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Local-mode approximations in the Frenkel-Kontorova or sine-Gordon chain
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Local-mode-approximation methods previously developed for the study of dislocation or kink dynamics in the

modified Frenkel-Kontorova model or sine-Gordon chain in the absence of viscosity are here extended to the case in

which viscous forces are present. It is found that the effect of viscosity is to increase the accuracy of the local-mode

approximation at T = 0 K. Computer simulation results are presented for the average dislocation velocity as a
function of applied stress for T & 0 K as well as for T = 0 K. The local-mode approximation leads to a pendulum

analogy, involving inelastic collisions between successive pendulums, which shows a close relation between the

Brownian motion of kinks in the sine-Gordon chain and the motion of a single Brownian particle in a periodic

potential.

I. INTRODUCTION

'The model of a linear chain of atoms intercon-
nected by linear springs and subjected to a sinu-
soidal substrate potential is now generally re-
ferred to as a sine-Gordon chain. It is currently
widely studied both because of its intrinsic mathe-
matical interest" and because of the large num-
ber of physical situations for which the model rep-
resents the simplest formulation which includes
the essence of the process. Areas of application
include one-dimensional ferromagnets with planar
anisotropy, "pinned charge-density waves, ' and
interfacial layers separating phases in a two-
phase' system. An extensive review is given by
Barone et at.'

An early —perhaps the earliest —use of this
model was made by Frenkel and Kontorova' for the
study of the dynamics of dislocations in crystals,
and in this field it is known as the Frenkel-Konto-
rova model. ' It has been used extensively in sub-
sequent studies of dislocations; a review of some
of this work may be found in the treatise by
Nabarro. "

A modification of the Frenkel-Kontorova model
was introduced by Kratochvil and Indenbom" and

by Weiner and Sanders" (hereafter referred to as
I) in which the sinusoidal substrate potential was
replaced by one defined by a piecewise quadratic
periodic function. " 'The modified Frenkel-Konto-
rova model is more tractable analytically than the
original version since its defining equations are
piecewise linear. At the same time, the use of
the piecewise quadratic substrate potential per-
mits the study of a broader class of potential
shapes ranging from cusped'4 or very sharp poten-
tial peaks to ones which are very broad. The dy-
namics of dislocations in the modified Frenkel-
Kontorova model has been studied extensively, ""
both analytically and by computer simulation tech-

niques. Most of the work has been at T = 0 K, but
some attempts have been made to incorporate
thermal effects.""Some s tudies have als o used
two-dimensional piecewise linear models for dis-
loc ations. "'"

The piecewise linearity of the modified Frenkel-
Kontorova model leads to linear difference equa-
tions with simple analytical solutions for the static
configurations of the atoms in the presence of a
dislocation or kink (I) and for the critical driving
stress required to move a dislocation quasistat-
ically from one equilibrium configuration to an
adjacent one. For the study of steadily moving
dislocations, the piecewise linearity of the model
has also permitted the use of integral transform
methods. Two phenomena of interest treated in
this way are (a) the ability of a dislocation in the
discrete model to move at particular velocities
(at T = 0 K) with no radiative losses (i.e. , no
"phonon wake") and no driving stress required, "
and (b) the breakdown of regular motion of the
dislocation when its velocity approaches the sound
speed in the chain. "'" The latter phenomenon has
also been studied by computer simulation in a
two-dimensional model. "

The nature of the normal modes of vibration of
the modified Frenkel-Kontorova model has been
studied in I and it has been found that, for a wide
range of parameter values, localized modes exist
whose magnitudes are large only in the vicinity of
the dislocation and that such modes exist when the
dislocation is in either the stable or unstable
equilibrium configuration. These localized modes
were used by Weiner" (hereafter referred to as II)
as the basis of an approximate analytical method
for the study of dislocation dynamics.

Much of the current research on the sine-Gordon
chain deals with its Brownian motion. For this
purpose, viscous and random thermal forces are
added and the defining equation of the model takes
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the form of a Langevin equation. One of the prin-
cipal purposes of the present work is to test the
utility of the local-mode approximation used in the
absence of viscosity in II when viscous forces are
present. A second purpose is to study, by compu-
ter simulation and within the Langevin equation
framework, the effect of thermal motion upon dis-
location velocities.

The plan of this paper is as follows: The defin-
ing equations of the model are summarized in Sec.
II and the local-mode approximation is reviewed
in Sec. III. It is used there to compute, as a func-
tion of the viscosity, the minimum stress required
to maintain the steady motion at T = 0 K of the dis-
location along the chain once it has been set into
motion. 'This stress, termed in II the dynamic
Peierls stress cr», is less than the Peierls stress
cr~ required to move the dislocation quasistatically
from one equilibrium position to an adjacent one.
Computer simulation techniques for the model
both for T= 0 K and T& 0 K are presented in Sec.
IV and results of calculations using these tech-
niques are given in Sec. V for T= 0 and in Sec. VI
for T& 0 K. C onclusions are summarized in Sec.
VII.

