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Nonlinear effects in two-dimensional superfluid ~He
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A nonlinear finite-amplitude density-w ive-propag ition equ ition in two-dimension il superfluid
He is derived. Though this equation is similar to that investigated by Huberman, it differs in

the coefficient of the nonlinear term of the Korteweg —de Vries equation used by him. The con-
ditions are studied for the propagation of solitons in thin superfluid films it low temper futures.

Possible experiments are discussed to test the predictions of the theory.

A great deal of understanding of the properties of
two-dimensional 4He films has been attained during
the past decade. ' The most striking among these is

the third-sound phenomenon orignally proposed by
Atkins. ' It has established the superfluid nature of
two-dimensional helium films. On the theoretical
front, Landau's theory of quantum hydrodynamics
was generalized to the regime of two-dimensional su-
perfluids. ' The linearized equation of motion
correctly predicted the propagation of third sound and
its temperature dependence in such helium films. '
The recent spectacular observation4 is the universal

jump in superfluid density at the transition tempera-
ture predicted by two-dimensional theories' of super-
fluid 4He films. There are indications of the finite-
amplitude nonlinear effects taking place in low-

temperature superfluid thin films. ' At larger super-
fluid velocity amplitudes the shock-wave effects are
observed in thick saturated films. While at low tem-
perature, in thin films, an undistorted pulse propaga-
tion is observed. Recently, a theoretical formalism
for the possible nonlinear excitations in monolayer
superfluid 4He films has been developed by Huber-
man. It was found that the nonlinear effects can
lead to existence of gapless solitons made up of su-
perfluid condensate. The conditions for the propaga-
tion of a solitary wave in such films were derived.
These results are based on a conjectured nonlinear
superfluid density equation. The aim of this paper is

to present a systematic theoretical derivation of the
nonlinear superfluid-fluctuation-density equation
starting from the generalized version of Landau
theory of two-dimensional quantum hydrodynamics.
We find that the nonlinear term is different from that
used in Ref. 6. It changes the conditions required for
the propagation of a solitary wave in monolayer su-
perfluid 4He films.

The observed T' dependence of the square of the
sound velocity at low temperature T suggested the
two-dimensional spectrum of Landau elementary ex-
citations. ' Assuming the existence of superfluid con-
densate wave function (complex order parameter)

p(x, I ), the following phenomenologieal equation of
motion for the monolayer superfluid motion w ~s pro-
posed by Rutledge et al. ':
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where»~ is the mass of the helium «tom, A and
a (A =14 K and a =1.2 atomic layers) are con-
stants of van der Waals interaction, p, and B are the
chemical-potential and the surface-tension constants,
respectively. The vector x is a two-dimensional vec-
tor in the monolayer superfluid helium film. The su-
perfluid surface density is p( x t) = ~i(i( x. .t ) ~'. As we
are interested in finding the propagation of density
waves on the two-dimensional surface, we may as-
sume a general form of p( x, f ) = p( n x, t ) „where n

is a constant unit vector in this plane, along which
the solutions will propagate. For the sake of simplici-
ty in notation, we denote x = n x. With the chosen
form of P(xt) =p(x, , t ) exp[i @(xt)],wher, e p and

it are real functions, one easily obtains the equations
of motion for p and @ from Eq. (l),

and
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We have defined superfluid velocity u = (t/m )
x (B@/Bx). By differentiating Eq. (3) with respect to
x, it can be put in a more convenient form .
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and
p(x, t ) = p(X —C3t, t ) —= R (X, t )

u(x, t) =u(X —C3t, t) =—V(Xt) (5)

In searching a solution of Eqs. (2) and (4) character-
izing the density-wave propagation, it is convenient
to make the following coordinate transformation'
X =x+C3( and ( t so that

The constant C3 will be found later. Equations (2)
and (4) then take the forms

+C3 + (R V) =0
9( Qx Qx

and

(6)

QV C QV V/V h~ g 1 QR 1 g R
Bt BX BX 2m BX 4R BX) 2R BX

8 BR+33 9R 1

ltl BX t11 BX (a +R )

(8)

The solution we are looking for corresponds to a uni-
form liquid-helium density at rest; on the average su-
perimposed on it is a characteristic collective density
oscillation mode propagating through the two-
dimensional liquid. Let us make a scaling transfor-
mation'

X ~ 61/2X ( 63/2(

In Eq. (9), po is the average uniform-surface super-
fluid density. Using Eqs. (8) and (9), the expansion
in powers of e't' of Eqs. (6) and (7) is carried out.
The following equations are then obtained by equat-
ing to zero the coefficients of the two lowest-order
terms e'' and ~''

The long-wavelength approximation of Eqs. (6) and
(7) then can be carried out by expanding R and V in

powers of the small parameter e consistent with the
above restrictions. This leads to

R = po+ep)(Xt) +e',pp(X, t) +

~pi 6
C3 + (pou ) =0,
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and

V = eu~(X, t) + e'up(Xt) +, (9)
Bp~ Bp&+ C3 + (poup+ pius) =0
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(12)
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From this one obtains

3A pi
mCq (a +po)

(14)

It is straightforward to solve Eqs. (10) and (11) with
the boundary conditions that both p~ and v~ go to
zero as X tends to infinity. It gives

Bpt C3{po 3a ) Bp~+ p) +
Bt 2po(a + po) BX

& + "»&~po ~ p =0
8m C3 8X

I
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~

in the resulting equation can be expressed in p ~

using Eq. (14). The final expression for the equation
of motion of the density fluctuation p~ comes out to
be

C3 = 3A po/m (a +pp)' (15) (16)

