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Theory of the low-temperature Seebeck coefficient in dilute alloys. II.The empty-core
pseudopotential calculation
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The Seebeck coefficient S in dilute alloys at low temperatures is calculated for an impurity scattering potential
derived from the empty-core pseudopotential. In the model considered here, free electrons are scattered by a random
array of fixed impurities and interact with longitudinal phonons. The electron-phonon correction to S in alkali-alkali
alloys is found to be positive if an impurity is heavier than a solvent and negative otherwise. In most other alloys
where the valence of the impurity and the solvent is different, the net electron-phonon enhancement ofS is found to
be numerically close to the usual mass-enhancement ratio, in accord with the results in the case of the screened
Coulomb potential.

I. INTRODUCTION

In previous papers" (which are referred to as I
and II) Ono and Taylor calculated the low-tem-
perature Seebeck coefficient S of dilute alloys in a
simple model in which free electrons interact
with fixed impurities and longitudinal Debye pho-
nons through the Frohlich Hamiltonian. The
screened Coulomb potential in the Thomas-Fermi
approximation was used as a model impurity po-
tential. The wave-number dependence of the
Fourier-transformed impurity potential yielded
an additional contribution to the Seebeck coef-
ficient besides contributions considered before by
Hasegawa, "Lyo, '~ and Vilenkin and Taylor. ' '
The electron-phonon enhancement of S was found
to be numerically close to the original suggestion
of Opsal, Thaler, and Bass,"who obtained the
enhancement factor 1 +y using Mott's formula, "
where -y is the energy derivative of the electron
self-energy correction. The inclusion of the
wave-number-dependent impurity potential in the
calculation of the thermoelectric coefficients was
discussed before by Meyer and Young, "Hase-
gawa, '4 and Vilenkin. "

For the screened Coulomb potential in the
Thomas-Fermi approximation, however, the case
where impurities have the same valence as the
solvent metal is meaningless, since the effect of
the impurity on the potential is only through the
valence difference 6Z. This can be easily seen
from the form of the impurity potential V»(x) in
the Thomas-Fermi (TF) approximation given by"

UrF (x) =- 5Ze' exp(- qr)/~,

where q is the Thomas-Fermi wave number de-
fined by Eq. (18) in Sec. III. Furthermore, in
this approximation the electron-phonon enhance-
ment of the Seebeck coefficient does not depend
on 5Z. One attempt to include this effect was per-

formed by Ono and Taylor" by using the extension
of the Thomas-Fermi approximation to the finite-
impurity concentration case due to Friedel. "
It was found that the enhancement correction was
reduced by as much as 50/p when 5Z is positive
and enhanced by as much as 20% when 5Z is nega. —

tive. Again, impurities of the same valence have
the same effects on the Seebeck coefficient for
this model potential. Therefore a more realistic
impurity potential should be considered when one
wants to compare theoretical results with experi-
ments.

In the present paper we use the empty-core
model of the pseudopotential proposed by Ash-
croft" to obtain a model impurity potential. Ash-
croft and I angreth" applied the empty-core
pseudopotential to a calculation of the compres-
sibility and the binding energy of simple metals
and found good agreement with experimentally
measured values not only for the alkalis but also
for polyvalent metals. Recently Harrison" used
this pseudopotential extensively in the discussion
of the nearly-free-electron features of simple
metals in his new textbook on properties of solids.
In a substitutional-impurity case, the Fourier-
transformed impurity potential can be expressed
by the difference of the pseudopotential form fac-
tors"'" of the impurity and the solvent metal.
Thus we can discuss the above-mentioned situa-
tions which were not amenable to treatment in the
Thomas-Fermi approximation of the screened
Coulomb interaction. We have found the follow-
ing: (i) In alkali metals when the core radius of
the impurity is larger than that of a solvent, the
electron-phonon enhancement correction a de-
fined by Eq. (14) in Sec. II is positive, while a is
negative otherwise. (ii) In dilute alloys of com-
binations of impurities and solvent metals with
5Z~0, the enhancement of the Seebeck coefficient
is of the order of 1 + @ (a is of the order of unity).
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This is in accord with the results of I and II.
In Sec. II we present a short discussion of a

method of calculating the Seebeck coefficient S,
while the formal empty-core pseudopotential
calculation of S is given in Sec. III. Results for
specific combinations of solvent metals and im-
purities are given in Sec. IV and a summary is
given in Sec. V.

