. The
usual multiple-scattering approach ' is based on cal-
culating the total scattering operator or T matrix,
which obeys

where we assume that the potentials are real and en-
ergy independent. The electronic structure is charac-
terized by the one-electron Green's function" 1%

T= Q(R, R ) dRdR (2.8)

Various decouplings of these distribution functions
yield different approximation schemes' "for most
of which Q (R,R') obeys an integral equation of the
form

Q(K, K)=nt, (K) 8(K —R)

functions. Furthermore we have for the tota1 scatter-
ing matrix

'T= $ v; {1+Gpv )
I

(2.3)
+Jl G(R, R )Q(R, R) dR

where Gp(tp —Xp) ' is the free-electron Green's
function. In terms of the configuration average
T = ( f') of the T matrix, we have

G = Gp+ GpTGp (2.4)

(2.5)
Tjj tj 8tj + ftGptj ( 1 8~j )+ g t Gptt Gptj +

Ijl

where the prime indicates that no two successive in-
dices are equal. Here the single-site T matrix obeys
the equation

t; = u;(1+ Gpt;)

The next quantity which we construct is the medium
path operator. '

(2.6)

Q(R, R ) = Xp;(R)Tjpj(R )
ij

where p;(R) =8(R —K;) is the density of the ith ion
at R. T(R, K ) can be expanded' using Eq. (2.5)
into a series of terms involving n-particle distribution

(2.7)

The well-known expansion'6 for the T matrix can be
given in terms of the scattering path operator" V &, by

t, (K) = tea +u-„Gi(K) t, (K) (2.11)

(2.9)
in terms of a medium locator t, and a medium propa-
gator G. We emphasize that Q and G are operators
on the electron coordinates r, r as well as the ionic
coordinates [i.e., we have Q( r, r, R, K ) and
t, ( r, r, R) j. An alternative form for these opera-

I ~t
tors in terms of relative coordinates r —R, r —R,
and R —R, will be given in Sec. IV. We can relate Q
to quantities used in the work of Schwartz and Ehren-
reich '

Q (R, Kp) = n 8(R —Rp) (Q ),
+n'g(K —Kp)(Q p), p, (2.10)

where, e.g. , (Q ), is a conditional average over all
particles except the o.th. Actually we find the use of
"R " rather confusing as it looks discrete but is con-
tinuous. The difference in notation may have caused
errors. '

%e summarize in Table I the medium locator and
propagator for several theories. It is convenient to
write these results in terms of two operators Gt(R)
and G2(R, R ) defined as follows. The medium loca-
tor obeys an integral equation of the form

TABLE I. Green's function operators for Eqs. (2.11), (2.12), and (2.19) for various theories.

G, (R) G, (R, R')

QCA' Gp Gp

SEc Gp+ fG(R, R )g(R, R )GpdR dR =G, (R)

IYd Gp+ f Gp(R, R') nt, (R'}

x Gp+ f Gp(R, R )g(R, R )
I 1

xGp(R, R ) dR dR dR

Gp

EMA' GMR = Gp+ fG(R, R")g(R",R'"}GpdR" dR'" G =Gp+ f G(R, R )g(R, R )G(R"', R')dR' dR'"

"'Reference 1. "Reference 5. 'Reference 6, Reference 7. 'Reference 8.
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and the medium propagator has the form

G(R, R ) =Gp+h(R —R )G2(R, R ) (2.12)

where h (R) =g (R) —I with g the pair distribution
function (PDF). Results for G~ and G2 for the QCA,
Gyorffy-Korringa-Mills (GKM), Schwartz-Ehrenreich
(SE), IY, and EMA theories are given in Table I.
For the IY we have Gp(R, K ) = Gpg (R —R') which
is the G for QCA (and IY) results. For EMA and SE
theories G is given by Eq. (2.12). As we shall discuss
further below G~R in the EMA corresponds to the
medium which is missing a medium ion at R, and

I
G~RR is the same quantity with ions missing at R and
R', both approximated in a modified Kirkwood ap-
proximation to be described below.

In addition to the medium path operator it is often
convenient to define a self-energy path operator'
o (R, R ), such that the self-energy is given by

o = tr(KR)-d, RdK
aJ

(2.13)

and

+J (r(R, R )G(r(R, R)dK dR

(2.14)

Q(K, R )GpdK = J o.(R, R )G dK . (2.15)

It is easy to show that cr obeys the integral equation
t

(R, K ) =nr, (R) 8(K —K )+ J [G(R, R ) —G 1

xtr(R, R ) dR

(2.16)

That is, the kernel differs by the removal of the Go
part.