There are two solutions corresponding to C3 being
positive or negative, which we denote by C3 = + Co
(Co )0). The coordinate transformation in Eq.
(5) is correspondingly indicated by R+ and R
res'pectively. The choice of R corresponds to the
coordinate frame used in Ref. 6. This expression of
the adiabatic velocity is the same as that obtained in
Ref. 6 for the ordinary dispersionless third-sound
mode, It is interesting to note that the unwanted
terms p, and u, in Eqs. (12) and (13) can be elim-
inated by multiplying Eq. (13) with po and subtracting
it from the products of C3 and Eq. (12). The veloci-

This completes the derivation of the required non-
linear differential equation describing the superfluid
density-fluctuation motion propagating along n in a
monolayer helium film. It is the Korteweg —de Vries'
(KdV) equation as was taken by Huberman, with a
difference that the coefficient of nonlinear term
p, Bp, /BX is equal to y = C3(po —3a )/[2po(a + po) ]
instead of C3. If one drops the nonlinear term, the
solution of the linearized equation is

p, = R
~
sin(kX +i tot ) + R, c (koXs+ cut )

where cu = (tt'+4m8po)k'/gm'C3. When expressed
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back in terms of the original coordinates, it has a
form

p)(x, t ) =R ) sin(k n x +C,kt +tpt)

+R ) cos( kn x + C,kt + tpt )

=Apsech'[(n x+ Cqt —Ct)/5] (17)

The width b and the velocity C depend on the ampli-
tude A p in the following way (for kp ) 0):

5=2k ' (C /C)'t' = . (l8)
C) 6pp(a + pp)

The solitary wave in Eq. (17) is propagating along n

with a phase velocity
r

A p(pp —3a )v= —C)+C = —Cg 1—
6pp(a + pp)

(19)

We require that the width 5 be real, which from Eq.
(18) leads to the fact that C has the same sign as that
of Cq. This further implies that C/Cq is always posi-
tive which in turn from Eq. (18) restricts the ampli-

tude A 0 such that

Ap(pp —3a ) ) 0 (20)

The change of sign of C~ does not alter any conclu-
sions derived here, except that it merely changes the
direction of propagation of the waves, Because of the
appearance of a factor (pp —3a ) in the nonlinear
term in Eq. (16), the shape of the solitary wave and

the conditions for its propagation differ from those
discussed in Ref. 6. It can be seen from Eqs. (19)
and (20) that the solitary wave phase velocity is al-

ways smaller than that of the ordinary third sound for
all values of film density po. The solitary waves al-

ways lag behind the third-sound waves. The ampli-
tude of the solitary wave is smaller for a faster mov-

ing soliton as can be seen from Eq. (19).

The frequency of the linearized sound-wave motion
propagating along n turns out to be —C3k cU

= —Cq(k +k'/kp ), with kp =8m Cq / (tr +48m pp),
which has a value kp-—0.5 A '. This gives the posi-
tive dispersion relation implying that in two-
dimensional superfluids the phase velocity v for small
k is —Cq(1 +k'/kp ) as was found in Ref. 6, since
Cq = —Co in the coordinate system used there. In
our approach the third-sound wave is propagating
along kn (k can be taken positive without loss of
generality).

The solitary wave solution of Eq. (16) is

p~ = A p sech'[(X —Ct )/5]

The nonlinear term in Eq. (16) is a small perturba-
tion for values of average density po

——3a, therefore
the solutions are the third-sound waves discussed
above. It is seen from Eq. (20) that the amplitude
Ao) 0 for the values of mean density of the super-
fluid po & 3a. It describes the propagation of a local
compression of the superfluid density relative to its
average density po. While for po & 3a Eq. (20) im-
plies a negative amplitude A(~ & 0. These solutions
describe the propagation of local rarefaction of the
superfluid density relative to po. Following Berezin
and Karpman, " we define a dimensionless parameter
a- in terms of the amplitude Ao and width 6 (now ar-
bitrary) of the initial perturbation of the form given
in Eq. (17) and the constants appearing in Eq. (16)

a = kph(yAp/C~)'t' & 0 . (21)

When cr « (12)', the perturbation can be con-
sidered almost linear. The long-wavelength part of
its spectral expansion in powers of k then propagates
with velocity Cq as the third-sound waves. However,
for o- ) (12) ', the perturbation transforms asymp-
totically into a weakly nonlinear wave packet of a
number of solitons, which have widths and ampli-
tudes as that given in Eq. (18). The propagation of
an arbitrary initial shape perturbation can be studied
by the well-known inverse-scattering method as ap-
plied to study the solutions of KdV equation. '"

From the knowledge of the van der Waals energy
parameters a = 1.2 atomic layers, we predict the fol-
lowing effect in the two-dimensional superfluid heli-
um at low temperatures (below 0.4 K). For the su-
perfluid density po & 3.6 atomic layers, the solitary
waves can be created by applying a cooling pulse to a
localized region of the film resulting in a local
compression of the superfluid density. On the con-
trary, for po & 3.6 atomic layers the application of a

localized heat pulse, resulting in the depression of the
superfluid density produces the solitons describing
the propagation of this local rarefied superfluid densi-
ty. In the neighborhood of po= 3.6 atomic layers, it
is not possible to produce the solitons and only the
third-sound waves can be propagated with the initial
heating or cooling pulse. As the third-sound propa-
gation has been studied' in the surface density range
0.16 & po & 5.25 atomic layers, it can be possible to
test the above theoretical predictions in two-
dimensional superfluids. In the case of thicker films,
the additional dispersion may change its sign6 in- Eq.
(16) thereby complicating the observation as it has
the opposite effect. The propagation of solitons can
be detected by their well-known properties.
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