= U [2k'(1 —cos ())] = U(4k' sin'-,'8),

where 6 is the angle between k and k'.
The Seebeck coefficient S at low temperature

in dilute alloys can be expressed as"
(~(o) + ~h) + ~(o) )/&(o) T

(2)

Here Q(o) is the heat current density per unit

electric field" in the absence of the electron-
phonon interaction, P(') arises from the renorma-
lization of electron energy, velocity, and relaxa-
tion time due to electron-phonon interaction,
is the contribution from the electron-phonon im-
purity-vertex correction, and T is the tempera-
ture. The electric conductivity o" at the Fermi
surface is given by

o =n e'7 /me (4)

where n, =k~~/3&' is the electron density, e is the
charge of an electron (negative}, and m is the
electron mass. The Fermi wave number k~ and

II. EXPANSION FORMULA OF SEEBECK
COEFFICIENT S

In this section we give a brief account of a meth-
od of obtaining an expansion formula of the Seebeck
coefficient in dilute alloys at low temperatures
(for detail, see paper II). We consider a spheri-
cally symmetric impurity potential U(r). Then the
Fourier transform Uk& is real and depends only
on lk —k'I and can be written as

U„-„-.=U(lk-k'I')

P(y. }= dQ), lU)-, „-.l'(1 —cos 8) „-},1
4 ,- C~

k k'

(6)

where &k is the bare-electron energy given by
k'k'/2m. The quantities Q(o) and P(') are given
by

y(o =))'(keT}'o( (1 —)(,)/3e!(,
e"' = ye'"(2- ~)/(I —~,).

('r)

(6)

Here ~, is a parameter specifying the energy de-
pendence of the unperturbed total scattering
probability near the Fermi surface and is given
by

g = ( t"() )/t'(( )

and -z is the energy derivative of the electron
self-energy correction due to the electron-phonon
interaction:

y = 3C'k~/8M, . ()',p, q (IO)

Here C is the Sommerfeld-Wilson constant (in a
free-electron model C = —2p/3), while M, is the
ion mass, U, the longitudinal sound velocity, and
q„ the Debye radius (q' =sn'n, , n,. being ion densi-
ty). In a. free-electron model with Debye phonons,
y is simplified to

r =! (l&}'"/6M;+,

where Z is the valence of the solvent metal
(Z =n, /n, .).

On the other hand, Q(') can be expanded as a
double sum of the form

the Fermi energy p are related by p, =k'kr/2m.
The "bare"-electron relaxation time at the Fermi
surface, v", is given by

7'" = )(h '/[Nmk~to(p, )].
Here N is the impurity concentration and

1 —)(, ~o "n+1 (2n+1)!! ~o, " m!2 n+m+1 (2n+2m+1)!!

where the A„are coefficients of expansion of lU(, ),
12 from the backward-scattering limit in powers of

cos'-'0 —,and $' =(q /2k~)' =(4Z) ' '.
Finally the Seebeck coefficient can be written as

S = (eLoT/p, )(1 —g)(1 +ar)

with

(y(1) + g(2))/yp(o)

I - )( ( ~) ~ +I (2 +1}!!

(13)

(2m —3}!! 1 (2n +2m)!!
m!2 n+m+1 (2n+2m+1)!!

/
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where L, is the Lorenz number &2k~/3e2, and use
is made of Eqs. (7), (8), and (12).

III. EMPTY-CORE PSEUDOPOTENTIAL
CALCULATIGN

In this section we use the empty-cbre pseudo-
potential proposed by Ashcroft" as a model im-
purity potential. In a substitutional-impurity
case, the scattering potential Ukk can be writ-
ten as""

S $

kk' ( kk' kk')/~i i

S
wh r +k k' and ~k k' are respectively, the
pseudopotential form factor of the solvent atom
and of the impurity and are given by"

4/2 /(4/2 +q2) a2/(n2 +P2)

Q( ) 3 [cos& —(Z /Z)cos(a x/n)]
(X2+P2}'

The expansion coefficients A„are given by

AD=1,

Ay 25 +Bg

A, =35'+25B, +—C, ,

A, =45'+35'B, +~3 (45+1)C, —~24 C2,

A, =554+453B, +~ (485'+165+5)C,

(22)

(23)

(24)

4&Ze'
kk'— n.

