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We report the results of a linearized augmented-plane-wave calculation of the electronic structure of fcc La at
three lattice constants corresponding to ambient pressure, 50, and 120 kbars. The Kohn-Sham-Gaspar
approximation for exchange and correlation is used and the potential is allowed a fully non-muffin-tin form. The f
bands lie -2—2.5 eV above the Fermi level and are -1 eV wide, resulting in a very small (0.05 electrons) localized f
occupation. Under pressure the f bands rise and broaden appreciably, resulting in only a slight increase in f
occupation. The rigid-muffin-tin approximation for the electron-phonon interaction 2, overestimates the
superconducting transition temperature T, by 40/o, but we find that the drastic increase in T, under pressure can
be attributed primarily to changes in the electronic stiffness g. Structural transitions which occur at 25 and 53
kbars may be related to changes in Fermi-surface topology which we find to occur approximately at these pressures.

I, INTRODUCTION

The observation in lanthanum of a high super-
conducting transition temperature T, and its large
pressure derivative dT,/dP has led to wide specu-
lation that a pairing mechanism involving f elec-
trons is responsible. Under pressure, T, rises
sharply from 6 K at ambient pressure and satu-
rates at a value of nearly 13 K around 200 kbars,
as shown in Fig. 1. Two separate questions arise:
(i) Shy is La a high- T, superconductor at all,
since the isoelectronic elements Sc and Y are not
good superconductors? (ii) '&ghat is the cause of
the large pressure derivative, dT,/dP 1K/10—
kbar, which is among the largest known for super-
conduc tors?

From Fig. 1, the slope d T,/dP is seen to show
structure at 25 and 53 kbars. In addition, Balster
and Wittig' have measured a concomitant anomaly
in the low-temperature electrical resistivity at 53
kbar. As La is known~ to be fcc at room tempera-
ture in a wide pressure range around 53 kbar, they
have proposed that these anomalies arise from an
isostructural (fcc fcc) phase transition which
terminates at a critical point below room tempera-
ture Especia. lly considering the decrease in d T,/
dP by a factor of 4 (Ref. 1) at this transition, this
revives questions concerning the complex inter-
relation of lattice instability, phonon softening,
and high- temperature superconductivity.

The superconductivity of La was attributed by
'Kondo~ and many others~ ~ to f-electron mecha-

nisms of various kinds, with the large pressure
derivative of T, resulting from variation with
pressure of the energy of the f state. The explana-
tion in terms of f-electron states lying above, but
very close to, the Fermi level E~ was also sup-
ported by other peculiarities observed in La. The
temperature dependence of the magnetic sus-
ceptibility6 was interpreted to be due to an ef-
fective localized moment of one-half Bohr mag-
neton, and the Knight shift, also normally tem-
perature independent, was found' to increase by
20% in cooling from room temperature to 1.5 K.
The linear specific-heat coefficient was found to
be very large and the thermal-expansion coeffi-
cient~ was found to be negative in certain tempera-
ture regions. These phenomena all seemed to
suggest the occurrence of significant 4f electron-
character in La, and it has been argued" that
La must be a "4f-band" metal. In addition, the
low melting point of La had led Matthias et al." to
postulate an f lee tcr nocon-centration of 0.7 elec-
trons/atom.

However, the development of reliable tunnel
junctions led to the unambiguous assignment of La
as a relatively strong-coupling d-electron super-
conductor, ~~ ~5 with electron-phonon coupling con-
stant ) = 0.8—0.9. While this partially accounts for
the large electronic specific heat, which is en-
hanced by the factor (1 + X), it still leaves the
possibility that the pressure enhancement of T,
is related to f character in the electronic struc-
ture. Ratto, Coqblin, and Galleani have attributed
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FIG. 1. Superconducting transition temperature T~
versus pressure from Ref. 1 and references therein.
The dashed line merely interpolates smoothly between
the low- and high-pressure regimes.

the increase in T, to the "squeezing out" of local
f-electron character with its pair-breaking ten-
dency, as the f level rises under pressure.
Weling, ' on the other hand, has shown that if the
f level /ouers under pressure, the increased
polarizability arising from virtual excitations into
the f level softens the phonon spectrum and en-
hances T,. Thus the f enigma remains, and cen-
tral questions which must be addressed involve
the position and volume dependence of the f levels
ln La.

There has been relatively little theoretical effort
given to determining the electronic structure of
La. This is no doubt related to the scarcity of ex-
perimental data available for comparison, itself
a result of the two-phase (dhcp+fcc) nature of La
at low pressures and at room temperature and
below. Kmetko~7 reported a self-consistent non-
relativistic determination of f electron charg-e
reduction under pressure in fcc La using the
augmented-plane-wave (APW) method. Earlier,
Fleming et aE. and Myron and Liu ~ had presented
non-self-consistent relativistic APW (RAPW) re-
sults for the band structures and Fermi surfaces
of dhcp and fcc La, respectively. More recently,
Glotzel and Fritsche~' have studied the pressure
dependence of the electronic structure of fcc La
using a semirelativistic rigorous cellular method,
and Glotzel2' has reported ground-state properties
calculated self-consistently utilizing the linear-
muffin-tin-orbital (LMTO) method. Very recently,
Takeda and Kubler~2 have applied a self-consistent
form of the semirelativistic (SR) linearized APW
(LAPW) scheme in the atomic-sphere approxima-
tion (ASA) to fcc La.

In this paper, we describe the results of a self-
consistent (SC) reLativistic LAPW study of the
band structure of fcc La at three values of the

lattice constant. The method is described in Sec.
II. An important feature of this approach,
especially in view of the care which is necessary
when treating f states, is that few restrictions
(i.e. , constraints) are built in; for example, the
charge density and the resulting self-consistent
potential are allowed a general (i.e. , non-muffin-
tin) form, and important relativistic effects are
included either exactly (mass-velocity and Darwin
terms) or nonperturbatively (spin-orbit interac-
tion).

The main features of the electronic structure of
La under pressure, including the self-consistent
charge density and character of the d and f states,
are presented and discussed in some detail in
Sec. III. The localized f-electron charge is found
to be -0.05 electrons and to increase somewhat
under pressure, despite the fact that the center of
the f bands, which lies 2.5—3 eV above E~, in-
creases with pressure. This increase in f-elec-
tron charge is due to increased hybridization as
the bands (sP, d, and f) broaden under pressure.

The band-structure results of Sec. QI are used
in Sec. IV to interpret the 25-kbars phase transi-
tion" and the 53-kbars phase transition which oc-
curs at low temperature. The theoretically ob-
served behavior of the bands under pressure strong-
ly suggests a Lifshitz-Dagens ' structural in-
stability due to a strongly d fhybridize-d band
crossing Ez in both pressure ranges. In Sec. V it
is shown that the rigid-muffin-tin approximation
(RMTA) for the electron-phonon matrix element
accounts for the magnitude and, most likely, the
pressure enhancement of T„although the RMTA
itself is less justifiable here (because of the ex-
panded d function) than in the later transition ele-
ments where it has been applied with more suc-
cess. The generalized susceptibility, and espe-
cially its implications for phonon anomalies and
structural stability, is examined in Sec. VI. We
conclude in Sec. VII with a discussion of the
present theoretical understanding of La.

II. METHOD OF CALCULATION

Since detailed discussions of our calculational
procedures have been given elsewhere, '~" only
a descriptive review will be presented here. This
will serve to orient the reader as well as to pro-
vide a basis for discussing discrepancies between
the present results and those obtained previously
by other means. The discussion is separated into
three parts: (i) the secular equati. on and its solu-
tion, (ii) the determination of the charge density
and resulting screening potential necessary for the
self-consistency loop, and (iii) the treatment of
the spin-orbit interaction at the final step.
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A. The secular equation

Ideally one would like to solve the Dirac equation
for a relativistic electron in a periodic potential V.
The basis set (C j: is constructed in the usual APW
dual representation, as plane waves outside non-

overlapping spheres of radius R and as solutions
of a spherically .averaged potential inside the
spheres. This results in coupled first-order dif-
ferential equations for the radial functions g„, f„,
in terms of which the basis APW is given by2~ (in
standard notation)

P (kbars) 2W2
'

E)~g Eg

10.0348 0
9.4760 -50
9.0340 —120

3.4924 3.5490 0.400 0.550 0.423
3.2808 3.3502 0.600 0.900 0 ' 522
3.1799 3.1940 0.750 1.100 0.601

TABLE I. Input parameters for LAP% calculations for
La at three lattice constants (a): approximate corres-
ponding pressure (P), muffin-tin-sphere radius (g),
maximum possible sphere radius a/242, and the energies
E& about which the basis AP%'s are linearized. Dis-
tances are in atomic units and energies are in rydbergs.
The Fermi energy Ez is included as a reference of en-
ergy for E

Here K, p, are the relativistic quantum numbers
for the central field problem, and g(f) is the radial
function describing the large (small) component.
For each value of the nonrelativistic orbital quan-
tum number l, there are two values of K corre-
sponding to total angular momentum j =l +,'- and

j =l —-'.
Koelling and Harmonize have shown that in many

cases it is desirable to retain spin as a good"
quantum number, both for computational and
physical reasons. This can be done by forming
a j-weighted average g» for a given l, of the
radial solutions g„, and subsequently dropping a
&-dependent term in the differential equation for
g„which corresponds to spin- orbit coupling. In
effect this reduces the solution of the radial prob-
lem to the simplicity of the corresponding non-

relativistic problem while including the important
Darwin and mass-velocity corrections. The spin-
orbit interaction, in addition to being generally
smaller, serves primarily to split degenerate
states (or states of similar l character) at points,
or along lines, of high symmetry. The spin-orbit
corrections are often negligible; for La, however,
they have been included in a final variational pro-
cedure, described in Sec. IIC below.

The energy-dependent secular equation is
linearized following Koelling and Arbman. ~' The
radial solution g, (E) is replaced by a linear com-
bination of the solution g, (E,) at a, fixed energy E,
a.nd the energy derivative g, (E,), also evaluated at
Eg The linear combination is f ixed by requiring
both the basis function and its derivative to be
continuous across the sphere boundary. The re-
sulting technique has been found to be quite ac-
curate (see below) over a range of several tenths
of a Rydberg around E=E,. In Table I the input

parameters for the calculations for La are pre-
sented.