II. MODEL DESCRIPTION

As in the sine-Gordon chain, the model consists
of atoms which interact via springs of equilibrium
spacing b and spring constant k, and in addition are
subject to a periodic substrate potential of period
b. The particles are also driven by an external
field, here represented" as an applied stress c7.

The surrounding medium is regarded as a heat
bath and provides the source for thermal effects.
This heat-bath interaction is described by means
of a I.angevin equation in which the influence of
the heat bath on the chain is separated into two

parts: (1)a systematic part represented by pheno-
menological damping (with friction constant q), and

(2) a rapidly fluctuating part R(t ) which character-
izes the Brownian motion aspect of the system.

As discussed in Sec. I, the periodic potential is
chosen to be continuous and piecewise quadratic
having the form

(2.1)

In Fig. 1. , the horizontal line separates regions of
positive and negative curvature (henceforth re-
ferred to as wells and peaks, respectively). Thus,
x represents the distance from a well bottom and

Q is the distance to change of curvature. As
shown in Fig. 1, there is a portion of the chain in
which there is an extra particle relative to the

I

FIG. 1. Modified Frenkel-Kontorova model. Potential
is piecewise quadratic with periodicity b. Q is the dis-
tance to change of curvature. o is the applied stress on
each atom. Atoms subject to potential with negative
curvature (above the horizontal line) are referred to as
weak-bond atoms; those below the line are referred to
as strong-bond atoms.

number of availa, ble potential wells. In the con-
figuration shown, the extra atom appears on a
potential peak. What is of interest is the dynamics
of this configuration.

Thus far, the model has been described in rather
general terms. At this point we make the connec-
tion to dislocations both because of previous de-
velopment and for the physical insight that may be
obtained from such a viewpoint. However, it
should be emphasized that what follows is not de-
pendent upon the dislocation picture and can be
applied as well to the other physical situations
mentioned in the Introduction.

In this context then, we are describing a modi-
fied Frenkel-Kontorova model of an edge disloca-
tion. ,The linear chain represents the slip-plane
atoms, the periodic potential depicts the effect of
the remaining atoms in the crystal (in the original
Frenkel-Kontorova model this substrate potential
was sinusoidal), and the atom on the substrate po-
tential peak in Fig. 1 indicates the dislocation po-
sition. 'The external field c7 is representative of an
applied shear stress. 'Thermal effects in the
crystal (i.e. , the thermal vibrations of the crystal
atoms surrounding the shear plane) are modeled
by the heat bath whose interaction with the slip-
plane atoms is described by the Langevin ap-
proach. Our interest lies in the propagation of the
dislocation down the length of the chain under
varying conditions of stress, viscosity, and
temperature.

From this model we obtain the following equa-
tions of motion for the ith atom:

+I'(x, )+ (x+R;(t ), E(x;)= -dU(x;)/dh,

(2 2)
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As usual, the superposed dot will be used to de-
note differentiation with respect to time, and the
rapidly fluctuating force term R;(t ) is assumed to
be distributed in a Gaussian fashion with mean and
covariance

(R, (t )) = 0, (R, (t )R, (t ')) = 2qksT5(t t ')—, (2.3)

with k~ denoting Boltzmann's constant. Employing
the following dimensionless variables:

x; =x;/k, o =F/k, b, y = Q/b,

P = k ik, q = 2yP/(1 —2y), f = (k, /m)" 't,
(2.4)

T=ksT/(k, b') q= (k /m)' 'q

the defining equation of the model takes the form

X; = —'gx; +x;,i —2 x; +x;,+E(x; ) + Pg +R, (t).)
(2 5)

E(x, ) =

S: t,&t&t,

U: t,&t&t,

FIG. 2. Sequence of atom states during disIocation mo-
tion. Stable states, S and S', are ones in which there is
one weak-bond atom. Unstable state U has two weak-
bond atoms.

where $, is the position of the ith atom relative to
the nearest well with the sign chosen for $; posi-
tive or negative, respectively:

(R;(f))= 0,
(R;(t)R;(t')) = 2qT5(t —f') .

III. LOCAL-MODE APPROXIMATION: T = 0

For T = 0, the fluctuating term R;(t) in Eq. (2.5)
is absent and we have a purely deterministic set of
equations to describe the chain. Except for .the
presence of the viscous force, this is the same
situation as encountered in I and II. Following the
nomenclature of I, we shall refer to atoms in wells
as strong-bond atoms and to those on peaks as
weak-bond atoms. The number of weak bonds for
a dislocation in static equilibrium depends on the
parameters P and y. As shown in I, for a. given
set of P and y there exist two. equilibrium config-
urations for the dislocation. One, with N weak
bonds, is a stable equilibrium configuration. The
second, withe +1 weak bonds, is an unstable
equilibrium configuration. This situation holds as
long as the applied stress a is less than a critical
stress vs, (termed the Peierls stress in dislocation
theory); for a = a~ no stable equilibrium solution
exists. Calculations for the positions of the atoms
in the two equilibrium configurations are presented
in I and, being static calculations, they are unaf-
fected by the inclusion of viscosity.