Because of the integral equation for r„Eq. (2.11),
the scattering path operator and self-energy path
operator equations can be rewritten

t

Q(K, R ) = nua 8(R —R )
t

+„i Kg(R, R )Q(R, R ) dR

(2.17)
1

a (R, K ) = nu-„8(K —K )
t

Schwartz and Ehrenreich actually based their work on

o, = n I o (R, R ) dK . The self-energy obeys the

equation G = (pt —Hp —X) '. We have T = X+ XG
and TGO= XG. The corresponding results for the
path operator are

Q (R, R ) = o.(K, R )

The kernels are given by

K&(R R ) = —8(R —R )G)(R)+h(R —R )G2(R, R )
)1

(2.19)
Kg(R, R ) = K (R, R ) + Gp

These results are now in the form to discuss the ana-
lytic properties and generalized optical theorem. We
note that the Q form is useful for muffin-tin calcula-
tions and the o- form for pseudopotentials.

III. ANALYTIC PROPERTIES

The exact one-electron Green's function is analytic
in the co plane except on the real axis, and ImG is
negative definite for co in the upper half plane,
These properties are sometimes called the Herg1otz
property. ' We shall usually simply use the term
analytically. The Herglotz property guarantees a posi-
tive density of states, since the DOS is given by
n (pt) = —tr 'ImtrG.

The unperturbed Green's function (pt —G&') ' in a
momentum representation, has a pole on the real
axis at Gtp=f'k'/2m. The exact Green's function
Eq. (2.2) in a momentum representation is diagonal
with

(3.1)

It is well known that X-„(pt) and G-„are diagonal be-

cause of translational symmetry after configuration
averaging. We see that in order for G-„ to be analytic
we must have Im X-„(0 for co in the upper half
plane. Thus a criterion for analyticity is that X —X
be a negative definite operator for Im ~ & 0.

In terms of the T matrix, Schwartz and Bansil" ar-
gue that the free-electron pole in the Green's func-
tion cancels out between the two terms in Eq. (2.4)
and that, therefore, analyticity is related to the nega-
tive definite character of i ( T —T ). Specifically in
momentum space the spectral weight function

S(k, pt) = —(trN) ' lmG-„(pt)
is given by

S(k, pt) = —(triV) ' ImT-„(pt)/(pt —k2)2 (3 2)

These authors point out that the optical theorem
~t ~t(G Gt )~ (3.3)

guarantees the negative definite character of the ex-
act unaveraged V —7, since Go has the Herglotz
property. We now proceed to generalize this result
for the scattering and self-energy path operators. The
form of both the integral equations, Eqs. (2.17) and
(2.18), is

+ Jt K (R, R ) tr(K, R ) d K

(2.18)

A =b(1 K+A)

where b is Hermitian and 1 is the unit operator.

(3.4)
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It is quite easy to prove the theorem:

=A (K —K )A

Applying this result to the integral equations for Q(R, R') and a (R,R'), we have

Q(K, R ) —Q (K, R) =
i Q (R, R) [Kg(R, R ) —Kg(R, R )] Q(R, R) dK dK

(3.5)

(3.6)

o(R, R)—a. (K, K)=„(r (R, R)[K (R, R ) —K (R . R )]a(R, R)dK dR (3.7)

We can integrate these equations over R, R ' to obtain
the condition on T and X. We see that the conditon
is now that K and K~, Eq. (2.19), must have the
Herglotz property. Since Kg =K + Go, and Go is

Herglotz, we must examine K in particular for the
several theories.