The periodic potential V(r) is restricted only to
have'a form consistent with the symmetry of the
crystal. For La, it is expanded in the unit cell

at the origin in the dual representation

V(r) = (

y- e'K'' r) RK

V)(r)K)(r), r & R.
(2)

B, Construction of the general potential

The charge density p is expanded in a straight-

Here K, denotes the Kubic harmonics of full cubic
(I'&) symmetry, and only the f =0, 4, and 6 har-
monics are retained. Higher-l harmonics are ex-
pected to give negligible corrections. The
Fourier expansion in the interstitial region is
carried to far more reciprocal-lattice (K) stars
(90) than is actually necessary for convergence.
Using these criteria, the truncation of these
representations leads to a maximum discontinuity
in V at the sphere radius of 5 mRy for La. For
any practical purpose this representation of the
potential can be considered to be unrestricted.

The crystal eigenfunctions are expanded as a
linear combination of the basis LAPW's, with the
coefficients determined variationally. In addition
to the usual kinetic-energy and spherical potential-
energy matrix elements, it is necessary to cal-
culate the matrix elements of warping and non-

spherical terms in the potential in Eq. (2). The
procedure is straightforward and has been de-
scribed elsewhere. ~~

It only remains to fix the number of basis func-
tions to be used in the secular equation. This is
done separately for each k' point by including all
LAPW's corresponding to the condition ~k+ K(
& K . To get reasonable convergence of the f
bands (see below) we find RK =8 to be a useful
criterion, corresponding to -55 LAP%'s. For
RK „~9 (corresponding to 70-80 LAPW's) ap-
proximate linear dependence of the basis set can
sometimes lead to numerical difficulties in the
Choleskii decomposition of the overlap matrix.
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forward manner in a dual representation in paral-
lel with the potential and the basis functions,
again retaining l =0, 4, and 6 Kubic harmonic
terms inside the sphere. This charge density is
used to construct the screening potential, con-
sisting of the electrostatic potential which satis-
fies Poisson's equation and an exchange-correla-
tion potential in the local density approximation.
All the results described here were obtained using
the Kohn-Sham-Gasper (n = —',) p'~' approximation,
with no explicit additional correlation correction.
Using a correlation potential corresponding to a
(perhaps density dependent) n greater than —', would
lead to slightly more localized f states (but see
Sec. VII).

The grid of 4' points used to calculate p in the
first -12 iterations consisted of equally weighted
points at the center of mass 16 equal-volume
tetrahedra in the irreducible Brillouin zone (IBZ).
For the final -6—8 iterations to self-consistency,
each tetrahedron was subdivided into eight equal-
volume tetrahedra. The centers of mass of these
(128 equally weighted) tetrahedra made up the
final k-point grid. None of these points lie on
symmetry directions so the possible problem of
degenerate states as E~ never arises.

tivistic eigenstates and eigenvalues.
The advantage of this procedure is that spin is

retained as a good quantum number as long as
possible. This is preferable physically, of course,
but also is computationally very desirable, since
it is only necessary to handle a 2M& 2M complex
matrix in the final stage rather than a 2N ~ 2N
(120 x 120 in this case) complex matrix throughout
the SC procedure.

This scheme has been found to be very accurate
for determining eigenvalues in La and Ce (Ref. 30)
as well as in transition metals. The primary re-
striction seems to be that the resulting relativistic
eigenfunctions are required for a given l to have
the same radial dependence for j=la; i.e. , there
is only one radial function g, for each l rather than
the two functions g„ from the full relativistic treat-
ment. This restriction may be more serious in
very heavy elements. 2

To include the SO interaction in the LAP%
method it is necessary to evaluate the quantities '

(3a)

(3b)

C. Spin-orbit interaction

The spin-orbit (SQ) interaction was ignored (as
described in Sec. II A) in the iterations to self-
consistency. This is a reasonable approximation
in most systems since the effect of SO corrections
is primarily to split degeneracies along symmetry
lines rather than to cause a net shift of states to
higher or lower energy. In addition, in La the SO
corrections are rather small, as will be discussed
below.

The observation that the SO interaction only
splits degeneracies suggests an approach in which
SO is treated in a separate variation within a sub-
set of bands, which in practice will consist of
only the bands in the energy region of interest
(near Ez). This method has been discussed in
detail elsewhere so only a descriptive review
will be given here.

Suppose the N ~ N secular equation described in
See. IIA has been solved for the lowest M eigen-
states (M& N) —a common numerical practice to
save computational time when all eigenstates are
not desired. For I,a, the region of interest in-
cludes s (1), d (5), f (7), and perhaps P (3) bands
so that M=15. (Recall that N ~ 60 has been used
for the secular equation. ) Within this M subspace,
the SO matrix elements are evaluated and the ef-
fective Hamiltonian is rediagonalized, yielding
approximate (but usually excellent) fully rela-

(3c)

which provide the magnitude of the SO interaction
(i(&):

( (E) =('+2(E —Ei)li+ (&- Ei)'(i.
In Eq. (3), d V/dz is the radial derivative of the
spherical part of the potential and 2M=-2m
+ (E, —V)/c2. The resulting values for La at
three lattice constants are given in Table II up to
I =3; for higher l, the gt are less than 5 x 10 6

The /=1 SQ parameter is large (-55 mRy) but
enters into eigenvalues in the region of interest

l =1 ap

ag
a2

48.6
59.5
65.9

-9.2
-8.7
-8.6

1.7
1.3
1.1

51.0
66.3
74.8

l=2 ap
ag
a2

2.7
3.4
3.9

2.0
2.0
2.1

1.5
1.2
1.1

2.6
3.1
3.3

l =3 a()

ag
a2

1.5
2.1
2.5

3.2
3.3
3.1

6.9
5.3
3.9

1.4
1.6
1.7

TABLE II. Values of the spin-orbit parameters defined
in Zq. (3). The three lattice constants are ap =10,0378,
a f 9 4760, a2 = 9 ~ 0340 a.u.

(mRy) ~t ~i~mRy ') &i~Ex) (mRy)
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with negligible weight because the wave functions
have very little P character. The I = 2, 3 SO pa-
rameters are much smaller than the 20-mRy value
estimated by Takeda and Kubler. Note that the
spin-orbit parameter at the Fermi energy in-
creases with pressure. This is consistent with
the electron spending a greater time near the nu-

cleus as the volume is reduced.

Q4-

P.2-

LANTHANUM: SPIN ORBIT INCLUDED

, 2

I-2

III. RESULTS

Self-consistent calculations have been carried
out for lattice constants of 10.0378, 9.4760, and
9.0340 a.u. At room temperature these values
correspond approximately to ambient (0), 50, and
120 kbar pressure, ~ respectively. Although low-
temperature data of lattice constant versus pres-
sure are not available, the zero-pressure thermal-
expansion coefficient' suggests pressure dif-

ferencess

between 0 and 300 K of only -2 kbars. In
the following, the various results obtained at the
three lattice constants will be discussed concur-
rently.

A. Band structure

O.4-

P -50 k(ars

0.5~—=~

r

4

2:
LJJ

I

p
W

I-

)p
t

[-2

K X

The band structures of La along symmetry direc-
tions for the three lattice constants are shown in

Fig. 2. The spin-orbit interaction has been in-
cluded in the eigenvalues plotted here to provide a
realistic indication of the size and importance of
SO corrections. However, since the SO effects are
rather small, it is more transparent physically to
present the discussion in terms of the corre-
sponding band structures before introducing the
SO interaction. This also facilitates comparison
with other calculations which neglect SO effects.

Consider first the ambient-pressure band struc-
ture in Fig. 2(a). At the zone center, only the I'&

s-derived state lies below E~. At progressively
higher energies the eigenvalues are I'&. , I z5. ,
r„, r», and I',&. The I'z,. and I',z states arise
from atomic d states while I ~. , I'&„and I z, are
f states. Thus the d and f states are intertwined
at the zone center, and indeed throughout the zone,
as will become evident. Under applied pressure
the ordering of states at I' is unchanged.

In the fcc lattice, I" is a convenient point to use
in discussing relative d fcharacter and s-eparation
because the states are completely decoupled.
Another such point is the X point [(1,0, 0)2v/a],
while at other high-symmetry points the separa-
tion of d and f character is more ambiguous. In-

deed, for a certain volume surrounding the X
point the f bands are well separated from the
other hands, and, in addition, they are nearly
dispersionless there (Fig. 2). These observations
suggest the use of the E' and X points in char-

FIG. 2. Fully relativistic dispersion relations for fcc
La along symmetry lines for pressures of 0, 50, and

120 kbars from 180 first-principles points (i.e., no inter-
polation). Spin-orbit splittings are visible, e.g. , at T'.

The kinks" in the flat f bands arise from the lack of
complete convergence of these bands; the eigenvalues on
the high side of a kink are up to 4 mRy from conver-
gence.

acterizing the f-band center C& and width W&. We
take the extrema to define the bandwidth, e.g. ,
Wz(I') = &(I'2,) - E(I'2.). The band center Cz is
defined as the mean of the seven eigenvalues and
is measured relative to E~. The tehavior of &&

and 5& under pressure is given in Table III. The
center of the f band rises under pressure mono-
tonically, relative to E~, from 2.2 to 2.7 eV
[using the average of Cz(I') and C&(X)]. Sur-
prisingly, the band width W&(I') at I' nearly
doubles under pressure, from 1.15 to 2.05 eV,
while W&(X) remains essentially unchanged at the
value 0.55+ 0.05 eV. This paradox brings into
question the origin of the f bandwidth at various
points in the zone. At least three possible sources
arise: (i) intrinsic bandwidth, resulting from ff-
nearest- neighbor overlap, (ii) hybridization band-
width, induced in this case primarily by d fhy--
bridization, and (iii) crystal-field bandwidth,
arising from the cubic crystal field felt by the
localized f electrons. It is not clear a priori to
what extent (ii) and (ii'i) are independent. This
interesting problem will be discussed further in
Sec. VI.
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TABLE III. Variation with lattice constant g of the f-
and d-band center C and width W at the I and X points.
Both C and W are given in mHy and C is measured from
the Fermi level. To provide comparison the percentage
increase & under pressure is given in the last column. c IQ

I 1 I I

1 a, Encl. Spin Orbit

f bands

.0340

g(a.u.) = 10.0378 9.4670 9.0340 &(jp)

C,(l)
Cf(x)

W,(I')
Wy(X)

C„(I)
c„(x)
W„(I')
W„(X)

159
168

86
37

181
214

181
633

179
191

116
39

205
261

221
766

192
208

149
44

228
310

260
891

21
24

73
19

44
41

Cl

cn 1Q

EA
C
CLP

10

0 -2 -I EF I

ENERGY (eV)

f bands

9,4760

I

f bands

10.0378
1 1

2 3

Also listed in Table III are the center C~ and
width 5'„of the d bands as determined from the
I' and X points. The d-band center rises from
2.7 to 3.7 eP above E~ under pressure, using the
average of C~(I') and C~(X). The d bandwidth,
conventionally defined using the & point value
W~(X), increases from 8.6 to 12.1 eV, a change
by more than 40'%%uo. A particularly interesting fea-
ture is that, for the maximum pressure I'= 120
kbars considered here, the lowest d state (at X)
lies lower than the s state (I', ) at I'. Since the
occupied d-band region Ez E(X&) incre-ases from
2.0 to 3.0 eP under pressure while the occupied
s-band region decreases, we expect an s-to-d
shift of electrons under pressure which is con-
firmed by the partial density-of-states results
given below. Finally we note that band 2 along
the Z direction drops below E~ under pressure.
%e return to this important point in Sec. IV.