~s 4pZ'e
kk' =-

cos(lk- k'lr, }
(Ik -k'I'+q')

cos(lk —k'Ir', )
(Ik-k'I'+q') '

(16)

(17)

23 (85 +3}C2 xsa C3

A, =65' +55'B, + ~~22 (1285'+485'+205 +7)C,

q = (62n e2/ji}'+ = (4e,2l2zm/)(k 2)'@ (18)

Here Z' is the valence of the impurity, r, (r', ) is
the core radius of the solvent (impurity) atom for
the empty-core model, and 0, is the atomic vol-
ume (Qo =n,. '}. The quantity q is the screening
parameter which is given in the Thomas-Fermi
approximation by

~ ~ ~

—~|23 (165'+85+3)C, —~~(25+1}C,+,~'~2 C4,

where

C~ =B~+Ba -B2,
C2 =»iB.+Be

C~ =4B(B~—3B~ —B4,

C4 —-10B2B~+5B~B4 +2B5,

(26)

In the calculation of ~, and A„ the magnitudes of
k and k' can be put equal to k~. Then Ukk can be
written as and

e ~ ~

Ukks =U(4k2r sin'-'8)

4ne2Zx2
n' sin'-,' e+P2

x
~

sos(o sin —,S) ——oos(o' sin-, o)),

where n, n', and P are dimensionless parameters
defined by

B, =[n sinn —(Z'/Z)n' sinn']/[cosa —(Z'/Z}cosn'],

B,=[a'cosa- (Z'/Z)n" cosa']/[cosa
—(Z'/Z) cos a'],

B,=[n' sinn —(Z'/Z)n" sinn']/[coen
—(Z'/Z) cos n'],

B, =[n' cosa —(Z'/Z}n" cosa']/[cosa
—(Z'/Z) cosa'],

n =2kz+c

O.
' =2kz&cp

P =qr.

Then ~, is given by

Q = —,'5' [cosa —(Z'/Z) cos a']2/&(n) —2,

(20)

(21)

B, = [a' s in n —(Z'/Z) n" sinn']/[cos n

—(Z'/Z) cos a'],
~ 2 ~ ~ (26)

We note that the first term of each coefficient A„
is equal to that of the screened Coulomb potential
in the Thomas-Fermi approximation.

The electron-phonon enhancement correction a
can now be expressed explicitly in an expansion
form as
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a = (-2/ + ~8 (2 +/}(1 —45 —2B,}p+ ~~~ (2+/}[1 +85 —245'+4B, (1 —45}—2C, ]p1—
+ ~~40 (2 +A, ) [1 +45 +245' —645'+2B, (1 +85 —2452) —85C, +-', C2]$6

+ „'7, (2 + Q )[5 +165 +485' +2565' —64054 +8B, (1 +45 +2452 —645')

+2C, (1 —485') +~ C, (1 + 85) +—;C,]$'

+ 4g58 (2 +g)[V +205 +485 +1285 +6405 15365

+2B,(6+165+485'+2565' —6405') +4C, (1 +25 —645')

+,'-C, (1+85+485')+fC, (1 +45)+~5C~])' + (2'1)

For 0.2/g accuracy, terms of order $'0 are suf-
ficient even for small values of Z.

IV. RESULTS

For an explicit evaluation of a we have to specify
solvent metals and impurities. The relevant pa-
rameters for metals in a free-electron theory,
k„, x„q, and 5, are tabulated in Table I. Val-
ues of the core radius for the empty-core model
of the pseudopotential r, are given by Harrison, "
and values of the Fermi wave number k~ are taken
from Ashcroft and Mermin. "

First we discuss the case where the valence of
the impurities is equal to that of the solvent atom
(Z =Z' case), since it was not possible to discuss
this case for a screened Coulomb potential in the
Thomas-Fermi approximation where the potential
Ur„(x) for the substitutional-impurity case was
given by Eq. (1):

Ur„(r) =- 5Ze'exp(- qr )/x,

where 5Z is the difference of valence between the
impurity and the solvent atom and p is the screen-
ing parameter defined by Eq. (18}. As discussed

TABLE I. Values of Z, kz, r„q, and 6 for metals
in free-electron model.