In this paper we confine attention to parameters
P and y such that" R =1. As described in detail
in II, the dislocation propagates along the chain
by undergoing a succession of transitions from
stable (S) to unstable (U) states (Fig. 2), where the

terms stable and unstable refer only to the number
of weak bonds present in each period. Following
II, we describe the motion of the atoms during the
time intervals when the chain is in an S(U) state,
in terms of their displacements from the stress-
free stable (unstable) equilibrium positions calcu-
la.ted in I. This enables us to write the equations
of motion in the following form:

q; +gq; + S;&q& =Per, t, &t&t, . (3.1a)

(3.1b)

WeletX~, +=0, 1, 3, . . . , equal the eigenvalues of
the matrix S;& and let a

&
be th4 associated unit

eigenvectors. The eigenvalues are ordered in in-
creasing magnitude and a,. is the displacement of
the jth atom in the nth mode. Similarly, we let

and a,- be associated with U,.&. Introducing the
normal coordinates

where q, ' is the displacement from the stable
(unstable) stress-free equilibrium configurations
appropriate to the time period. S, ,- and U,-,. are the
potential-energy matrices of the system when it is
in a stable or unstable state, respectively. When
the weak-bond atoms correspond to i = 0 in the
stable state and to i = 0, 1 in the unstable state,
they take the form

S;,=2+P' 121 0, U, , =2+P

Soo= 2-@=Uoo=Uii
3.2
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qS QsSqS qS aS S (3.3a) dU

qU QUUqU U aU U (3.3b) S(t ) Bl/2q U

we can write Egs. (3.1a) and (3.1b) as

QN + rt@pf+ X(fQ~ = PU Q a~;, t, & t & t2 (3.4a)

Q + gQ + A Q =PU pa, , t &t&t . (34b)

As noted in II, for a wide range of parameter
values, the eigenvectors ao,. and ao,. correspond to
localized modes, i.e. , they have appreciable
magnitude only in the vicinity of the dislocation.
These localized modes aos&(a») correspond to the
minimum eigenvalue &, &0(X, & 0) in the S(U) state.
As discussed in greater detail in II, this allows us
to make the approximation in the vicinity of the
dislocation (i.e. , for small ~g

~

) that

(3.5a)

q) = a~~Q0, t2& t& t3 . (3.5b)

With the use of these relations, it is possible to
develop (as described in II) an approximate for-
mulation for the dynamics of the dislocation solely
in terms of the localized modes. We refer to this
approximation as the local-mode approximation
(I.MA) and it is.one of the purposes of this paper
to explore its accuracy in the presence of viscosi-
ty and thermal motion.

In II, the total traverse of each localized normal
coordinate is shown to be

d =@S(t,) -q S(t,) = 2qS(t, )/aS, ,

dU =9;(t.) —Q.'(t, ) = —2q', (t,)l~U, .
(3.6a)

(3.6b)

a a t =B' ' t (3.7)

where

(3.8)

Similar equations are found for the next transition
time t, and for succeeding transition times.

This leads to the interpretation, first shown in
II, that we may regard the local normal coor-
dinates as describing the motion of a series of al-
ternately suspended (stable) and inverted (unsta-
ble) pendulums that are subject to a constant force
and which transfer energy to their successors

Also, since qjs(t) and qU(t) differ only in their fixed
references, q~~(t)=q&~(t) and therefore

~0 (tl) ~0 (~2) ~0 (~8) ' ~0 (~4)

FIG. 3. Pendulum interpretation of the motion of the
localized modes through stable -(S) and unstable (U)
states. The motion of each successive pendulum is ini-
tiated by an inelastic collision with its predecessor, with
the momentum transfer reduced by B [Eq. (3.7)].

through inelastic (since B& 1) collisions. In the
present treatment the pendulums are, in addition,
immersed in a viscous fluid (Fig. 3). This pendu-
lum analogy should not be confused with the mech-
anical analogy frequently used for the sine-Gordon
chain in which an angle variable is used for the
displacement of each particle and the chain then
corresponds to a system of torsion-coupled pen-
dulums. Here the pendulums correspond to the
local normal coordinates and are coupled to each
other only through inelastic impacts at transition
times.