B. Density of states and charge density

The density of states N(E) at each of the three
lattice constants is shown in Fig. 3. The Fermi
level is found to lie near a peak arising from
primarily d-like states in band 2. The density-of-
states peak at a binding energy of 1.1 eP at am-
bient pressure is in good agreement with the 0.9
+ 0.2 eP value obtained from x-ray photoelectron-
emission spectroscopy. 3~ The huge peaks coming
from the f bands at E=2-3 eV lie far off the scale
of Fig. 5 and have not been shown. The dominant
effect of pressure on N(E) is the broadening of
the bands and the resulting decxease of N(E) in
most regions of energy. The density of states at
Ez, N(E~), decreases from 27.5 to 21.4 states/
Hy atom in the pressure range considered here
and should have measurable experimental con-
sequences, for example, in the specific heat and
susc eptibility.

FIG. 3. Total density-of-states curves for fcc La for
pressures (increasing upward) of 0, 50, and 120 kbars.
The huge peak at 2-3 eV due to the fbands goes far off
the scale and has not been shown.

To facilitate a more complete description of the
electronic structure of La, the angular-momen-
tum-projected partial density of states N, (E) in-
side the spheres was also computed through l =4.
The d and f components were also decomposed ac-
cording to cubic irreducible representations
(I"„,I'„.) and (I', , I'„, I'») for I = 2 and I =3,
respectively. The integral of the occupied partial
density of states gives in turn the amount of
charge Q, inside the sphere with a particular
angular momentum character. The "interstitial
density of states" can be defined as N„, (E)
= N(E) —Z, N, (E), and similarly for the interstitial
charge Q„,. These quantities have been listed in
Table p7. The density of states was calculated
with the tetrahedron method, using 1024 tetrahedra
in the IBZ. First-principles eigenvalues were
calculated at the vertices of each tetrahedron
(totaling 293 distinct points) and the energy was
interpolated linearly within the tetrahedron. This
procedure results in sufficiently accurate results
with modest computational effort and eliminates
uncertainties which arise from the use of Fourier-
series representations.

Both the charge and density of states are domi-
nated by d contributions, with the I'25 component
being roughly twice as large as the l', 2 component
in each case The pres. sure dependence of N, (E~)
is dominated by the band broadening and con-
comitant lowering of N, (E~) values as mentioned
above, with the exception of the f I'» component
which increases markedly. The pressure behavior
of the charge consists of a moderate shift of + and
P to d and f. The variations in the interstitial
charge given in Table p7 is a direct consequence
of the fact that the fraction of cell volume assigned
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TABLE IV. Angular-momentum-decomposed density of states at Ey, N~(Ez) and correspond-
ing electronic charges Q& within the APW sphere. "Int." denotes the interstitial contribution.
For d and f contributions the specific cubic irreducible representations are given. Lattice
constants 10.0378, 9.4760, 9.0340 are denoted by ao, a&, a2, respectively, NI(E~) is measured
in {stateslRyatomj and Q, is given in electrons. The values in parentheses are from non-
relativistic self-consistent APW calculations of Kmetko (Ref. 17); only total & =2, 3 values
were reported by Kmetko.

p d(I'~5 ) d(I'(2) f (I 2) f (r») f (r„) Int. Total

N (E ) ao 0.55 2.30 10.95 4.55 0.82 0.23 1.19 0.07 6.81 27.47
a~ 039 158 829 374 075 025 120 007 577 22 04
a2 055 122 702 428 085 034 2 03 009 499 2137

ao 0.41
(0.29)

a) 0.34
(0.23)

a2 0.29

0.15
(0.11)
0.12

(0.13)
0.10

0.99 0.55
(1.34)

1.01 0.56
(1.66)

1.06 0.61

0.03

0.04

0.05

0.02
(0.55)
0.02

(0.38)
0.03

0.05

0.07

0.10

0.00 0.80
(0.67)

0.01 0.83
(0.65)

0.01 0.75

3.00

3.00

3.00

to the interstitial region (or to the sphere) is dif-
ferent at each lattice constant (see Table I). From
Table Dr, we find that the amount of f electrons
increases from 0.10 to 0.18 under pressure. It
will be shown below that these values are a con-
siderable overestimate of any localized f charge
which may be present.

Figure 4(a) shows the self-consistent radial
densities 0'4 and o'6 for the P=O and 120 kbar lat-
tice constants, with o', =4&r p, (r) defining the
radial charge density. In the expansion of p inside
the sphere, p, is multiplied by K„shown in Fig.
4(b). It can be seen that the largest nonspherical
correction is a4, which is negative along the
second-neighbor direction [100] and positive along
[111]. It can be seen from the small-r behavior of

(0) R R

I i I

LANTHANUM CHARGE DENSlTY

(b)
{ooi)

K6' K

IO)

FIG. 4. The nonspherical radial charge densities (a)
for L =4, 6 at ambient pressure and 120 kbars. The cubic
harmonics for L, =4, 6 in the (110) plane (b) with shading
representing negative values.

a'4 that at ambient pressure there is an excess t2~

population which washes out with pressure. This
observation is consistent with the da. ta of Table
IV. There is no lobe of K4 directed toward the
nearest neighbor (NN) in the fcc lattice. The I =6
term, which arises almost entirely from f func-
tions, is negative along [110] at ambient pressure,
indicating no tendency to bond with NN atom. The
downturn in 06 near the sphere radius at 120 kbars
is an effect of overlapping atomic charge rather
than a tendency toward bonding. Both nonspherical-
corrections V4, V6 to the potential (not pictured)
are negligible for r & 2 a.u. but rise sharply at
larger radii, becoming 0.3 By (0.4 By) at the APW
sphere at 0 (120) kbars.

The effects of non-muffin-tin corrections to the
potential on the eigenvalues at I' and X (for a
=9.0340) are displayed in Table li. As expected,
the corrections arising from both nonspherical
and warping terms are small enough to be addi-
tive. Generally, the effects on localized states
(the f states and the nonbonding d states I'&2 at the
top of the d band) are in the range 0-3 mBy, with
the exception of I-mBy shift of the lowest f band
E'2.. The effects on the bonding d states at ~ are
as large as 22 mHy and are quite significant for
reproducing details in a self-consistent calculation
a.ccurately.

The behavior of the l = 2, 3 radial functions at
Ez is shown in Fig. 5. The d function is typical
of a bonding state at the bottom of the band and

peaks midway between NN atoms. The f function
is rather unusual. It does show a relative maxi-
mum at the position (r =0.75 a.u. ) where the 4f
function peaks in the rare-earth elements. How-

ever, since E~ is more than two bandwidths
below the center of the f bands, g3 at and below

Er is not strictly an atomiclike 4f radial function.
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TABLE V. Eigenvalues (in mHy) of La (a =9.0340) at
~ and X illustrating the effect of non-muffin-tin correc-
tions to the potential. For the muffin-tin calculation both
the warping terms VK and nonspherical terms V4 and V6
were set to zero. X(f) denotes the f-derived states at X.

Full
LAP+' VK = 0 V4=Vg= 0 Muff in- tin

I2I
I'25I

~15
12)

405
699
725
769
848
985

400
705
732
769
848
988

404
701
730
768
849
984

400
706
736
768
849
986

X,
X3

388
434

373
446

381
438

366
450

790
792
801
825
834

791
793
803
825
835

791
793
801
825
835

793
794
803
825
835

2
RADIUS (o.u. )

Lonthanum 9=5 (E

~ a = I 0.0378-

2
RADIUS (au. )

plG. 5. plots of the radial wave function (g&) shap«or
I =2, 3 out to the sphere radius. In (b) the behavior of
the l =3 function under pressure is shown. The dotted
line in (b) is a sketch of the behavior of an atomic 4f
radial function.

Neither does it resemble the 4f wave function in
the 4f bands above Er (which is much more atomic-
like). We find that g, increases for r & 2 a.u. in
much the same manner as occurs in transition
metals with lower atomic number, i, e., as the
&=3 spherical Bessel function in the expansion
of the conduction electron eigenfunction at a simi-
lar energy. The "felectrons" described by g3
therefore are only approximately 50'%%uo localized
4f-like electrons. The character of g2 and g~
shown in Fig. 5 will be relevant to the discussion
of superconducting properties given below.

C. Comparison with previous calculations

Early band-structure results using a non-SC
HAPW method were reported by Myron and Liu'
for fcc La and by Fleming, Liu, and Loucks'8 for
dhcp La. Neither reported details of the band
structure in the f-band region, concentrating
rather on Fermi-surface topology. The Fermi-
surface dimensions and N(&z) =24.8 Ry 'atom '

reported by Myron and Liu (for lattice constant
10.011 a.u. ) are in semitluantitative agreement
with our results (see Sec. III D).