I

in I and II, there was no scattering due to im-
purity in this model if 5Z =0. This, however, is
not the case in real metals, and using the empty-
core model of the pseudopotential as a model im-
purity potential, we can discuss the following
cases with Z=Z: (i) alkali metals, (ii) alkaline-
earth metals, and (iii) trivalent metals.

(i) Alkali metals. The electron-phonon enhance-
ment correction a of the Seebeck coefficient for
the alkali-alkali case is given in Table II together
with g. From this table we observe the following
rules: (a) The enhancement correction a is posi-
tive when the core radius of the impurity &', is
larger than that of the solvent atom x, (or when
the impurity is heavier than the solvent in the alkali
case), while a is negative when x', is smaller than

(b) The enhancement correction a is very
small when r', is very close to ~,. The second
rule is due to the fact that the impurity potential
is very small for ~', =r„so that electrons are
not scattered very much at the impurity site. We
also note that the parameter &„which specifies

TABLE II. Values of y, A«, a, and 1+ay for alkali-
alkali alloys.

Solvent atom y Impurity A.
«

Li
Na
K
Rb
Cs
Be
Mg
Ca
Sr
Al
Ga
In

1
1
1
1
1
2

2
2
3
3
3

1.12
0.92
0.75
0.70
0.65
1.94
1.36
1.11
1.02
1.75
1.66
1.51

0.92
0.96
1.20
1.38
1.55
0.58
0.74
0.90
1.14
0.61
0.59
0.63

1.642
1.488
1.343
1.298
1.251
2.161
1.809
1.634
1.567
2.052
1.998
1.906

k~ rca b
q

Metals & (10 cm ') (10 cm) (10 cm «)

0.651
0.605
0.555
0.538
0.519
0.763
0.693
0.648
0.629
0.744
0.734
0.715

K

0.175

0 173

0.163

0.106'

Li
K
Rb
Cs
Li
Na
Rb
Cs
Li
Na
K
Cs
Li
Na
K
Rb

0.134
-0.179
-0.427
-0.694

0.351
0.325

-0.026
-0.207

0.348
0.324
0.159

-0.155
0.370
0.349
0.204
0.071

-0.230
0.235
0.467
0.648

-0.816
-0.727

0.033
0.259

-0.810
-0.730
-0.295

0.198
-0.894
-0.818
-0.398
-0.127

0.960
1.041
1.082
1.113
0.859
0.874
1.006
1.045
0.868
0.881
0.952
1.032
0.905
0.913
0.958
0.987

Reference 22.
Reference 19. The value of v~ is taken from Ref. 23.



22 THEORY OF THE I OW-TEMPERATURE SEEBECK.. . . II. 2735

Solvent atom y Impurity

0.154

0.1418

0.145b

Mg
ea
Sr
Be
Ca
Sr
Be
Mg
Sr

-1.298
-1.781
-1.837
-0.100
-0.656
-1.218

0.118
-0.046
-0.647

1.008
1.189
1.333
0.157
0.689
0.978

-0.233
0.070
0.677

~ The values of v~ are taken from Ref. 25.
The value of v~ is taken from Ref. 23.

TABLE III. Values of y, &&, a, and 1+ay for
alkaline-earth metal -alkaline-earth-metal alloys.

1.155
1.183
1.205
1.022
1.097
1.138
0.966
1.010
1.098

the impurity and the solvent atom differs (Z&Z').
It is found that the electron-phonon enhancement
correction a does not depend much on the dif-
ference of the core radius and a is of order unity
(between 0.8 and 1.3). This is in accord with the
result obtained in I and II in the screened Coulomb
interaction.

V. SUMMARY

The purpose of this paper has been to extend the
calculation of the Seebeck coefficient S in alloys
at low temperatures given in I and II to include a
more realistic impurity potential than the screened
Coulomb potential in the Thomas-Fermi approxi-
mation. The empty-core model of the pseudo-

TABLE IV. Values of y, X&, a, and 1+ay for
trivalent metal-trivalent metal alloys.

