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Elastic properties of a metallic glass relative to the crystal
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The elastic properties of a metallic glass have been calculated in a tight-binding model for the attractive part of the
energy and a Born-Mayer-type potential for the repulsive one, and have been compared t'o those of the crystalline
phase. The bulk modulus at 0 K is shown to be similar in both phases, but decreases more rapidly with temperature
in the glassy state. The Debye frequency is reduced by a factor of 10 to 20% in the glassy state due to the disorder,
i.e., the occurrence of soft modes. This also induces a large decrease in the shear modulus. Both effects are in
agreement with the existing experimental results,

I. INTRODUCTION

Very few experiments exist on the elastic proper-
ties of amorphous transition metals. However,
interest in them is rapidly growing due to their
properties. %e are interested in setting up a
theoretical model in order to explain or predict
some trends in their properties.

As we have not discussed the effect of mag-
netism on the elastic constant, the materials of
most interest for us will be Pd-rich Pd-based
alloys Pd-Si or Pd-Si-Au, Pd-Si-Cu which have
been rather well studied and reported in the lit-
erature. %e sum up here the main experimental
results. "

It is observed that the extrapolated bulk modulus
at T =0 is a little smaller, or the same as in the
crystalline state in these compounds, the de-
crease with temperature being probably a little
more pronounced for the amorphous state. How-
ever, results are very scarce. There are many
more data as far as the shear modulus or the
Young modulus are concerned. At zero tempera-
ture, the shear modulus is 30% smaller in the
amorphous state and the decrease with tempera-
ture is more pronounced. However, there is a
large discrepancy for the slope between different
experiments. The most reliable measurement
seems to be through acoustic measurement of
Golding et pl. ' For the Pd-Si-Cu glass, they also
measured a decrease of 15% of the Debye tempera-
ture. For all those materials, we notice that the
change of density is very small, a few percent.

Little theoretical work exists on the subject be-
cause the main effort up to now has been put on
modeling the structure and working out the elec-
tronic properties. However, %eaire et cl.' have
done a numerical calculation of the elastic con-
stants of amorphous metal using the approxima-
tion of pairwise central interatomic potentials
and models for the structure of the amorphous
state. Their main results are that while the bulk

modulus is not changed very much, the shear
modulus is considerably lower than that of the
crystal, on the order of 30%. However, pairwise
forces cannot describe bonding in transition
metals since the Cauchy relations are not obeyed;
but this result is valid in a more general model,
which we will show in this paper.

The crystalline transition metals have been
explained in a satisfactory way by using a tight-
binding approximation. ' ' Cohesive properties, '
crystalline structure, ' elastic properties, ' and
surface properties' have been semiquantitatively
obtained in this simple model. This framework
has been also used to calculate the electronic den-
sity of states, resistivity data, and heat of fusion
of amorphous and liquid transition metals, such
as Ni and Co.' The aim of this paper is to show
that such a method can explain or predict elastic
properties of amorphous transition-metal-rich
alloys with P, Si, etc. %e will successively dis-
cuss the mean interatomic distance, the cohesive
energy, the elastic-constant bulk and shear modu-
lus, the Debye and Einstein frequencies, and the
behavior of the elastic constant with temperature.
Our main result is that there is little difference
between the crystalline and the amorphous mater-
ial except for the Debye frequency and the shear
modulus which are much smaller in the amorphous
state.

ll. MODEL

Many physical properties of transition metals
and alloys have been explained through a tight-
binding approximation, giving an attractive band
energy. ' Equilibrium is maintained by the ad-
dition of a repulsive-energy contribution due to
the repulsion between internal shells and the
compression of valence states due to orthogonaliza-
tion. Using this model, Ducastelle' has explained
the behavior of the elastic constants of crystalline
transition metals. 'The energy is thus written
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as the sum of two terms:

E„=C exp(- PR) . (2)

E =E~+ER.

E„ is the repulsive part represented by a Born-
Mayer potential

we then have

Z =-3 Wb (1 —4—t)
where ZF is given by the number of electrons per
atom

E~ is the d-band contribution to the cohesive
energy given by

=1+2 sin-1 EF + EF 1- EF
vr 2vb 2vb 2vb (6)

g~
E~ = En(E)dE,

where n(E) is the electronic density of states.
In the tight-binding approximation, the one-

electron Hamiltonian has the form H =T ++V„
where V, is the atomic potential centered at site
i. The site diagonal Green's function G«may be
developed as a continued fraction'

l.
E —a]0 —bgoF)

'

with

1
E-a

E —g„—bi2

where the g,„, b, „are related to the moments of
the density of states on the site i,

E"n& E dE.