Kmetko~' has reported angular- momentum-de-
composed charges from nonrelativistic SC APW
calculations in the muffin-tin approximation for
fcc La at lattice constants of 9.991 and 9.492 a.u.
His results are presented in parentheses in Table
Dl, and describe a large f charge @3=0.55 elec-
trons which decreases to 0.38 under 50-kbar
pressure. Our results show a rather small f
charge @~=0.IOwhichincreases to 0.13 under 50-
kbars pressure, mainlydue to increased hybridiza-
tion. Kmetko used the Xn value n =0.693 for ex-
change and correlation, which is very close to
the value -pf z = —,

' used in this work. Since it
seems unlikely that the non-muffin-tin corrections
we have included could account for much of this
discrepancy, the smaller f charge (compared to
Kmetko's results) which we find probably is due
to relativistic effects which we have included.
This is consistent with the expectation that rela-
tivistic corrections lower small angular momen-
tum eigenvalues relative to larger angular mo-
mentum eigenvalues and as a result shifts charge
to lower & values. This trend can be seen as well
in the Q„Q„Q2 values of Table IV. This makes it
apparent that a relativistic theory is essential for
a correct description of the electronic structure of
La.

Glotzel and Fritsche20 (GF) have reported non-

SC semirelativistic rigorous- cellular- method
results for La at zero and 120 kbars (lattice con-
stants were not given). Overall their band struc-
ture and its pressure dependence is quite similar
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to ours, although the lack of self-consistency
inevitably leads to differences in detail. As an
example of the degree of agreement shown with
our results, GF find C&(X) =200 mBy at zero
pressure increasing to -260 mRy at 120 kbars,
compared to our results of 169 and 208 mBy, re-
spectively. Their ambient-pressure value of
N(E») =26.8 Ry 'atom ' compares favorably with
our value of 27.4 Ry atom . However, their
density-of-states curve for 120-kbars pressure is
considerably different from what we find, and this
is reflected in their 10% lower value of N(E»).
Generally we can conclude. that self-consistency
is important in describing the electronic structure
and its pressure dependence in La.

Qlotzel ' has reported limited results of calcula-
tions on fcc La using the ASA adaption of the
linear- muffin- tin- orbital method. He f inds 0.17
f electrons at zero pressure and a small increase
under pressure. Consdering that his definition of

f electrons uses an atomic sphere rather than the
inscribed sphere we use and that the f radial func-
tion is not localized for energies at and below E~
[see Fig. 6(b)], his conclusion is in good agree-
ment with our result, shown in Table pl and dis-
cussed above. His value for N(E») =33.6 Hy '
atom ~ is 23 lo greater than we find and suggests
considerable difference in detail between the two
calculations.

Takeda and Kubler~~ (TK) recently have re-
ported SC semirelativistic LApW calculations
for fcc La. We find several differences between
their results for a =10.011 a.u. , neglecting SO,
and our corresponding (a=10.034 a.u. , no SQ)
results. TK find f bands which are twice as wide
and nearly twice as far above E~ as those shown
in Fig. 2. However, their occupied s and d band-
widths are only about 10%%uo wider than found in the
present work and their value of N(E») =26
(Hy atom) ~ is similar to our value of 27.4
(By atom) '. In two calculations which on the
surface would be expected to yield similar results
(both are SC semirelativistic LAPW calculations)
it is important to understand the cause(s) of the

diff erene es.
Considering the well-converged representations

of charge density and potential and the careful
self-consistency, we believe the only significant
inaccuracy in the present calculations come from
the linearization of the energy-dependent APW
secular equation. The energy parameters E, have
been adjusted to reduce the inaccuracy as much
as possible in the region of interest (near E» and
in the f bands). Moreover, by equating the energy
parameters to an eigenvalue E(k) we can reproduce
the (unlinearized) APW eigenvalue and hence check
the error due to linearization. Tests indicate that,

for the set of E, we have chosen (see Table I), the
linearization procedure leads to an inaccuracy in
the eigenvalues in the f bands and below of less
than 2 mRy. For the case of La, it is necessary to
have E& several tenths of a Rydberg above E~
(nearer the 6P resonance) to keep spurious P-de-
rived bands out of the region of interest (G. en-
erally, it is desirable to place E, near the l reso-
nance, or, if the l resonance is far from E„,
somewhere between E» and the l resonance. )

The methods used by TK differ from those used
in the present study in a number of respects. TK
assume a muffin-tin form of potential (p, V spheri-
cal inside the muffin-tin sphere, constant in inter-
stitial region) and extend it using the "atomic-
sphere approximation" (ASA) to overlapping
spheres with volume equal to the atomic volume.
This has been found to be a reasonable approxima-
tion in. elemental transition metals, but it is rela-
tively untested in f-band systems. Certainly the
non-muffin-tin corrections (discussed in the
preceding section) are not large enough to account
for the discrepancies. No doubt more severe is
the use by TK of only 27 APW's in the secular
equation; we have found that as many as 55—60
APW's may give f bands which are still 4 mRy
from the converged value for certain wave vectors.
If only 27 LApW's are used in our secular equa-
tion, we find the l ~. , and I'„, and I"~, eigenvalues
are too high by 93, 76, and 31 mRy, respectively.
The 4 eigenvalues l"„.and l «are affected less,
being too high by 4 and 10 mRy, respectively,
while the l'& eigenvalue is unchanged to 0.1 mRy.
The f eigenfunctions, and to a lesser extent the
d eigenfunctions, are quite poorly represented by
only 27 LAPW's and will contribute errors in the
charge density. Still another source of inaccuracy
in the TK results is their utilization of a moment
method of generating an approximate charge den-
sity, which is then used to determine the potential.
Unf ortunately, we are not aware of any tests of this
moment method which would allow a quantitative
estimate of its accuracy.

Finally we note two other differences in these
SC LAPW calculations. The lin. earization method
used by TK augments with radial functions at two
energies (which are not reported with their results
for La), whereas the method we have used utilizes
the radial function and its energy derivative at a
single energy. However, for reasonable choices
of the energy parameters, the two methods should
give very similar results. The last difference is
that TK used the Hedin- Lundqvist approximation"
for correlation. In both sp metals and & metals
this leads to very minor differences in energy
separations but the effect of various correlation
potentials on f-band systems has not been studied
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systematically. Nonetheless, one can say that
this should cause their f bands to be lower and

narrower rather than higher and broader.

D. Fermi surface
0.2

fcc La

The intersections with symmetry planes of the
calculated Fermi surface of La at the three lattice
constants are shown in Fig. 6. The Fermi surface
(FS) arises solely from band 2. Crudely speaking,
the FS consists of large warped electron ellipsoids
centered at the X points with the major axes
aligned with the I'-X directions. In the X- V- 5'
plane, the V(E) point is within the FS while the W

point is outside. Instead of existing as three in-
dependent warped ellipsoids at the X points, how-

ever, necks extend along (at ambient pressure),
or through (at P= 50 and 120 kbar), the l. V- W-K—

planes which connect the various ellipsoids. The
apparent electron pocket in the L- U- 5'-K plane
at &= 50 and 120 kbars in Fig. 6 is, in fact, a
cross section of one neck. Thus the FS is a single,
complicated, multiply connected sheet.

In addition, in the pressure range 50—120 kbars
we find that a saddle point in band 2 along I'-K
crosses the Fermi level from above at 0.65 (1, 1, 0)
(2w/n). This band crossing, which is shown in
detail in Fig. 7, results in a yet more complicated
connectivity of the FS above the critical pressure
at which the FS topology change occurs. We dis-
cuss this in relation to the 53-kbars transition in

La in the next section. It should also be noted that
another change in FS topology occurs in the range
0-50 kbars, where the necks mentioned above
change their character due to a band crossing in
the L- U- &K plane. Implications of this FS change

-P —0 kbars
--—--—P = 50 kbars LANTHANUM——.—-P = l20 kbars FfRMI SURFACE

FIG. 6. Fermi surface of fcc La in the symmetry
planes at 0, 50, 120 kbars pressure. Note the changes of
topology under pressure in the L-K-W-P plane in the
range 5-50 kbars, and along the I'-K line in the range
50-120 kbars. (Obtained from a 65-parameter symme-
trized Fourier-series fit to 128 band-2- eigenvalues in
the IBZ.)

O. l

-O. I

FIG. 7, Large-scale plot of the band structure of La
along the I'-X-X direction under pressure. It is actually
a saddle point which crosses the Fermi level EJ; at
(0.65, 0.65, 0) (2z/a).

will also be discussed below.
The FS of Fig. 6 at zero pressure appears to be

similar to the multiply connected FS reported by
Myron and Liu~~ but not presented in detail by
them. The FS's of TK and Qlotzel and Fritsche'
(GF) also were not discussed. From the band-
structure plots of GF, discrepancies with the FS
of Fig. 7 are apparent, however. At P=O, GF
find that band 2 cuts the FS in three places along
the 1 -K line, reminiscent of our results at I'
= 120 kbars. They also find that the band-I maxi-
mum along 1 -K crosses Ez under a pressure of .

120 kbars. Although we find that this maximum
indeed increases under pressure, it is clear that
it does not cross E~ in our calculations. It should
be kept in mind that GF did not report their lattice
constant corresponding to "P=120 kbars, " and if it
were significantly smaller than our value this dis-
crepancy could be resolved.

IV. ISOSTRUCTURAL TRANSITIONS

Lifshitz24 observed that when a change in FS
topology occurs as a result of varying some pa-
rameter, which we take to be the pressure I', the
electronic free energy E, is nonanalytic in E
—E~=zat z =0 [E is the-band feature (minimum,
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5N(E) ~E- E„j&~' (6)

on one side E . The form for 6E alluded to above
leads to discontinuities in second derivatives and
to singularities in third derivatives~4 at z(P) =0
and T=o, and can be classified following Ehren-
fest as a "& —order" transition. For simplicity
we will refer to Po satisfying z(PO) =0 as the tran-
sition point, although the transition at finite tem-
Pe&ature actually will occur slightly away from
this point where dP/d V becomes Positive and an
isostructural phase transition occurs.

This "Lifshitz transition" has been attributed as
being responsible for a number of phase transi-
tions, for example, the 42.5-kbars transition. in
Cs (Ref. 32), and it alone might account for struc-
tural instability in La. However, Dagens~' has
pointed out. that, when electron-lattice coupling is
taken into account, the lattice free energy contains
a nonanalytic part containing z(P)3 2 and T3 2.

Therefore this transition of "—,' order" becomes
stronger in that it occurs in lower derivatives.
But, as mentioned above, the actual transition at
TWO generally does not occur exactly at z (P) = 0
but only close to it.