Consider first the QCA. We have
't

(R, R ) = —8(R —R ) +h (R —K ) Gp . (3.8)
n

The free-electron Green's function is of course Her-
glotz; furthermore the coefficient is proportional to
the liquid structure factor

all ions except one at R, and thus in principle at least
is Herglotz. However K (R, R ) is not symmetric
and

i [K (K, K ) —K (K, K)]

involves

i '[G-" (R) —G" (K )],
which may not be negative definite, unless R and R

'

are equal.
For the EMA we have

K (R, R ) =n '8(R —R )G~a+h(R —K )G~

S(K —R ) =8(R —R ) +nb(K —R ) (3.9) (3.13)

which is a positive definite matrix. The eigenvalues
are just the Fourier transform Sk =1+nhk, which is
the x-ray interference function. Thus the QCA is an-

alytic. "
For the GKM we have

(R, R ) = —S(K —R )G
fl

(3.10)

Thus if we assume that G has the Herglotz property,
then we find self-consistently that T and G are ana-

lytic.
The remaining self-consistent theories are

equivalent to GKM for the random liquid. ' For the
correlated liquid, the structure of K is more com-
plex, so that it is difficult to say anything precise
about the analytic properties. Thus for the IY theory
we have

K'v (R K ) =n 'S(K —K )Gp

+~ '8(K —R )[GI"{K)—Gp] . {3.11)

Here the first term is Herglotz but while the second
term involves the positive definite quantity
8(R —R ), the analytic structure of its factor is un-

known. For the SE theory we have

It can be shown that G~ corresponds to the medium
excluding an ion at R, in the sense of the single-site
modified Kirkwood approximation'8 which character-
izes the EMA. The Kirkwood approximation replaces
the n-body distribution function by a product of
PDF's as in Eq. (3.20) below. In the EMA the n-

body distribution function is approximated by a pro-
duct of PDF's along the scattering chain (as in the
QCA) but out of chain correlations, i.e. , site equali-
ties and h correlations (h =g —1) are included only
to the extent that they do not cross. A diagram
analysis of this has been given. "

For GM' this corresponds to using Q (K, R ) in

Eq. (2.8), which obeys Eq. (2.9) with the density n

replaced by ng (r —Rp), i.e. ,

Q (K, R ) =t7r (K)g(K Kp)
t

x 8(R —R ) + ~ G(R, K )Q p(K", R )

(3.14)

This obeys the identity'

i G(R, R )Q(K, K)dR =GpJ Q (R, ()dK

K'a (K, K ) =n 'S(K —K ) G,' (K) (3.12) (3.15)

which is proportional to the positive definite structure
factor. As in the case of the EMA (see below) it is

possible to argue that GP ( K ) is an approximation28

to the Green's function for the medium consisting of

from which our interpretation of G~ follows from
Table I.

In the same modified Kirkwood sense GM
" is an

approximation to a Green's function excluding ions
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at R and R'. Successive use of Eq. (3.15} and Table I gives

GM =Go+Go~ Q (Rr, R2)G(R2, R ) dRrdRp

= GM + Go '

Q (Rr, Rr)h (R2 —R )G (R2, R3) Q (R3, R4) dRr, . . . , dR4 Go (3.1 6)

The first term involves only exclusions of an ion at
R, while the second term adds in all the exclusions of~l
R which do not involve crossed correlations. A
similar argument can be made reversing the roles of
R and R.

If G and G"" exactly excluded the missing ions,

I

would Eq. (3.13) be Herglotz? We find that if a cer-
tain conjecture is valid and if the Kirkwood approxi-
mation is correct, the answer is yes. We have been
able to prove the following theorem: if
g, (Rr, . . . , R, ) is an s-body distribution function,
then the operator on R and R (for fixed Kr, . . . , R, )

t ~l
P, R, R, Rr, . . . , R, = —8 R —R

I - -i g+r(R, Rr, . . . , R) g+r(R, R, Rr, . . . , R, )

g, (K, , . . . , K, ) g, (Rr, . . . , R, )

g, +r(K, Kr, . . . , R, )g, ~r(K', R, , . . . , K, )

g,'(Kr, . . . , K, )

is positive semidefinite. Proof: by definition

(3.17)

n'g, (Kr, . . . , Rp)=
I

f p 1 p I

p;, (Kr). . . p; (K, (3.18)

where ( ), is an average over ionic configurations, p;(R) =8(R —R;), and the double prime means no two

indices are equal. It follows that

]2
-s—2

P, (R, R ) =
g, (K, , . . . , K, ) ..

ng, +r(R, Rr, . . . , K, )
p, R)—

g, (R, , . . . , K, )

JWi), . . . , i
L

Then it is easy to show that for any function f (R),

ng, +r (R, Rr, . . . , K, )
p;(R

g, (Rr, . . . , K, )
(3.19)