G„(E)= i/(E —a„—b„F),
where

F = 1/(E —a- bF) .
In order to have purely analytical calculations,
we will consider that P =1, and thus we will take

and

a=

b = p, , —(p, ,)'.
(4)

Defining the zero of the energy such that a=0,

These moments can be evaluated by a simple
walk-counting technique"' for any type of lattice,
crystalline or disordered (liquid, amorphous).
Numerical calculations of these coefficients a and

b show that they converge to a limiting value much
more rapidly than the moments, the convergence
being quicker for an amorphous material. ' A

good approximation is thus to consider that at a
certain level, all the coefficients are identical,
i.e. , a,„=a and b,„=b for n&P for all i. This
permits us to sum the continued fraction and obtain

III. TOTAL ENERGY

The total energy is

( E2 3/2

Sw & 4b
(6)

with b given by Eqs. (4).and (7) and E~/b being a
constant independent of the distance 8„.fixed by
the number of electrons in the band [Eq. (6)].

For a crystal with a coordination number of Z,
the equilibrium condition which gives the inter-
atomic distance R, is

BE
R =Ro

E2 3/2
=0= —PZCe ~" +—0q 1 —— vZte '"'.

3m 4b

(9)
For an amorphous state, one has to average over
all the possible configurations, through the radial
distribution function g(R). The repulsive part
thus is written

E =—QCe "&& =C e ~"g(R)dR.1
R

g(R) being isotropic is a function of the average
interatomic distance 8„, and we can approximate
ER as

E =Z e &Roa
R a

where g, is the coordination number in the amor-
phous state. Using the same approximation for

The second moment can be easily expressed in
terms of the two-center nearest-neighbor hopping
integrals Pzj„,

1
t 2 6N~PXp]j

p7 being the number of atoms and P&~„=(ih. ~V, ~ jp)
=Pz„(Ri —RJ), X and p specifying the atomic de-
generacy and ~iX) a set of atomic orbitals centered
on the s ite i. As shown by Slater and Koster'
these hopping integrals can be expressed in terms
of the direction cosines of (H, —R, ). Moreover,
one can assume that their logarithmic derivatives
for the equilibrium-lattice distance R, are roughly
equal to minus three' so that we can write

~2 )2e-2a Rgy
1

(7)
N ]g

with qg, = 3 when t is an averaged overlap integral.
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E~, we obtain a similar equilibrium condition as
for the crystal where Z and A, are replaced,
respectively, by Z„and A„. The change in the
mean equilibrium distance for the amorphous state
is thus given by

1 5Z(P-q}6ft =-—.2Z' (10)

This leads with the usual values of pA0=9 and qA,
=3 (Ref. 6) to a very slight change of the average
interatomic distance

15Z'=——- —Vx10 '
12 Z

with 5Z/Z- —~ when going from the crystalline
to the amorphous state.

The variation of the total energy can also be
calculated in this model and we have

1~Z—= ———ACZ o

l.e. ,

—- —2x10 ' .

As expected 5E is & 0 and the amorphous state is
metastable. Let us also remark that the value ob-
tained here is in agreement with that obtained for
Co using a more sophisticated model. '

tV. ELASTIC CONSTANTS

Using the method of the preceding sections, the

energy of the distorted glass ean be calculated as
a function of strain and leads to the elastic con-
stants. The bulk modulus K is given by

1 82E
~ EK=-

2
= —9pq—.

With the set of parameters we have used, the bulk
modulus at zero temperature is not changed when

going to the amorphous state.

The change in bulk modulus between an amorphous
material and a crystal is thus

5K 5E
3

5A

In order to calculate the shear modulus, we con-
sider the change in the radial distribution function
under an orthorhombic distortion. If we do not
permit any rearrangement of atoms, this function
no longer has a spherical symmetry but now
possesses an elliptical one. If the distance in the
x direction is increased as A(1+e), in the y and z

direction it is decreased as A(l ——,'e). To second
order in the distortion, the energy is given as an
average over sites of the quantity

gR, 5R,

where j are the nearest neighbors of one given
site. In a glassy metal, we have to perform a con-
figuration average. For that, we consider that the
structural random network is made of an assembly
of icosahedral and cubo-octahedral units. The
shear modulus would thus be

u. = ——— (p —2q)
1 pq E,

12Z, p —q
(13)

with 5= 1. For an fcc lattice we calculate the
shear modulus

,'(C„C-„)= --~( Pq/(P q)](P &q)-~/It, .-

(14)
However, if the assumption of no internal rear-
rangement is justified for the bulk modulus, it is
likely to be entirely wrong for the shear modulus.
Indeed for the bulk modulus, we make a uniform
change of scale of the configuration and the atoms
remain in equilibrium. In a shear stress, this is
not true and atoms can relax towards a new position
of equilibrium. ' It is well known that in amorphous
materials there exist soft points and low-energy
phonons. This is seen for instance in the specific-
heat results. It means that under a shear stress,
some atoms will relax and partially anneal the
stress. Thus the energy needed for the distortion
will be reduced compared to the one previous cal-
culated. We show, after having calculated the
Debye and Einstein frequencies, how to estimate
this effect.