One may consider another interesting possibility.
Suppose the phase transition due to the electronic
terms alone would occur at «(P) =z„and that due
to the lattice alone would occur at z, with z, z, in

general. Under pressure the first condition to be
satisfied could be either z(P) =z, (strictly a Lif-
shitz transition) or z(P) =«, (Lifshitz-Dagens
transition). Accordingly the transition is ref err ed
to as due to electronic or lattice instability, al-
though in either case the underlying dynamic
mechanism is electronic in origin.

Considering the accuracy of the band-structure
calculations and the predicted FS topology change
in the appropriate pressure ranges, it seems
very likely that the changes in FS topology are
related to the 25- and 53-kbars tran. sitions in La
(Fig. 1). Furthermore, a number of observations
suggest the Lifshitz-Dagens mechanism rather
than a strictly Lifshitz instability for these tran-
sitions. First, since X(P=O) ~ 0.8 (see Sec. V),
and T, (50 kbars) = 10 K suggests that X increases
under pressure, it is clear that the electronic sys-

saddle point, or maximum) which passes through
E~]. Explicitly, &, can be written

E~(P) = Eo (P) + 6E(P),

where F0 is analytic and 6I' contains nonanalytic
terms in z'~2(P) and T' 2 on one side of the tran-
sition. This behavior of 6I' arises from the elec-
tronic density of states which must have the gen-
eral (three-dimensional) form N(E) =No(E) +5N(E),
with

tern is strongly coupled to the lattice. This is also
borne out by the calculations in Sec. V. Second,
the relevant portions of the band structure are
strongly hybridized (typically 50% d, 20% f, 30%
sP), which in the rigid-muffin-tin approximation
should lead to larger than average ~&f ~= 1 con-
tributions to electron-phonon coupling. Third, the
FS changes occur at a general point at the zone
boundary (low P) or along the (110) direction
(high P), thus involving a rather large degeneracy
factor as 24 (respectively, 12) inequivalent saddle
points pass through E~.

Since very little of a detailed nature is known
about the phonon spectrum of fcc La, it is im-
possible to calculate free energies and confirm
that either transition is of the Lifshitz- Dagens
type. It is also difficult to verify experimentally
the driving mecha. nism. Either type of instability
will involve a (perhaps drastic) softening of the
phonon spectrum at long wavelength in line with
the q=0 nature of the transition. Such softening
as well as a,noma, ious ultrasonic attenuation could
be checked by ultrasonic measurements under
pressure. In addition, the squeezing off of several
necks of FS on one side of the transition will re-
sult in a dramatic increase in the electronic den-
sity response function at many wave vectors; for
the (110) instability the wave vectors are q,
= (v, 7, 0), q, =2q„q, = (2 r, 0, 0), and q4

——(2 T, T, T)

in the IBM, which connect the Fermi level
crossings at k= (r, 7', 0) and symmetry-related
wave vectors [7'=0.65(2m/a)]. This indicates that
a general softening of the phonon spectrum
throughout the zone may occur, Phonon softening
has been suggested~ to be the cause of the "extra"
increase in T, (P), at the transitions at 25 and 53
kbars, over the assumed smooth increase due to
electronic causes, shown in Fig. 1 by dashed
lines. Phonon softening up to -15 kbars has been
seen in tunnelling spectra, 33 and some phonon
softening has even been inferred theoretically by
Glocker and Fritsche34 by comparing measured
T, (P) values with calculated superconducting pa-
rameters. These aspects of superconductivity in
La will be discussed further in the next section.

The 25-kbars transition at low temperatures is
often stated in the literature to be the La dhcp

fce structural transformation. In such a case
this band crossing could be intimately related to
the stability of the fce phase. However, in a
pressure-resistance study of the fcc La„Ce& „
aQoy series, King and Harris~3 have found the
25-kbars transiti. on to be cont&suously connected
to the y a isostructural (fcc = - fcc) transition
at 7 kbar in Ce at room temperature. This result
implies that the 25-kbars transition in La is also,
at least in part, an isostructural transition. In
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addition, King and Harris have noted that, if it
were solely a dhcp =-= fcc structural transition,
adding Ce to La would be expected to shift the
transition to zero pressure at the point where the
fcc phase becomes the thermodynamically stable
phase, i.e. , well before 100%% Ce is reached. That
this does not happen, and that a change in FS
topology in La occurs in the same pressure re-
gion, suggests that a FS instability may drive this
transition. Clearly more experimental work on
this alloy series would help in understanding this
behavior.

The 53-kbars transition at low temperature is
usually assumed~ to be an isostructural transition,
primarily because the room-temperature structure
is known to be fcc in a wide pressure region
30-120 kbars. Interestingly, no discontinuity in
lattice constant is observed at room temperature, 2

suggesting (1) a continuous (or nearly so) transi-
tion at low temperature or (2) the existence of a
critical point in the range 100 & T & 300 K. Again
more experimental information is necessary to
clarify the nature of this phase transition.

U. DENSITY OF STATES N(E~)
ANI} THE SUPERCONDUCTING CRITICAL

TEMPERATURE

The most striking property of La is its enormous
increase in T, under pressure, as shown in Fig. 1.
In this section we present the results of theoreti-
cal calculations of quantities determining T„dis-
cuss in detail their behavior under pressure, and
compare with the experimental data.

A. Theory; The rigid-muffin-tin approximation

McMillan35 has shown that the electron-phonon
coupling constant X ean be decomposed as

N(E~) (I ') n
M((o') M((u') '

where (I~) is the mean-square electron-ion ma-
trix element, M is the ionic mass, and ((u') is an
appropriately defined mean-square phonon fre-
quency (see below). The product N(Ev)(l ) =q
is an electronic stiffness constant, whereas M(&o')
reflects the stiffness of the lattice.

We have evaluated g in the rigid-muffin-tin
approximation (RMTA) of Gaspari and Gyorffy, m

which leads to the expression

2 / (I +1)sin (5, —5, , ()v, v, ,(. (8)
2E~ 2

~ NEg ~s

Here v, -=N, (E~)/N, '"(Ez), where N'( z)Eis the
"single- scatterer" density of states def ined by
Qaspari and Qyorffy. In the RMTA it is assumed
that the change in potential when an atom moves is

given, in the muffin-tin region, by rigidly dis-
placing the spherical potential, and in the inter-
stitial region the change in potential is zero.
This approximation. has been used with consider-
able success in transition. elements '3 for cal-
culating T, and the electrical resistivity, which
involves similar elec tron-phonon matrix elements.
The success of the RMTA, which makes a simple
ad hoc assumption to avoid the complex screening
problem, is a result of two occurrences in tran-
sition metals: (1) the change in potential is very
large inside the muffin tin and is apparently
rather well described by a rigid shift of the poten-
tial and (2) the wave functions at Ez are primarily
d like and are strongly peaked inside the muffin
tin, and therefore give little weight to the change
in potential i:n the interstitial region. Unfortunate-
ly, these effects are not present in La, which is
early in the 5d series, to the extent that they are
in the middle or later d elements in the series.
This is evident in Fig. 5, which shows that menthe&

the d nor f radial function at E~ is strongly con-
fined to the muffin-tin region (neither are the s
and P radial functions). Thus we do not expect the
RMTA to be as accurate in La as might otherwise
have been expected.

It should also be noted that Eq. (8) was derived
in a nonrelativistic approximation, whereas the
densities of states N, (Ev) we have calculated and
displayed in Table VI are from a fully r elativis tie
theory. We have not attempted to generalize Eg.
(8) to its relativistic analog, since spin-orbit ef-
fects are small in La. We use for the phase shifts
5, the j-weighted average of 5„ for x =E and z = —l

1

In Table VI we list the phase shifts 5, and the
crystalline enhancement of the density of states
v, up to I =4, and sin'(5, —5. ..) and q, „,up to
and including the l =3 4 transition contributions.
The P-d and d fcontributions to q -dominate for all
three lattice constants, approximately in the ratio
3:2. This is partly due to the strongly enhanced
values of v, and v3 (2.40 and 2.95 at ambient pres-
sure, respectively). The approximately linear in-
crease of q with pressure (or with decreasing
volume) is mainly the result of an increased P-d
contribution in the 0-50 kbars range and an in-
creased d-f contribution in the 50-120 kbars range.
However, both increases can be accounted for by
the broadening of the various angular momentum
scattering "resonances under pressure. First
note that &2 is relatively constant under pressure,
so roughly

q ~ [E~/N(Ev)] [ v& sin2(5& —5&) + v3 sin2(6~ —53)] .
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TABLE VI. Phase shifts && in radians, density-of-states ratios v„sin factors and contri-
butiona q, ~, &

to q in eV/A .

9.0340

3

t,bcc)
yb

(fcc)
S b

(bcc)

-0.959
-0.477

0.562
0.025
0.0003

1 172' I

-0.620
0.598
0.036
0.0005

-1.309
-0.724

0.625
0.047
0.0007

-0.473:
-0.140

0.470
0.0028

-0.703
-0.261

0.468
0.005

-0.648
-0.172

0.440
0.003

0.655
2.397
1.404
2.945
6.075

0.644
2.026
1.283
2.250
5.991

1.083
1.654
1.318
2.649
6.051

0.145
2.409
1.906
5.756

0.316
2.100
1.396
3.851

0.121
4.449
1.843
4.943

sin (6) —6)+()
1
2
3

0.215
0.743
0.262
0.0006

0.275
0.881
0.284
0.0013

0.305
0.952
0.299
0.0021

0.107
0.328
0.203

0.183
0 444
0.199

0.210
0.330
0.179

0.102
1.519
0.986
0.013

0.167
2.138
1.149
0.032

0.303
2.300
1,733
0.076

0.006
0.541
1.199

0.048
1.024
1.266

0.036
1.719
1.554

' From W. H. Butler, Ref. 37.
Prom D. A. Papaconstantopoulos et g&. , Ref. 38.