P, (R, R ') f'(R) f (R ') dRdR ) 0

which proves the theorem For n =0., g„=g +r= 1, and Po(R, R') is just S(R, R')jrr
Now if a Kirkwood decomposition is valid, then

g, (Rr, . . . , R, ) = ff g(R; —K&)
i)J~1

in which case we have

(3.20)

P, (K, R ) =—n 8(R —K ) Qg(R —R;)+h(R —K ) fJ g(K —R;)g(K' —R, ) (3.21)

The Green's function can be written quite generally as

G = X 'n„G ' (rRr, .r. . , R, ) g, (Rr, . . . , R, ) dRr, . . . , dR,
s~0

(3.22}

Where G'O' = Go (with no integration). If we multiply each g, by the corresponding positive quantity P, the
conjecture is that this leads to a Herglotz operator. Within the Kirkwood approximation, the PDF s in Eq. (3.22)
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are just right to exclude ions at R and R, so that the
result is

operator becomes

Q(p, p, R —K)
=n '5(R —K )GK" +h(R —R )Gx"" (3.23) =nt, (p, p )5(K —K )

where K is for Kirkwood. Thus to the extent that
the modified Kirkwood approximation approaches the
Kirkwood [Eq. (3.20)] and to the extent that the
Kirkwood [Eq. (3.20) 1 is valid, our conjecture leads
to analyticity for the EMA.

One case for which the Kirkwood approximation is
exact is that of impurities distributed randomly on a
crystalline lattice. For this case the EMA and SE
theories both reduce to the alloy CPA. 6 8 " We must
replace the continuous distributi'ons by discrete distri-
butions on the lattice, and replace n by x, the impuri-

ty concentration. For the lattice g, =1 —8, and
RR RR.h, = —S„„sothat for EMA

II ~ II III ~ ~Ill+n) t, (p, p )G(p, p, K —K )

xg(p, p, R —R)dp dp dR, (42)

or, if we suppress the relative electron coordinates p
and p'

Q(R —K ) =nt, 5(R —R )
t

+ ' G(K —R )g (R —R ) d R

(4.3)

This is a convolution product in the ion coordinates,
so a Fourier transform yields a simple product. Thus
if

(&-1GR GRR),
RR (3.24) Q-= te-'" ' RQ(R) dR

From the first line of Eqs. (3.16) and (2.12),

G =Go+Gp X QR(R, R )(Go —5 „, GRR)
~II~II I

(3.25)

but Q "(R,R) = 0, so that G R R is simply G" and
thus

g(K) i &ik ~ Rg "8~' '

then we have
Ag- k t, n(1=+G- gkk) .

In a similar way we have for the self-energy path
operator

Q-„=nt, [1+(G-„—Go-k)o-kl

(4.4)

(4.5)

(4.6)
It.=5,G'(1-x)/x . (3.26)

This holds also for the SE result. We expect 6 to
be Herglotz, and this supports previous proofs of
analyticity for the alloy CPA.

We can also use a momentum representation for the
relative electron coordinates p and p''.

PP I Ig- =
~ exp( —ip p+ip p —i k R)k

IV. RELATIVE COORDINATE REPRESENTATION

xQ(P, p, R) d p d p dR (4.7)

Some of the above results take a rather tidier form
if we introduce a new representation which makes
use of translational symmetry. Operators like
T( r, r, R, R ) depend only on relative electron and
ion coordinates. We can therefore write

Q(r, r, R, R)=Q( r —R, r —R, K —K)

G(r, r, R, K)=G(r —K, r —K, K —K), etc.

I

g(p p, R)=& exp(i p p —i p p +ik R)

gpp' dkdpdp'
(2rr )' (4.8)

= j exp[i k (p —p + K) )GO-k

In particular, since the unperturbed Green's function
I

depends only on r —r we have

Gp(p, p, R) =Gp(p —
p +K)

t, (r, r, R)5(R —R')=t, (r —R, r —R, R —R)
= t, ( r —R, r —R)5(R —R )

It follows that

(4.9)

(4.1)

Note that t, differs from t, (R) of Eq. (2.9) in that the
origin is at 0. Equation (2.9) for the scattering path

G'-„= (2m) 5(p —k)5(p —k)G -„ (4.10)

The same applies to the exact Green's function G.
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Tk = Q(r —R. r —R, R —R ) d R d R

e ~rik ~ (T-r ) ~~ —~Pke dr (4.11)

Another quantity of interest is T = Q (R, R ) d R d R where j„is a component of the current operator.
The integral equation for m is

m'-k(z, z') = G-„(z)
I

x I'-k +J il'(z, z', k, k )n-k(z, z') 6-„(z')
(4.18)

That is, to obtain the configuration-averaged total-
scattering matrix we set the electron wave vectors p

'

I ~~r
and p in Q ~k" both equal to the ion wave vector k.
Also, we have for the self-energy and the medium
Green's function.