Dynamic Peierls stress

As shown in I and II, there are two critical
stresses associated with the model. One previ-
ously mentioned is the Peierls stress (U~). In ad-
dition to the earlier definition, it may also be re-
garded as the stress required to move the disloca-
tion quasistatically from one stable equilibrium
position to an adjacent one. Clearly, the value of
this critical stress is unaffected by the presence
of viscous damping. However, as pointed out in
II, once the dislocation has crossed one potential
barrier, continued motion is possible at lower
stress levels. The minimum stress necessary to
maintain dislocation motion is termed the dyna-
mic Peierls stress (o'») and is calculated in II
for the case of q= 0. For nonzero g, the value of
cr» increases as there is now another mechanism
for energy loss in addition to the inelastic trans-
fer of energy during transitions between S and U
states.

To compute the effect of viscosity upon 0» on
the basis of the local-mode approximation we
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t=o
t=t2

q,"(o)=o
q,"(ol=o q, '(t,)=—diaz

(t )=B Q "(t,)

I

&o,(t2}=-d
Qo (t,)=B'

v/ v/

FIG. 4. Employment of the pendulum analogy to calculate o»(p). This is the stress that wi11 move the penduIums
through the sequence (1)-(2)-(3) and provides a local-mode approximation for the minimum stress required to sustain
dislocation motion once motion has been initiated.

+ (p, —4 +We"' —0 e"2),A t t

u, u.(~, —~,)

(s.oa)

Q,(t) = [P,(xo@2 -uo)e" 2' —P, 2(xone, , -u, )e'2']
1 2

+ (e "~ —e~2 ),A t t
(u, —u.)

(3.9b)

where, during a period corresponding to a stable
state,

~
2I ~ (~ q2 (g2)1/2

A=Pga =Po a~.
S P p S Of

(S.loa)

and during a period corresponding to an unstable
state,

proc'eed as follows. Since 0» is the stress just
sufficient to continue dislocation motion, we see
from the pendulum analogy that the problem of
calculating o» is equivalent to determining the
stress necessary to produce the following process
(Fig. 4). We start the first unstable pendulum in
its upright (Qoe= 0) position at t = 0 with zero veloc-
ity and let it strike the stable pendulum which then
hits the next unstable one. 0» is then the stress
such that the second unstable pendulum arrives at
its upright position with zero velocity.

The solutions to Eqs. (3.4a) and (3.4b) during
each time period are (omitting superscripts S and

U),

1
Q,(t) = [(xoP2-uo)e"~' —(xone. , -u )eo»']

P g, 2
= —2 '0 + (4 '0 + ~V)

A =Paa = Pv. a~.
v 0~ pf

(3.10b)

x, = Q,(0) and u, = Q, (0) are the starting positions
and velocities for Qo2

u for each time interval.
Since Qoe(0) and Qo~(0) are known, Eq. (3.9a) pro-
vides Q, (t). Then t, is determined so that Q, (t,)
=-2'd~. This enables us to obtain Q, (t,) =8' 'Q, (t, )
and calculate Qoe(t) for t& t, ; t, is then determined
and so forth. The equations-for t, and t, are
transcendental and are solved numerically using
a bisection method. As a further simplification,
we do not need to calculate t, since we know that
the coefficients of the growing exponential must
be zero in order for Q, (t, ) to arrive at zero,
where U' denotes the unstable state which starts
at t = t, . Thus we have

P&m~/p~=x~p~'-ue' (3.11)

as a criterion for o»(ri).
The computation procedure used was to begin

with a particular stress, calculate t, and t„and
evaluate Eq. (3.11). If the difference between the
left- and right-hand sides was greater than 1.0
x 10 ', the stress was changed accordingly and

t, and t, recalculated until the zero criterion was
met to the desired accuracy.

'The results of this calculation may be seen in
Fig. 5. As a check, the value obtained analytically
in II for o»(q = 0) is 3.06 x 10 ' for P = 0.5 and
y= 0.3, and the above procedure yields the same
result. It is also seen from this figure that the
value of a» computed on the basis of the LMA ap-
proaches a constant value for large q. 'The limit-
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FIG. 5. Characterization of dislocation motion in
terms of the stress and the viscosity for T= 0 K. Re-
gion I has only "locked" solutions, region II has only
"running" solutions. Region II has both running and
locked solutions, depending on whether the initial chain
configuration was stable or unstable. Regions II and III
are separated by the Peierls stress oz, and regions I
and II are separated by the dynamic Peierls stress 0&~,
whose value depends on u p$,n is. the limiting value of
cr&D for large g as computed on the basis of the local-
mode approximation. The computer simulation employed
a time step &t= 0.07, with the propagation or nonpropa-
gation of the dislocation being determined by graphic
display of atomic trajectories.

ing value may be computed analytically by neglec-
ting the inertia term in the equation of motion for
Q, , Eq. (3.4b}, so that it takes the form

i}Q,(t) —aUQ, (t) =Pea~ . (3.12)

'fhe solution to Eq. (3.12) with initial condition

Q, (0)= --,'dn is

p'l I
(d COU U

and it is seen that continued motion is not possible
if cr& cJ~D where

o~pn ~2~do/(2Poao) = 0.0154

for the given parameter values. cr~D is, therefore,
the limiting value of cr» for large g as computed
on the basis of the LMA. On the other hand, it is
to be expected that for large g, o» should ap-
proach crp, for the latter is the stress required to
move the dislocation quasistatically along the
chain. Shown also in Fig. 5 is the exact value of
0~ computed on the basis of the theory of I. The
slight discrepancy between a~D and o~ is a mea-
sure of the accuracy of the local-mode approxima-
tion. 'The accuracy of the approximation for cr»
for small q will be discussed in Sec. V on the
basis of computer simulation calculations.