Since 6, & &m for each l, broadening of the reso-
nances results in larger values of 5, —6„,. and

thereby increases the scattering strength
sin'(5, —5„,). This effect is especially evident
in the p-d contribution at 120 kbars, where
5, = ~ w, 5, = —,'v resulting in sin'(5~ —5,) =0.95.
In the loner-pressure region, the decrease of
v, cancels the increasing prefactor E~/N(E~)
and the increase in sin'(5, —5„,) from, 0.74
to 0.88 leads to an increase in g. The can-
cellation of the sin2(5, — 5„i) factor with N,"' in

the denominator noted by IIutler3' (for I = 2) does
not occur here since it holds true only near the l
resonance. In the high-pressure regime, the in-
crease in q arises primarily from the. increase in

&3, which may reflect the increased width of the

f resona. nce and/or increased d fhybridtza-tton.
Also shown in Table VI is the f gcontribut-ion

g3 4 to g in I a, which reac hes the s till small but

appreciable value 0.076 at high pressure. This is
apparently the first time an f-g contribution to q
ha.s been reported. This value of q3 4 is probably
1-2 orders-of-magnitude larger than in other
transition metals, since 53 is 3-10 times larger
in La, 54 is always negligible, and the product
&3@4 is probably similar. It is interesting to note
that the enhancement &4

——6 in La is similar '3
to v3 in Y and Sc, while v3 in La is reduced by a

factor of 2-3 by a larger value of N3"'(Ez) from
its value in Y and Se.

It has long been a puzzle why La is such a good
superconductor when the isoeleetronic elements
Y and Sc are very poor superconductors. The
difference probably is not due entirely to structure
since La supereonducts at almost 5 K in the dhep

phase. It is also not a, density-of-states effect, as
all three show very large electronic specific-heat
coefficients (see below). In Table VI we also show

the corresponding parameters of "bee Y" ealeu-
lated by Butler" and of fcc Y" a.nd "bcc Sc' ca,l-
culated by Papaconstantopoulos et aL. Considering
the substantial differences between bcc Y and
icc Y, these results should not be taken too
literally, especially in any comparison to experi-
ment. Generally two differences between La and

Y, Sc can be seen. The enhancement factors v, are
smaller in La, due probably to larger bandwidths,
or in the case of l =4, a larger single-scatterer.
density of states. This difference is offset by a
larger sin (5, —5, , i) factor in Za. , due primarily
to a larger 52 which again arises from a larger
bandwidth. The P-d contributio~ in La is also en-
hanced by a larger value of ~5 & ~

which is difficult
to interpret but may be due to relativistic effects.
As a result q(La) is not radically different from
q(Y) and q(Sc) (in the cubic approximation), and
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in fact lies midway between them. The corre-
sponding values of X and T, will be discussed be-
low. We note that the values of g reported here
are (10-15 %) corrections to the preliminary re-
sults reported earlier. 3~ We have also calculated
the "nonspherical" d fco-ntribution to rl and found
it to be -2% of the spherical contribution q~ 3.
This contribution, which has not been included in
the tables or discussion, is similar to that found
for Yby Butler. 37

X=2
" der n'E(z)

CO
(10)

Owing to the form of the electron-phonon matrix
elements35 occuring in n2F, the first moment of
n~F is independent of the phonon spectrum and is
equal to q/2M,

'g = 2M d(d hl Q F (d
0

From Eqs. (7), (10), and (11), (v2) is the second
moment of the phonon spectrum with respect to
the weighting function (2/Xur)o. 2E,

2
(d2-=((d ) = d(0 = Q E((d)(d

0 /co

Allen and Dynes have shown that, in a wide
variety of metals, T, is given accurately by X,

g, +2 and another phonon average ur„„

(12)

B. Phonon spectrum

Rigorously, X is a dimensionless measure of the
strength of the electron-phonon spectral function
o2F given by

00

logu„~ = d~ n'E(e) log&ad .
0 A. (d

(13)

The Coulomb pseudopotential p, will be assumed
to be 0.13 for the calculations described below.
Although changes in T, can be appreciable, our
conclusians are not very sensitive to reasonable
changes in p, .

Measurements of n F in La by tunnelling have
been reported by Lou and Tomasch4' and by Wuhl,
Eichler, and Wittig, 33 with some differences in
their results. More important for the present
discussion, it is likely that these a E spectra are
more typical of dhcp La than fcc La4' and inversion
of the tunnelling spectra to obtain e2F results in
unrealistically small (or negative) values of p,

and, probably, underestimates of X. Accordingly
we have used the phonon density-of-states function
E(v) for fcc La reported by Nucker, ~2 assuming a
constant n2(ar), to calculate the necessary phonon
moments to, and e„,shown in Table VII. [ Nucker
has shown that Lou and Tomasch's n'F function
satisfies n (ar)= constant over the energy region
where E is large. ] However, to check the dif-
ferences between using E and a.~E, we have cal-
culated ~, and ~&„from the data of Lou and. .

Tomasch. 4' We find co~=80 K, &&, ——65 K, which
is roughly 10% softer than the values in Table VII
obtained using E(e). This is in accord with specu-
1ation4~ that La tunnelling spectra underestimate
the high-frequency processes contributing to Q.~F.

For Y, which we desire to compare with La, we
have taken moments calculated by Butler~' using
E(e) obtained from a Born —von Karman force con-
stant f it to the measured dispersion relations43 of
Y. Since the dispersion curves for Sc (Ref. 44)

TABLE, VII. Parameters determining the superconducting transition temperature T, in La
under pressure, and in Y and Sc. Y and Sc should be compared with the ambient pressure
(a = 10.0378 a.u.) parameters of La. The behavior of the phonon spectrum of La under pres-
sure is unknown, and to assess variation of T, with g, the phonon averages 2, u~ have been
taken to be constant.

fcc La
a = 10.0378 9.4760 9.0370

R

(bcc)

Yb

(fcc)
Sc'

(bcc)

x(E~)
n

G02

~log
M(~ )

Tg, theor

Tc, cxpt

(Ry spin)
(eV/A')
(K)
(K)
(eV/A')

13.74
2.62

86
74
1.84
1.42
8.3
6.05

11.02
3.49

86
74
1.84
1.90

11.6
10.0

10.68
4.41

86
74
1.84
2.40

14.5
11.6

18.86
1.92

149
132

3.51
0.55
1.5

(0.0006) '

10.94
2.34

149
132

3.51
0.67
3.1

(0.0006) '

16.02
3.31

226'
200

4.08
0.81
7.8
0.0

N(E~) and g taken from %. H. Butler, Ref. 37.
N(Ez) and g taken from D. A. Papaconstantopoulos et al, , Ref. 38.
Calculated by %. H. Butler (Ref. 37) from inelastic neutron scattering data.
Scaled from Y (see text).
Extrapolated from alloy data; see Refs. 37 and 53.
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are very similar to those of Y, we have simply
scaled the moments of Sc by the difference in high-
temperature values of Debye temperature to ob-
tain the values listed in Table VD.

C. Determination of 'A and T,

From the electronic specific-heat coefficient4~

y= (-,
' v')k2s(1+k„)N(Ez) of fcc La, we obtain a total

mass enhancement X„=1.42. It is now recognized
that the electron-electron contribution X to X„may
not be negligible46 in transition metals. We expect,
however, the value of ) „given above to be a near
upper bound of the phonon enhancement X. The
corresponding values obtained from hcp band-

structure calculations are X„=1.20 for Y (Hef. 47)
a,nd X„=0.75,48 1.01 (Hef. 49) for Sc.

In Table VII the calculated values of X for La
under pressure and for "cubic" Y and Sc are pre-
sented. We have supposed M(+2) is constant under

pressure to allow us to evaluate the change in X

and T, which would result from the change in q
alone. Wuhl, Eichler, and Wittig33 have detected
softening of low-frequency modes and hardening
of high-frequency modes in La up to 17.5 kbars
which may result in a small net decrease in v2
and v„~. Unfortunately there is no experimental
information on the phonon spectrum in the high-

pressure region.
At ambient pressure we calculate X =1.42, giving

T, = 8.3 K, which is too large by 2 K. Although

this is not such a bad agreement considering the

approximations which are made, we'can investigate
the effect of various corrections to the calculation.
Assuming ~~, ~„„and p. are correct, X=1.15
is needed to reproduce T, =6.0 K. Papaconstanto-
poulos et al. have advocated including "non-
muffin-tin effects and screening" approximately
by halving the d fcontribution -to q. This some-
what ad hoc correction gives the intriguing result
X =1.15 and hence the observed T,. Assuming
instead that g, v„and e„,are correct, we can
use the prescription of Bennemann and Qarland

(BG) for p,", which can be rewritten

sonable values of p, . An absolute upper bound,

p, &0.163, results from considering the limit
p, —~; this limit is lower than for most other
transition metals because of the extreme softness
of the phonon spectrum. For probable values of

p, ~2, we find p. ~0.15, and the value p, =0.13
we have used in calculating T, corresponds to p,

=O.V. Thus our theoretical overestimation of T,
does not result from an underestimate of p, as
the BQ formula would suggest.

Finally, one could assume q and p, are correct
as given above and scale co, and cu„, to reproduce
the measured T,. However, since we believe the

phonon moments to be the most accurately deter-
mined quantities in the T, equation, this could be
misleading and we have not done this calculation.
Considering the radial behavior of the l = 2, 3 wave
functions shown in Fig. 5, we consider it fairly
certain that the HMTA overestimates q by -25%,
and that some fundamental improvement beyond
the HMTA in the electron-ion matrix element is
necessary before a more precise picture of La
can be obtained.

Since the phonon spectrum is being treated as
constant under pressure, the increase in X is
parallel to the increase of g discussed above. The

resulting increase in T, indicates that the increase
in q with pressure can easily explain the large
value of dT,/dP in this pressure range as long as
the lattice does not stiffen too much. More gen-

erally, the behavior of T versus pressure shown

in Fig. 1 then can be understood if significant
phonon hardening under pressure does not occur
below pressures of the order of 75-100 kbars.