Equation (4.17) corresponds to a Ward identity dis-
cussed by Popielawski' and Velicky. " Popielawski
derived Eq. (4.18) and showed that the GKM theory
is the basis for the work of Ashcraft and Schaich" on
an extension of the Ziman formula for the conduc-
tivity.

For the EMA we can write
Gk' =O) —a —X-

k k
gk
k

(4.12)

The various results for Q and o can be written in
the new representation

—ol

—G, +h(k —k )6ek g
pg 1k 8m3

where

(4.19)

II

Q k
= n v(1+K&-kg-k), o'-k= n v(1+K~-kyar-k)

(4.13)

Let us examine the GKM. %e find that the o- ker-
nel is given by

~l
K -„= —+h(k —k ) G, (4.14)

A

6&k =(1+Gkgk)Gpk ~ Gzk =Gpk +GkgkGk
I

(4.20)

It is possible to write G1I, and G2& entirely in terms
of medium quantities as follows

6, k
= (1 + W-„-„)6 k

A A6 z k
= (1 + W-k(r k ) Gk (1 + rr k W k ) + W

k a
k

W
k

or

(K - )'~ =8m'8(p —p ) —+h(k —p) G-,
p

where
A A A AW-=G--6 -= ' h(k —k )G —„k k Ok 2k

(4.»)

'(4.22)

~l
X-„—X"-„= .

l v jkk
k

l

' —+ h ( k —k )

rx(6,-6', )
k 8m'

(4.17)

The quantity

lo'~kk 12[1/n + h(k —k ) = W(co+i e, co —i e, k, k )

(4.15)

which has a particularly simple structure. Considering
the self-energy relationship, from Eqs. (2.13) and
(3.7) we have

I

X-—X-= o.— K ~ —K" P '(r+p k p '~+ k dpdp
k k ~ k ak k k (2 )6

(4.16)

For the GKM this gives

The result of Eq. (4.21) is obtained by using Eqs.
(2.14) and (2.15) which become simply Q-„= a.-k(1

II A A

+ G-„o.-„) and Q-„G,-„=a-kG-k. This is the same
result for a as was obtained by %atabe and
Yonezawa '8

The conductivity problem is more difficult in the
EMA and Eq. (4.18) becomes a set of coupled in-
tegral equations. %e are investigating these equa-
tions and expect to report our findings in a future
publication.

Another interesting use for relative coordinates is
the angular momentum representation for the
muffin-tin model. In fact the work of Lloyd, 4

Schwartz e( al. ' and subsequent authors o is a11

based on a relative coordinate approach.

V. SOME RESULTS FOR THE TIGHT-BINDING
MODEL

is the GKM result for the vertex function which ap-
pears in the conductivity problem. Specifically Ru-
bio' postulated a Bethe-Salpeter type equation for
the quantity

%e recall here some results for the one-orbital
tight-binding model, for which the T matrix is re-
placed by a medium Green's function

nG-=
k

cv —nH- —X-
k k

(5.1)
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where nH k is given by

nH k
= „nH(R)g(R)e'" "dR,

with H(R) a transfer energy, and X-„ is a self-energy
which has different forms for the various theories.
The results for X k can be put in the form

(5.2)

(5.3)

y~= Jt (co —co) ——ImG- des
1

k k (5.4)

must be positive. In terms of distribution functions

with F,-„and F2-„given for several theories in Table
II. To ensure the analyticity of 6, X-„must be ana-

lytic and have a negative imaginary part in the upper
half co plane.

For QCA, the Green's function is obviously analyt-
ic. For the GKM theory the positive definite charac-
ter of the structure factor ensures that Im X-k has the
same sign as Im6-„, and this implies analyticity.

We have in fact proved analyticity" for the random
case (A =0). In this case all the self-consistent
theories are equivalent to the GKM. The proof also
holds for the IY theory in the case of a square PDF
for which g2=g.