We see from Fig. 5 that there are three regions

FIG. 6. Stress dependence of steady-state dislocation
velocity for &= 0 K; comparison of local-mode analysis
and numerical calculations for three values of g. For
the numerical calculations, a time step 6t= 0.07 was
employed, an induction period of t= 30 was allowed for
steady-state conditions to develop, and velocities were
obtained by Eq. (5.2) with a period of t= 50. If one con-
siders a simple harmonic oscillator in a well of curva-
ture ~0, then for these units and parameter values criti-
cal damping is given by p= 0.75.

separated by cr» and o~ that characterize the dis-
location motion: In region I there is no dislocation
motion. This is termed a "locked" solution by
Vollmer and Risken" in their treatment of a single
particle in a periodic potential. In region III, dis-
location motion occurs (termed "running" solution}
and in II, locked and running solutions coexist de-
pending on whether the initial conditions corres-
pond to the dislocation starting from rest in a
stable or unstable equilibrium configuration.

B. Steady-state dislocation velocities

The localized-mode approximation can also be
used to calculate the steady-state dislocation
velocities in the regions in which they exist. In
this case, for o& o»(q}, the motion of a succes-
sion of pendulums is calculated by evaluating t„
t„and t, (Fig. 4) as in determining v», but with
the stress maintained constant and with the motion
allowed to continue to the next pendulum. This
computation is continued until steady-state condi-
tions are reached, at which point the dislocation
velocity is given by (t, + t, + t, ) '. The results may
be seen in Fig. 6. We defer the discussion of
these results to Sec. V, where they will be com-
pared with computer simulation calculations.

IV. COMPUTER SIMULATION

In order to evaluate the accuracy of the local-
mode approximation, we need for comparison a
solution that takes into account all of the normal
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modes. This is obtained by the direct numerical
solution of the equations of motion, Eqs. (2.5).
For T= 0, a finite-difference method was used to
compute o~v(q) and the dislocation velocity as a
function of applied stress, and for T& 0 a modified
Hunge-Kutta method was adopted.

A. T= O'. Finite-difference method

In this approach, a finite-difference approxima-
tion was used to solve Eqs. (2.5) in which, for a
given time step 6t, the acceleration and velocity
of each atom at time t = nest are given by

(4.4)

'This sum can be truncated for sufficiently large
m, m&m~ as v, -n, '-0. A similar approxi-
mation was used for Eq. (4.3b).

B. T) 0: Modified Runge-Kuttamethod

In this approach we used a lunge-Kutta technique
adapted to stochastic differential equations as de-
veloped by Helfand. " The procedure (presented
first for a single equation for simplicity) is as
follows. To solve

x,". = (x,". "—2x."+x."')/(5t)'
xtl —(x it+I xtt)/(5t)

(4.la)

(4.lb)
dy /dt =f(y ) + R (t),
(R(t))=0, (R(t)R(t ))= (5(t-t ),

(4.5a.)

(4.5b)
where x,"=x;(n5t).

End conditions were treated as by %einer et
al. ,"where the motion of the "end-plus-one"
atoms was determined by a convolution integral in-
volving the motion of the "end" atoms and the
propagation of a small displacement in a semi-in-
finite chain. This procedure is made possible by
the localized nature of the dislocation, so that the
equations of motion for the atoms in the outlying
areas of the chain are linear. Therefore it is only
necessary to simulate explicitly a finite chain,
atoms indexed i =1 to N, and to use the convolution
theorem to express the motion of atoms i = 0 and
i=N+1 in terms of atoms i=1 and N, respectively.
This procedure is implemented as follows. First
consider a semi-infinite chain with defining equa-
tions

Helfand derives the algorithm

g f(y + 5t—l/2)1/2g g )

g, =f(y o+ 5tPg, + 5t'/'$'/'Ap ),
y =y, + 5t(A, g, +A,g, )+ 5t'/'&'/'Xp .

(4.6a)

(4.6b)

(4.6c)

A =A = —,
' P=1]. 2 2y

X, =0, X,=1.
(4.7)

The generalization to a system of 2N equations
(where N= the number of atoms) is done by con-
sidering y, A, and f as vectors of length 2N with
elements

z is a Gaussian random variable with mean zero
and variance unity generated at each time step 5t.
'The constants are

v =v „-(2+P) +v, -qv, k-0
v~(0) = v, (0) = 0,

v,(t) =1.