Solvent atom Impurity 1+a/

In

0.204

0.176'

Ga
In
Al
Ga

-0.545 0.637 1.130
-0.640 0.706 1.14'4

-0.215 0 -316 1.056
-0.182 0.274 1.048

The value of v is taken from Ref. 24.
b The value of v, is taken from Ref. 23.

the energy dependence of the unperturbed total-
scattering probability, is very small for r', =r,.
Thus in this case the Seebeck coefficient S is
very close to the free-electron value.

(ii) Alkaline earth m-etals In Ta. ble III the
electron-phonon enhancement correction a is
given together with ~, . From the table we find
that rule (a) found in alkalis applies only for light
solvent atoms. For heavier atoms, a is reduced
and very small but not necessarily negative for
r', Sr,.

(iii) Trivalent metals. Table IV is for com-
binations of Al, Ga, and In. The rules found for
alkalis do not seem to apply, and the values of a
depend only on the solvent atoms and not very
much on the impurity.

In conclusion, for the Z =Z' case the electron-
phonon enhancement correction a depends on the
core-radius difference of an impurity and a sol-
vent atom. If r', =r„a is reduced very much.
Also a is negative if r', &r, in most cases.

For specific evaluation of the correction factor
we need values of Z, defined by Eg. (11). With

appropriate values of the ionic mass" M,. and the
longitudinal sound velocity" "v„we are able
to list the values of y and the net electron-phonon
enhancement of the Seebeck coefficient, 1+ay,
in Tables H-IV.

Next we discuss the case where the valence of

potential proposed by Ashcroft" has been used to
obtain a model impurity potential. We have con-
sidered a simple model of fixed impurities and
longitudinal Debye phonons interacting with free
electrons. The main results are summarized as
follows. (i) Z =Z' case (Z and Z' are valences
of the solvent atom and the impurity, respec-
tively): If the core radius of the impurity r', is
larger than that of the solvent, r„ the electron-
phonon enhancement correction a, defined by Eq.
(14), is positive (enhancement), while a is nega-
tive in the opposite case (decrease of S). In alka-
lis and light alkaline-earth metals, which can be.
described by a free-electron model, this rule
applies. When r,=r'„a is substantially re-
duced because the electrons are not scattered
very much by substitutional impurities. (ii)
Z &Z' case: In dilute alloys in this combination
of impurity and solvent, the enhancement of the
Seebeck coefficient S due to the electron-phonon
interaction is found to be of the order of 1+y,
where -y is the energy derivative of the electron
self-energy correction, but differs from one im-
purity to another. This is in accord with the re-
sults of Opsal et al."

At this point we compare our results with ex-
periments of Guenault and MacDonald. ""They
measured the thermoelectric power (the Seebeck
coefficient) S in alkali alloys and found that S of
potassium is positive for sodium impurities and
negative for rubidium and cesium impurities.
From Table II we find that for the KNa case the
enhancement correction a is negative and g is
positive and consequently the overall magnitude
of S is decreased, although the sign of S does not
change. [We note that S in a free-electron model
is negative, since e is negative; see Eq. (13).]
On the other hand, for KRb and KCs the magnitude
of S is increased. This trend is in accord with the
experiments. In order to understand the sign
change of S due to impurities in alkali alloys~'
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and tin alloys, "we should include the virtual-
recoil effects considered by Nielsen and Tay-
lor."" These phenomena were discussed by
Krempasky and Schmid~ using the formalism of
Holstein, "but their calculations invoked some
assumptions, including that of electron-hole sym-
metry, that make it inappropriate for comparison
with the present work.

Various aspects of the problems of thermo-
electricity in alloys have been omitted from this
discussion. These include the effects of umklapp
scattering and anisotropies of electron and phonon-
dispersion relations. For example, the value of
y of Al in a free-electron theory is smaller than
that obtained in experiments. " This discrepancy

may be due to the umklapp process. Also the
Frohlich Hamiltonian considered here does not
include any virtual-recoil effects mentioned above.
A more complete treatment in which such effects
are treated remains a goal to be reached.
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