We have also discussed a necessary condition for
analyticity. If the spectral weight function is positive,
then the mean-squared frequency deviation or width
function

the exact result for y~k is given by.
t

J P2(K, R, R))H(R —R))
't

x H(R —R )dR e'"''a " 'dk, (S.S)

~l
[f;„+nh (k k—)f',„], (5.6)

where f,-„and,f;„are given in Table II, and corre-
spond essentially to different approximations for P2.
For the EMA P2 is evaluated in the Kirkwood ap-
proximation. It is clear that IY and GKM give posi-
tive width functions. For other cases one can test
theories by calculating y~k. We have plotted the
width function for several theories for an exponential
overlap and a hard-sphere Percus-Yevich PDF' in
Fig. 1(a), using a packing fraction of ran=0. 45 ap-
propriate for liquid metals. We see that the EMA
gives a positive width function while the SE result
goes negative. This has been discussed previously. '
While the IY and GKM width functions are positive,
they are not very realistic and in particular the GKM
width function is quite large. This is because no
correlations are included in H(R) in Eq. (5.5) as we
can see in Table II. We can modify the GKM in
several ways to improve the situation, We can multi-

where P2 is defined in Eq. (3.17), and has been
shown to be a positive sernidefinite operator in R and
R', The operator in square brackets is also positive
semidefinite, and yk is an eigenvalue of it and is,
therefore, non-negative.

For the various theories we find

TABLE II. Functions for Eqs. (5.3) and (5.6) for various theories.

QCA

SCA

EMA

H2Gk

H M-Gkk k

(H-„—H k)
H 6k+ nHk

CO Xg

H MkGk k k

M-= H-+ X;/nk k 1k

=Fi

=Fi

H
k

H H
k k

H H
k k

H-H
k k

H 2
k
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ply H(R) in Table II by g(R) or [g(R)]'~'. The
first choice gives the EMA result for f2 but overmul-

tipliesf~, by, g (R). The second choice is correct for

,fr but not f2. We can also cut H(R) off at the
hard-sphere diameter. These three possibilities are
included in Fig. 1(b).

The EMA result is given for larger packing frac-
tions in Fig. 2, We see that there is a tendency for
the width function to go negative for larger packing
fractions. There is some dependence on the Bohr ra-

dius relative to the hard-sphere diameter. Introduc-
ing a large R cutoff tends to reduce the tendency to
go negative as is shown in the dashed curve in Fig. 2.
W'e have earlier defined an effective coordination
number

r

z = nH(R) dR nH(R)H(K) dR

and we see that negativity of yk is connected some-
what with too many neighbors. Of course if the
width funct&on in the EMA is negative for any form
of H(R) for a given packing fraction, this implies
that P2 is not a positive definite operator in the Kirk-
wood approximation for that packing fraction. This
suggests that there may be problems with the
Percus-Yevick hard-sphere model for larger packing
fractions simulating amorphous metals.

(a)
0.3—

0.04

0.03

0.02

0.0i

FIG. 2. Width function for the EMA for Percus-Yevick
hard-sphere PDF for several packing fractions and H (R) as
in Fig, 1 with A. =4.8. For dashed curve H (R) has been cut
off at R =1.6o-.
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We have formulated a criterion for analyticity of
the Green's function for liquid metals, in terms of
the kernel of an integral equation obeyed by the
self-energy path operator. It is shown that the GKM
theory, which can be described as a renormalized
QCA is analytic. For the random case (g = I) all of
the single-site self-consistent theories reduce to the
GKM, so this implies analyticity for these theories in

the random case. The inclusion of correlation makes
it difficult to prove anything conclusive in regard to
analyticity for the EMA, etc. , but the tight-binding
results suggest that the EMA is more accurate than
the GKM while remaining analytic for not-too-large
packing fractions. It would certainly be desirable to
combine the analytic property of the GKM with the
accuracy of the EMA, but so far we have not found a
way to do this. Meanwhile, we must rely on experi-
ence in actual calculations.

FIG. 1. Width function vs k for hard-sphere Percus-

Yevick PDF, with Hopping integral H(R) = H&e ""[1
1+ XR +
3

(A.R) ] with A. =4.8, and hard-sphere packing frac-

tion q =0.45, in units for which the hard-sphere diameter
cr = 1. (a) Comparing several theories; (b) showing modifi-

cations of GKM in which H (R) H (R).
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