(4.2b)

(4.2b)

(4.2c)

Equation (4.2a) describes the displacements of the
atoms of a chain in which the atoms remain in the
harmonic region of the substrate potential. By use
of the convolution theorem it then follows that

~

~x;, i odd

x;, i even
(4.8a)

R;(0), i odd
R;=

~

~

0, i even
(4.8b)

x;„—2x, +x, , -qx,. +Po+E(x, ), i odg

i even

~ ~

t
u„„(t)= J u„(t -r)v, (7')dr,

0
(4.3a) )=2qT.

t
u, (t) = u, (t r)v, (r)dr—,

0
(4.3b)

where u;(t) is the displacement of the ith atom
from the minimum of its substrate potential well.
Equations (4.3) were used to provide x,(t) and

x„„(t)for Eqs. (2.5) and thereby to simulate an in-
finite chain.

Equations (4.2) were solved using the finite-dif-
ference method and values for v,"=v, (nbt) were
stored. 'The integrals were evaluated by the ap-
proximation

In this form, y, R, and f when substituted into
Eqs. (4.5) yield Eqs. (2.5). End conditions were
treated as before, where, within a time step 5t,
the end-plus-one atoms xp and x„„were kept fixed
for calculating the end components of g, and g»
with new values for x, and x„„calculated for the
next time step. This procedure does not precisely
mimic an infinite chain for the case T& 0 since
random force effects are not included for the two
semi-infinite linear chains treated by the convolu-
tion integral. However, this effect should be
small for sufficiently large N and check calcula-
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tions did not reveal any significant size effect.
As a check on Helfand's method, trajectories

and time-averaged velocities were calculated for
single particles in a harmonic well. For suitable
time steps and averaging over a sufficient number
of replicas, the agreement with the exact solution
was good. Results of the computer simulation
calculations both for T = 0 and T& 0 are presented
in Sec. V.
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B. Dislocation velocity

To determine dislocation velocities for a given
q, a stress o& o»(q) was chosen. Initial atom
positions were those of the unstable equilibrium
configuration for that stress, and initial velocities
were zero. The simulation was allowed to proceed
until a steady-state condition for the dislocation
motion was reached. As a measure of dislocation
velocity, we used

v (t)=g x;(t). (5 1)

Equation (5.1) may be justified on the basis of ar-
guments as in Sec. IV of I. To remove fluctua-
tions, we used a time-averaged velocity given by

(v (t)) = — gx;(t)dt = —g[x;(t) -x;(0)).
0

(5.2)

A representative plot of (vv(t)) is given in Fig. 7
for 0 = 0.0080.

The above procedure was repeated for various
values of o and for values of g=0.0, 0.1, and 0.2.
Plots of the steady-state dislocation velocities

V. NUMERICAL CALCULATIONS: T= 0

A. Dynamic Peierls stress

Using the finite-difference method described in
Sec. IV, we determined o~v(ri) in the following
manner: For a given g, a stress o was chosen and
the configuration corresponding to unstable equil-
ibrium under the applied stress cr was used for the
initial atom positions; initial atom velocities were
zero. The motion of the atoms was then allowed
to develop as dictated by Eqs. (4.1) and (2.5). If
the dislocation moved over one or more wells, the
stress was considered above a» and designated
0 . Similarly, if the dislocation remained in its
initial well, the stress was below 0» and desig-
nated v . This process was continued until a nar-
row bracketing was achieved with the result that
g &a»&cr'. The values of 0' and 0 are presented
in Fig. 5. The agreement with the values of 0»
obtained by the localized-mode approximation was
very good.

0.08

0 ~ I I

0 100 800
t

I I I I I I I I I

300 400

FIG. 7. Examplf of the time development of the dis-
location velocity at T= 0 as obtained by computer simu-
lations. The calculation used the Hunge-Kutta method,
Eqs. (4.6)-(4.8), with T' set equal to zero and a time
step of &t=0.05. Velocities were obtained by Eq. (5.2).