In Fig. 8 we show the calculated pressure de-
pendence of q compared with that of Qlocker and

Fritsche' and the I'=0 value of Qlotzel. ' The
agreement between the three calculations is good,
considering the use by these authors of a rigid-
atomic- sphere approximation rather than the

LANTHANUM

n

p,
* N(E~)

' (14)
GLOGKER 8 FRITSGHE

(atomic sphere) ~o
G LOTZEL

(atomic sphere)

with g -=0.26 and No= 1(eV atom-) '. This leads
to p,

"= geo=0.18 (not 0.08 as reported by BG) and

T, = 6.6 K, again in much better agreement with

experiment.
Ho~ever, from the definition4'

where p is the (dimensionless and unrenormalized)
Coulomb potential, we can insert the maximum
phonon energy42 ro ~=13 me& and electronic plas-
ma energy m„=6 eV to put an upper bound on rea-

ENT WORK

ibed sphere)
a p-d
o d-f

ll

&-—-r—"-t 7 T i p I

0 50 !00 I 50

PRESSURE (k b a rs)

FlG. 8. Pressure behavior of g compared with calcu-
lations of Glocker arid Fritsche (Ref. 34) and Glotzel
|Ref. 21).
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RMTA we have used. Glocker and Fritsche have
used their calculated values of q for pressures of
0-150 kbars, together with the Allen-Dynes equa-
tion, to extract an empirical average phonon fre-
quency 0 under pressure from measured values of
T, (Fig. 1). They made two simplifying assump-
tions: (1) that g is given by the BG formula50
(p*=0.18), and (2) ~„,=~, —= Q. Some relation
between ~„, and ~, must be assumed, since
only one quantity can be determined from the
T, equation. As noted above, p, *=0.18 is
probably too large, but it was not crucial in deter-
mining the behavior of Q(P). They found that in
the range 30-55 kbars, 1? is 10% softer than at
ambient pressure, and only for I'& 70 kbars does
the lattice harden linearly with pressure, with
d02(P)/dP =0.3 meV2/kbars. This indirect deter-
mination remains the best evidence of the lattice
stiffness under pressure.

As noted above, g in cubic Y and Sc is similar
to that of La, with the result that much of the
large difference in X and T, is due to the extreme-
ly soft phonon spectrum of La. A similar con-
clusion has been reached previously" ~ but on the
basis of the Debye temperatures alone. Both A, and

T, are overestimated in Y and Sc, but, as was the
case in La, much of this can be ascribed to dif-
ficulties with the BMTA. The severe overestimate
of T, in Sc may indicate that the cubic approxima-
tion also may be unreasonable. Assuming the
phonon moments are reasonable, to account for
the lack of superconductivity in Sc X «0.30 or a
considerably larger p, is necessary, or possibly
electron-electron interactions are not negligible.
Whatever the case, the diff erence in T, between
Y, Sc, and La is no longer a complete mystery,
but it is coupled with the equally complex question
of the cause of the lattice softness. An obvious
possibility (see below) is that the phonon frequen-
cies are renormalized downward~6 by virtual
transitions into the high density of unoccupied f
states 2.5 eP above Ez. Such renormalization ef-
fects would result in a genera1, nearly q-indepen-
dent softening of the phonon spectrum. Another
possibility is that the important renormalization
arises from transitions nearer the Fermi surface,
such has been found by karma and Weber 3 in Nb.
In the latter case, particularly good candidates
for strong renormalization are phonons corre-
sponding to the inter-saddle-point scattering wave
vectors q&, q~, q3, q4 mentioned above. Clearly
inelastic neutron scattering on a single crystal
fcc La could test the predictions of these models.

The remaining puzzle is the cause of the large
specific-heat mass enhancements X =1.2 in Y and
0.75 to 1.0 in Sc. Compensating for the likely
overestimate of q by the BMTA and the cubic ap-

proximation, it seems that there remains an elec-
tron-electron mass enhancement of the order of
0.75 in Y and of at least 0.25 in Sc. In analyzing
specific-heat data at high temperatures where the
phonon mass enhancement vanishes, Knapp and
Jones'4 also found an apparent electron-electron-
mass enhancement, over band structure values,
of 0.6 in Y and 0.4 in Sc. This is in quite satis-
factory agreement with our estimates, considering
the uncertainties. There also have been theoreti-
cal speculations5' that spin fluctuations (of the
antiparamagnetic type) might contribute to the
mass enhancement in this region of the Periodic
Table, but no convincing theory for such an effect
exists at present.

VI. GENERALIZED SUSCEPTIBILITY

The generalized susceptibility )t(q) is defined
(with n the band index) by

and, as the name implies, is a measure of a.

general susceptibility of the electron system to
respond to static perturbations or fluctuations of
wave vector q. This susceptibility has been cor-
related in various systems with magnetic transi-
tions, structural transitions, and phonon anoma-
lies. In light of the changes in Fermi-surface
topology which result from saddle points crossing
E~ under pressure, it becomes interesting to see
whether any structure exists in X(q) for values of

q which connect these saddle points.
We have calculated the intraband contribution

from band 2 to )t for q along the (100), (110), and
(ill) symmetry directions, using the tetrahedron
method of Rath and Freeman. ' Band 2 was repre-
sented (without the spin-orbit corrections to the
eigenvalues, which are typically no greater than
1 mHy at Ez) by a 65-term Fourier series which
was least-squares fit to 128 eigenvalues with an
rms error of -1 mRy. In the BZ integration,
1024 equal-volume tetrahedra in the IBZ were
utilized.

The results are shown in Fig. 9 for ambient
pressure, 50 and 120 kbars. Since )t($-0)-N(Er),
which decreases under pressure, and since X
scales inversely with an energy denominator, the
general decrease in X under pressure reflects the
broadening of the bands discussed in Sec. GI. The
wave vectors q&, q~, and q3, which span inequiva-
lent saddle points at the (7', r, 0) points which cross
Ez between 50 and 120 kbars, are shown in Fig. 9.
A difference plot (not shown) of )t(q, 50 kbars)
X(q, 120 kbars) does show structure near each of
these wave vectors: peaks near q, and qz and a
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FIG. 9. Generalized susceptibility I,X(q)] of La along the three principal symmetry directions for the three lattice
constants studied. The vector positions marked q~, q2, q3 are the saddle-point vectors discussed in the text. The vec-
tor positions Q3, Q4, and Q6 are the vectors relevant to the fcc to dhcp transition. The dramatic dip in X(q) about the
center of the zone I' is quite pronounced (cf. text).

dip at q, . The structure is surprisingly sharp but
also is rather small, and in any case does not ap-
proach becoming an absolute maximum. This
should not be too surprising, since Dagens has
shown that X is nonsingular as a function of q, but
is discontinuous as a function ofpressure at the
transition point. The sharp shoulders at q& and q3
in X(50 kbars) may be related to this discontinuity.

The dominant feature in y(q, g, which is ap-
parent in Fig. 9, is the large increase is sus-
ceptibility along the I'-I line which occurs as the
pressure is decreased from 120 kbars. Since an
increasing X signifies a growing tendency towards
an instability of the fcc phase, this behavior may
be related to the fcc-dhcp instability at low pres-
sure. With an appropriate choice of origin, the
atomic displacements &, which are necessary to
transform an fcc crystal to a dhcp crystal can be
written

A
&, ~e, (2cosQ4 r, —3cosQ, r, )

+ e2(v 3 s inQ3 r, —2 sinQ4 ~ r,), (17)

where e, and &, are unit vectors parallel to the
[110] and [112]directions, respectively, Q&
= (~j) (2II/a) (1, 1, 1) and T,. denotes a lattice site
in the fcc crystal. The wave vectors Q3, Q4, and

Q6 are shown in Fig. 9, where the drastic increase
in )((Q4) and X(Q~) under reduced pressure is evi-
dent. This correlation strongly suggests an in-
stability toward a charge-density wave described
by &, which could result in an fcc-to-dhcp struc-
tural transition.

This interpretation complements the suggestion
of Fleming, Liu, and Loucks'8 (FLL) that the
Fermi surface is responsible for the stability of
the dhcp structure, relative to hcp in La. FLL
noted that the heavier rare-earth metals which
have the hcp structure have very flat pieces of
Fermi surface perpendicular to the & direction
and about half-way between I' and-the zone
boundary. They argued that La, by assuming the
dhcp structure, creates a Fourier component of
the crystal potential which destroys these flat
pices of Fermi surface and thereby substantially
reduces the electronic energy.

Finally we note another somewhat anomalous
feature of the susceptibility curves of Fig. 9,
namely, the sharp drop in y inside a region of
radius -0.4(7I/a) surrounding I'. This reflects
relatively fewer low- energy small-wave- vector
electron-hole excitations compared to more
ordinary susceptibility curves which tend to be
rather flat near I". As a result the phonon-dis-
persion curves can be expected to show more dis-
persion in the range

~j ~
&0.4(&/a) than in metals

with normal" susceptibilities near I .

VII. DISCUSSION

A. Band structure and felectrons

The present calculations of the electronic struc-
ture of La show clearly the characteristics of the
f bands: They lie about 2.5 eP above Er and rise
and broaden moderately under pressure. The
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primary uncertainty io our calculation involves
the choice of correlation functional. As men-
tioned in Sec. II, the initial effect (for example,
in a self-consistency loop) of using a functional
corresponding roughly to a larger value of i, as
is often done, wouM be to lower the f bands rela-
tive to the d and sP bands, since they lie primarily
in a region of higher charge density. However, due

to the large occupation-number dependence of the

f bands, the resulting increase in f charge in turn
will raise the f bands. Therefore the effect of the

large intra-atomic Coulomb con elation is to de-
crease the influence of the correlation functional
on the f bands. For this reason there is probably
rather little uncertainty introduced into our re-
sults by using this specific local-density func-
tional.

As a result of hybridization, we find approxi-
mately 0,05-0.10 localized f electron in the range
0—120 kbars. This is an insignificant amount corn-
pared to the 0.7 f electron~' or "occupied f
band" '~o which has been postulated to account for
the low melting point and high-temperature super-
conductivity of La. However, in terms of the
electronic configuration, i.e., (sd),
typica1. transition metal. An important way in
which it differs from Sc and Y is that unoccupied

f bands lie - 2.5 eV above E~, with the concomitant
additional virtual d fexcitations fro-m the valence
bands into the f bands, i.e. , f-like density fluctua-
tions.