The Einstein frequency is obtained from the en-
ergy required to displace an atom from equilib-
rium with no movement of neighboring atoms.

The second-order change in energy when moving
one atom's position by &A, its first-nearest neigh-
bor j being fixed, is



22 ELASTIC PROPERTIES OF A METALLIC GLASS RELATIVE. . . 2747

Setting 8& the angle between R,. and 6R, and averag-
ing over the radial distribution function to get an
average of the Einstein frequency, we have

~, =(1/m' ')[ZCe- "np(p -2q)]' ', (15)

where cy is the average of cos'8~.
In an fcc crystal, this value does not depend on

the direction of vibration of the considered atoms
and at. = —,'. In an amorphous metal, we get also a
value of —,

'
by averaging over a sphere. The change

of the average Einstein frequency between an
amorphous and a crystaBine state is then only
due to the corresponding change in g and R, cal-
culated in Sec. II, and is thus very small.

However, contrary to the crystalline fcc case,
the Einstein frequency will depend on the directions
of vibration and this will affect the Debye fre-
quency. If we distort from the cubic environment
of a given atom, we can decrease the value of e
for a particular direction. More precisely, if
around an atom there is distortion giving a local
charge of the interatomic distance of ~, we have
a decrease of hn, such that

hn/n = —2~/R .

6(d ~ BC' 2~
(dg) Q R

The Debye frequency will be lowered by a factor
of 10%%up in the amorphous state. This conclu-
sion is in agreement with results of Golding et al. '
on a Pd»Si»Cu, glass which shows a decrease of
15% in the Debye temperature and results on

Fe&imp- pg4~6
Coming back to the value of the shear modulus

in the amorphous state, we notice that the Debye
frequency is

where L, and 7 mean longitudinal and transverse.
The longitudinal sound velocity does not change
very much when passing from the amorphous
state to the crystal' and this is related to the
negligible variation of the bulk modulus. The
change of v~ is thus mainl. y due to the change in
the velocity of the transverse sound, so that

5(dD

CSEE,

(dD Sp

A reasonable estimation of the possible local dis-
tortion is bR/R-0. 05 to 0.1, so that the minimum
Einstein frequency for a site can be lowered by a
factor of 5/p compared to the average one.

Let us now emphasize that this effect will lower
the measured Debye frequency (d~. Indeed, if
s„(q) is the sound velocity in the q direction with
polarization X, we have the classical equation

The shear modulus is directly related to the
velocity of the transverse sound, as

and

(dD 1 5p
(d 2 P,

(16)

9 1 1 dQ
I&~)' pg I~~%)l' ' (16)

where p is the density. (d~ will thus be dominated
by the values of the minima of the sound velocity.
The order of magnitude of the sound velocity is
given by the Einstein frequency, as we have roughly

(dE = S7t/Rp .
In a glass, we can first assume that when vibra-
tions polarized along the x direction propagate,
all the atoms will oscillate along the x direction.
We could therefore use the average Einstein fre-
quency, in Eq. (16), 'and this is the equivalent of
our assumptions made above in the calculation of
the shear modulus. But this is not true, as they
will oscillate in the directions of easiest oscilla-
tion even if on a macroscopic scale the oscil-

'lation is along the x direction. We have thus
to use in Eq. (16) not the average Einstein fre-
quency but an average of the minimum values of
co~. The Debye frequency will then be smaller in
the amorphous state than in the crystal, and we
have

The decrease in the Debye frequency we have ob-
tained in the glassy state will thus lead to a large
decrease in the shear modulus of the order of 20
to 40%, in agreement with all the experimental
results. "

Finally, let us calculate the variation of the bulk
modulus with temperature. If we approximate the
thermal part of the free energy which is due to the
phonons by

E =3kT log(h&s/kT),

the change of the bulk modulus with temperature
is given by

K(T) =K(0)+3, (togk~, )„,.
kT

We get

P —q
Z(0) dT 3R, P -2q Z(0)

'

The change in the slope $ is given by

+-2 10 '
S R
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It is larger for the amorphous state than for the
crystalline state, i.e. , the bulk modulus of the
glass decreases more rapidly than for the crystal.

This explains the fact that the change is very
small at T =0, whereas at the crystallization point,
the fraction change can be important. '

*Laboratory associated with Universite Scientifique et
medicale de Grenoble.
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