C. Dislocation velocity in original Frenkel-Kontorova
model

A natural question which arises is the degree to
which the behavior of the modified Frenkel-Kon-
torova model, for an appropriate choice of para-
meters, approximates the behavior of the original
Frenkel-Kontorova model. For this purpose,
computer simulation calculations were performed
to determine the stress dependence of dislocation
velocity in the original model, that is, one identi-
cal to the modified model except that the substrate
potential is given by

V(x) = {Py/2w){1 —cos2vx)

in place of Eq. (2.1). The method of calculation,
except for the definition of the potential, was
identical to that employed for the modified model.
The results are shown in Fig. 8 where they are
compared with the local-mode approximation to
the modified model with parameter values I' = 0.75
and y= 0.25, and it is seen that the agreement is
very good. The choice of parameter values was

(vv) as a function of stress are shown in Fig. 6.
We note that for all values of g the agreement with
the local-mode approximation is fairly good and
the agreement becomes excellent for g= 0.2. We
also note that there is a departure at higher stress
levels from the LMA for all three values of q
(though the departure is difficult to see for q= 0.2).
We believe that the departure is due to the loss of
dominance of the localized mode due to the activa-
tion of higher modes. &Increased viscosity seems
to cause damping of these higher modes and re-
stores the localized mode to being the controlling
factor in the dislocation velocity.
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FIG. 8. Results of local-mode approximation to origi-
na1 Frenkel-Kontorova model or sine-Gordon chain as
compared with computer simulation results for disloca-
tion or kink velocity as a function of app1ied stress.

dictated by the following consideratioris. It is
clear that y=0.25 provides the best fit, as far as
the applied force is concerned, of the piecewise
quadratic function of Eq. (2.1) to the sinusoidal
potential (Fig. 9). The value of P=0.75 was then
chosen to lie in the range of parameters which
leads to a single local mode in both stable and un-
stable equilibrium configurations.

VI. NUMERICAL CALCULATION: T & 0

—() ( -)' b. ( -)'
40 2 4o

(6.1)

—FORCE FROM SINE POTENTIAL

WISE QUADRATIC

FIG. 9. Comparison of force derived from sine poten-
tial and that derived f'rom the piecewise quadratic po-
tential.

For T& 0, the modified Bunge-Kutta method des-
cribed in Sec. IV was used. The temperature lev-
els studied were chosen in relation to the energy
barrier (at zero stress) between a stable and un-
stable configuration. In I this energy barrier was
calculated to be

Introducing the dimensionless energy barrier E~,

E~((x)=Es(o)l(kgb'),

and for the parameter values used in the calcula-
tions (P=0.5 and y=0.3), E~(0)= 0.00178.

In determining the initial conditions with which
to begin the simulation, different considerations
apply in the three stress regions. (a) For o &a»
it is clear from the preceding discussion that the
occasional surmounting of potential barriers with
the aid of thermal activation is necessary in order
for the dislocation to achieve some average steady-
state velocity. Thus, it is immaterial from a
theoretical point of view as to whether or not the
simulation is begun in the stable or unstable con-
figuration. However, from a practical point of
view, one sees that a simulation begun iri the un-
stable Configuration, because of its dynamic in-
stability at the crest of a potential barrier, has a
strong probability of.either being greatly assisted
or greatly hindered by the thermal motion in its
early time development and therefore requires a
longer time to come to a steady-state condition.
For this reason, the simulation was begun in the
stable configuration for a&a~~. (b) For v»&o
& o~, continued dislocation motion is possible
without thermal activation if the dislocation begins
from ari unstable configuration, although it may
get stopped by adverse thermal motion and require
thermal activation for restarting. Thus there is
again the choice of starting from either a stable or
unstable equilibrium configuration. Although the
two should converge ultimately to the same steady-
state value, the approach appeared more rapid
for the cases in which the dislocation began from a
stable equilibrium configuration, and this initial
condition was used in this stress interval as well.
(c) For g& o~ the simulation must be started with
o & o~ and slowly increased to the desired value
since there is no equilibrium configuration for
a& cd. Again, ,the initial configuration at the start-
ing stress is chosen as stable. All atomic veloci-
ties are taken to be zero at the start of the com-
putation.

Dislocation velocities were calculated as in
Sec. V. However, it was found necessary to aver-
age over an ensemble of replicas of a chain. The
numerical computations for each replica were be-
gun with the same initial conditions but with a dif-
ferent seed for the random-number generator.
The need for averaging is due to the fact, as pre-
viously noted, that thermal effects can halt dislo-
cation motion (or even reverse it temporarily)
aiid thus it must be thermally activated to begin
motion again. These effects can be seen in Figs.
10 and 11 where for a single replica of the chain
we have plotted atomic trajectories and the time
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FIG. 12. Stress dependence of dislocation velocity for
T= 0.0008 and g=0.2. The computer simulation used a
time step of ~t= 0.15. Each simulation run employed be-
tween 10 and 100 replicas with their velocities calculated
by Eq. (5.2). These velocities were then averaged over
the replicas to produce a mean velocity for that simula-
tion run. For each stress, several runs (at least two)
were performed. The resulting mean velocities for the
runs for a particular stress were weighted in proportion
to the number of replicas for that run, and then averages
and standard deviations calculated. The error bars indi-
cate these standard deviations.
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FIG. 10. (a) Atomic trajectories for a single replica
of the chain for T= 0.0008, q = 0.2, and o.= 0.005. Note
that o. & opD for this case. The chain has 40 atoms with
the dislocation initially in the sixth well. (b) Enlarged
trajectory of the 12th atom of the chain shown in (a).

development of the velocity. 'This effect is most
predominant at low stresses where thermal motion
is essentially the sole activator of dislocation
motion and hence the largest number of replicas
were used here.