Because of these additional virtual excitations
the phonon spectrum is renormalized to lower fre-
quencies. ~6 (A study of this effect is in progress. )
That a softer lattice accounts for much of the dif-
ference in superconducting properties has been
shown in detail in the previous section. The softer
lattice also accounts approximately for the de-
creased melting temperature T„of La relative to
Y and Sc, by the following consideration. The
average phonon occupation number at T„, [exp(+2/
T„)—1] ~ = T„/&o2, is roughly 10 in La where T„
=920 K. For Yand Sc, with T„=1800Kand ~,
again taken from Table &Q, the phonon occupation
numbers at the melting point are 12 and 8, re-
spectively. Therefore La melts when its phonon
population is similar to that of Y and Sc at their
melting temperatures. In other words, Linde-
mann's law holds here, as indeed it does across
the trivalent rare earths. It is unnecessary to
invoke occupied f bands, as was done by Matthias
et al. ~~ and Wittig and collaborators, ~'~0 to account
for lanthanum's superconductivity and low melting
point. It has also been conjectured" that the dhcp
structure itself is indicative of significant f occupa-
tion in La, as this structure occurs primarily in
f-electron systems (rare earths and actinides).

Recent work by Duthie and Pettifor ' however, in-
dicates that the dhcp structure can be accounted
for without reference to f electrons.

These same arguments probably can be extended
to metallic La compounds unless charge transfer
off the La atoms occurs. In such compounds we
expect the La f bands to remain essentially un-

occupied, although slight f occupation arising from
hybridization may affect certain features (e.g. ,
the Fermi surface' ). An example of such a system
which has similariti. es to the La, Y, Sc, and Lu
series is that of the C15 compounds &Al~. LaA12
has T, =3.24 Kwhile its Sc, Y, and Lu counter-
parts do not become superconducting above 1 K,
and the latter compounds have M(u~) factors
which are larger~~ by 35% or more, assuming
(e') ~ 82n. Another example is provided by the
CsC1 structure compound~0 LaAg where T, =0.94

K, while YAg and LuAg do not become supercon-
ducting above 0.33 K. Other examples of C14,
C15, D102, Llg, DO)(, and DO(~ have been dis-
cussed by Smith and Luo. ~ A striking counter-
examp/e to these trends (which deserves further
study) is provided by the examination of the simple
cubic hexaborides by Fisk, 6' who finds YB6 to have

T, =7 Kwhile LaB6 has T =0.122 K.
Another f'eature of the electronic spectrum of

La which has attracted speculation is the f band-
width and its pressure dependence. We have found

a bandwidth of the order of 1 eV which increases
by roughly 50%%uo under 120-kbars pressure. These
numbers (see Table III) depend on how one chooses
to define the bandwidth; we note however that the

f bandwidth and center at I" agrees very well (to
within 5 mRy) with the Wigner-Seitz criteria of
vanishing and diverging logarithmic derivatives
at the extreme of the bands. Through hybridiza-
tion with the broad d bands there is an appreciable
density of f states at Er (see Table IV) which is
2.5 eV below the center of the f bands. An im-
portant consideration here is how this bandwidth
arises, whether from crystal fields, direct ff-
overlap or from hybridization. The crystal-field
possibility can be dispensed with quickly. The
tests leading to the results of Table V show that
the crystal fields (nonspherical potential inside
the muffin-tin sphere, "warping" terms in the
interstitial region) have a very small effect on the
relative separation of the extreme of the f bands.
Crystal fields are, of course, generally smaller
in metals than in semiconductors and insulators
due to the presence of metallic screening. In

addition, at both I' and K the f bands are un-

coupled from other angular momentum components,
ruling out hybridization as an important factor in
determining the bandwidth. (Qf course, at general
wave vectors the f partial density of states is non-
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zero over a larger "hybridization bandwidth" than
is being considered here. )

The roughly 1-eV average f bandwidth therefore
arises from direct f fov-erlap, as would be ex-
pected when the Wijner- Seitz criteria predict the
band extrema so well. The ordering of the levels
at F is also consistent with this picture and with
our earlier observation that the f states tend
toward a nonbonding character. Recall that the
lowest f state at 1, 4(I'2 ), is 70 and 150 mRy
lower than 4'(I'&&) and 4(1'»), respectively (Table
V). By pointing along the (111) directions
[4(I"2.) -xys] rather than toward nearest or
next-nearest neighbors, 4(I'2.) is able to assume
the maximum 'bonding-like" character (lowest
energy, most spatially extended, and least kinetic
energy) without actually having to form an appre-
ciable interatomic f fo-b-onding state. The 1»,
and especially the I"», states point toward neigh-
boring atoms and consequently their eigenvalues
are raised by the nonbonding (or perhaps anti-
bonding) character of the f states.

P(T) '= (P, +P, T) '+P ', (18)

often provides an excellent fit to the experimental
data over a wide range of independent variation of
the temperature and the disorder resistivity po
(especially in A15 compounds~'64). We note two
important facts concerning this expression. The
temperature coefficient p& can be calculated reli-
ably64'6' from band-structure calculations and an
estimate of X from the superconducting transition
temperature. Secondly, p ~, which is interpreted
as the maximum (or saturation) resistivity, seems
to be more or less constant62'64 within a class of
materials which may exhibit quite widely varying
properties. These properties suggest that Eq. (18)
has a fundamental significance beyond a mere
empirical fit.

The experimental resistivity of predominantly
fcc La, measured by Alstad et al. , shows a nega-
tive deviation from linearity above 6D- 120 K, up
to room temperature 7~=300 K, the maximum
temperature measured. Since La is a good super-
conductor, this behavior is not surprising. We

B. Resistivity

moloch-Gruneisen theory, based on the semi-
classical Boltzmann equation, predicts that the
electrical resistivity p(T) should behave linearly
with T, p(T)=p, +p, T, in metals above 8o. Late-
ly it has become evident that many high-tempera-
ture superconductors show a marked deviation
from linearity, of ten ref erred to as "saturation".
The interpretation is controversial with a recent
review having been given by Allen. 3 However, it
has been found that a parallel resistor formula

have fit, by a least-squares procedure, the mea-
sured p(T) to Eq. (18). A good fit was obtained
with p&T„=129, p ~=211 p.A cm. We can also
calculate p& from band-structure quantities64

p(T=4r/02 v;, , (19

A2 = ~swe2N(E~)v2(E~),

1/r„= 2~x„&sT/ff,

(20)

(21)

l„=ev(E~)/(2m'~, keT) . (22)

At room temperature l„=10A, i.e. , La at room
temperature is aPProachieg the condition l =a
which is expected when clear saturation behavior
is observed. Assuming that any contribution p,- to
the resistivity arises from a corresponding con-

TABLE VIII. Calculated rms Fermi velocity v {E~) (in
10~ cm/sec) and plasma energy @&&& (in eV) for three
values of the lattice constant a (a.u.).

10.0378
9.4760
9.0340

2.67
3.09
3.34

3.17
3.58
4.09

if the electron-phonon transport coupling constant
A,~, is known. Our calculated values of the mean-
square Fermi velocity v~(E~) and plasma energy
ad for La at three values of the lattice constant
are given in Table QIQ. It has been found that
X„=—X is often a good approximation. We use this
assumption here with the value A, =1.15 which is
necessary to account for the observed T,. The
calculated value of p& T~=138 p, Q cm compares
favorably with the value of 129 p, Q cm from the
empirical fits.

The value of p which we find is relatively
small for an element, even slightly smaller than
the value of 230 p, Q cm found for Nb (Ref. 62)
(T, =9.2 K). For Lu (Ref. 67), for example,
where deviation from linearity in p(T) is obvious
up to the melting point, we find p -400 p, A cm.
For A15 compounds, however, where T, -20 K
for some members, p~~ =130-150 p, Q cm. "4
At present there is no clear theoretical under-
standing of this constant parallel resistivity, if
indeed it is in any sense fundamental. A general-
ization of transport theory by Chakraborty and
Allen~ to include nonclassical interband scattering
suggests p may arise from an interband polar-
izability and may be related to the temperature
dependence of the band structure. There is no
evidence, however, that the unoccupied f bands
in La play any fundamental role in causing satura-
tion behavior.

The phonon-limited mean free path of the elec-
trons is given by
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tribution 1/r, to. the total scattering rate 1/r ac-
cording to Eq. (19), it follows from f =v(E„)r that

p is associated with a minimum (saturation)
mean free path l~&, ——4.5 A, which corresponds
closely to the latt;ice constant a = 5.3 A. A similar
agreement between f „and a holds for Nb (Ref. 62)
and for AI5.compounds. 64 Indeed, the logical
extension of this argument implies, for a metal
of lattice constant &, a maximum resistivity given

by

p = (3/e~)/[N(Ez)v (Ez)a] . (23)

This can be interpreted as a generalization of the
reciprocal of the nearly-free-electron formula of
Mott and Davis6~ for their minimum metallic con-
ductivity. %e have not investigated whether this
expression can be justified from experimental
data for other systems besides La, Nb, and A15
compounds.

C. Thermal anomalies

In this paper we have studied primarily the ef-
fects of pressure on the low-temperature (i.e.,
ground-state) properties of La. However, some
interesting thermal anomalies (besides the

resistivity) have been observed in La. Andresg

found a negative thermal-expansion coefficient in

the range T, & T &38 K in a predominantly fcc
sample. He noted further that such behavior in a
nonmagnetic metal is highly unusual, having pre-
viously been found only to occur in the diamond-
structure elements C, Si, and Qe. Eliseev &t

al. ~ also found a region of large negative thermal
expansion above room temperature. In addition,
the Knight shift~ and magnetic susceptibility6 show

considerable variation in the range 0 & T & 300 K.
The temperature variation of the Knight shift

and susceptibility, especially in high-temperature
superconductors, is often interpreted in terms of
thermal smearing of fine structure in the elec--
tronic density of states. This would be an espe-
cially attractive explanation in La, because
charley'0 has shown that smearing of fine struc-
ture can also lead, in certain cases, to a negative
thermal- expansion .coeff icient. Although we find

an exceptionally sharp and comparatively large
peak in N(E) near E„ in Fig. 3, it is too far above

Ez (5 mRy =750 K) to lead to any significant tem-
perature variation at low temperature. In addi-

tion, the slope [dN(E)/dE]~ z =14 Hy 'atom '

is 2 orders of mag-nit-ude smaEfew than in (for
example) Pd, "where it seems to be agreed that

temperature broadening is a primary source of
thermal anomalies.

Andres has pointed out on the basis of lattice
dynamics and thermodynamics, that a negative
thermal-expansion coefficient can result from
shear modes which soften under pressure. In
view of the observation with tunnelling of low-
frequency-phonon softening'~ under pressure
(albeit in presumably dhcp material), this ex-
planation seems the most probable at present.
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