In Figs. 12 and 13 we have plotted dislocation
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FIG. 11. Time development of dislocation velocity for'
the single replica of the chain shown in Fig. 10(a). The
computer simulation used the Bunge-Kutta method, Kqs.
(4.6)-(4.8), and employed a time step of ~t= 0.15. Vel-
ocities were calculated as in Eq. (5.2).

FIG. 13. Stress dependence of dislocation velocity for
7.'= 0.0004 and &=0.2. In this case in general, only a
single simulation run was made at each stress level,
with between 10 and 50 replicas for each run. Error
bars denote the standard deviation for the ensemble of
replicas. To examine the effect of enhanced velocity at
elevated temperature at o.= 0.0125 and 0.0130, additional
computer simulation runs were made and error bars
calculated as described in the caption for Fig. 12.
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velocity versus stress for g=0.2, T=0.008, and
T=0.004. The solid line represents the T= 0 so-
lution as developed by the computer simulation.

VII. CONCLUSIONS

The following conclusions can be drawn from
the present work.

(1) The local-mode approximation may be used
when the model parameter values are in the range
for which there is a single localized mode in both
stable and unstable equilibrium configurations and
it provides a transition from the sine-Gordon
chain, with an infinite number of degrees of free-
dom, to a system with a single degree of free-
dom. " With Brownian motion included, this ap-
proximation provides, therefore, a close analogy
between the sine-Gordon chain and the model of a
particle undergoing Brownian motion while subject
to a periodic potential and to an external driving
force. 'The latter model has been studied exten-
sively in its own right as a model for the diffusion
of impurity atoms in a crystal, "for the study of
superionic conductors, and for its intrinsic inter-
est. ' Although the analogy is close, it is not
complete since a residue of the many degrees of
freedom of the sine-Gordon chain remains in the
inelastic collisions of the pendulum analogy (Fig.
3) suggested by the local-mode approximation.

(2) The local-mode approximation gives accurate
results" (Fig. 5) for the computation of o'»(q), the
stress required at T = 0 K to maintain dislocation
motion once it has been initiated in a medium of
viscosity q.

(3) The local-mode approximation gives accurate
results (Fig. 6) for the steady-state velocity
achieved by a dislocation at T = 0 K when it starts
under a constant applied stress from ag unstable
equilibrium position. The accuracy is particularly
good at low stress values while at higher stress
levels it appears that other modes are excited.
The agreement becomes better as the viscosity is
increased, apparently because the higher-frequen-
cy modes are then suppressed.

(4) Computer simulation calculations were also
performed to determine steady dislocation veloci-
ties at T = 0 K as a function of applied stress for.
the original Frenkel-Kontorova model or sine- -=-~

Gordon chain, in which the substrate potential is
sinusoidal rather than piecewise quadratic as in
the modified model. The computer simulation re-
sults were compared with the local-mode approxi-
mation for the corresponding modified model and
the agreement (Fig. 7) was found to be very good.

We see, therefore, that for a suitable choice of
parameters, the modified Frenkel-Kontorova mod-
el provides a good approximation to the original
model or, equivalently, to the sine-Gordon chain
and that the local-mode approximation may be
applied to either.

(5) Computer simulations of the model for T
& 0 K were also performed (Figs. 12 and 13). For
stresses below oJ,D(q), steady dislocation motion
is not possible at T = 0 K. For T& 0 K, thermal
activation produces an average dislocation veloci-
ty which increases with stress and temperature.
For stresses above a», the general effect of
thermal motion is to decrease the velocity from
the corresponding value at T= 0 K. This is in
agreement with the usual picture of the effect of
temperature upon a steadily moving dislocation,
an effect usually described as due to phonon drag.
However, the computer simulation results reveal
(Figs. 12 and 13) that at high stress levels there
is a small stress range (at -o= 0.014) in which
thermal effects appear to increase the dislocation
velocity. This may be due to the phenomenon of
"thermal energy trapping, " a process discussed
previously by Weiner"'" and Partom. " However,
the observed effect in these calculations is very
small and further work is necessary before unam-
biguous conclusions can be drawn.

As noted in the Introduction, the sine-Gordon
chain is used as a model for many different physi-
cal situations. To some extent, the nature of the
physical problem dictates the type of questions
considered and, of course, the terminology in
different fields for the localized entity (domain
wall, dislocation, kink, etc.), for the particle
displacement (linear or angular), and for the
driving force (applied torque, stress, magnetic
field) varies. Nevertheless, the underlying mathe-
matical structure of the model is common to all
applications, and techniques developed for use in
one area may prove useful in others.
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