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A theory of the scaling behavior near the q, =4 state multicritical point of the two-

dimensional Potts lattice gas model is developed. Proceeding from the assumption that ~ dilu-

tion field becomes marginal at the multicritical point while the thermal and ordering fields are
relevant, a set of differential renormalization group (RG) equ &tions for these fields are con-
structed. Keeping terms through second order we find that these equations are characterized by

five universal parameters which we evaluate using ex ~ct as well as conjectured results. 8 ~sed

upon these RG equations, we investigate the physical properties of the two-dimensional Potts
lattice gas for q near q, . For the pure Potts model with q =q, we find log;~rithmic temperature

corrections to the specific heat and the spontaneous magnetization. At T, we find in(i) correc-
tions to the power law behavior of the spin-spin correlation function. For the dilute Potts model
with q =q, we find that the latent heat, the discontinuity in the magnetization, ~nd the discon-

tinuity in the coexisting densities vanish with an essential singularity ~s T' ~ppro ~ches the mul-

ticritical point from the first-order side. Results for q ) q, and q ( q, are ~Iso given.

I. INTRODUCTION

The two-dimensional Potts model, ' originally intro-
duced as a formal generalization of the Ising model,
has in recent years become the focus of increasing in-

terest to both theorists and experimentalists. From a

theoretical point of view, a rich variety of models can
be obtained from various limits of the Potts model'
and conversely limits of yet other models reduce to
particular cases of the Potts model. ' Experimentally
a variety of submonolayer adsorbed gas phase transi-
tions, which provide realizations' of various Potts
models, have been studied. In these experimental
systems the coverage can vary leading to the study of
Potts lattice gases in which a dilution field enters in a
natural way. Recently, Nienhuis et al. proposed a
renormalization procedure in which disordered spin
cells of a pure Potts model were mapped onto vacan-
cies and found that the dilution field played an essen-
tial role. In particular it provided a natural way of
understanding the abrupt change in the pure two-
dimensional Potts model from a second-order to a
first-order transition when the number of Potts states
q exceeds a critical value q, =4. In the extended
parameter space of dilute Potts Hamiltonians, the
behavior near q, is seen to arise from a smooth line
of fixed points which change at q, from critical to tri-
critical.

We have been interested in the behavior of this

system near q, both because we believe it provides a

general picture of what happens in a class of similar
multicritical points and because it offers a rich variety
of experimental tests. In a previous publication, ' two
of us proposed a set of differential renormalization
group (RG) equations for the temperature and the
dilution fields. The form of these equations were ori-
ginally deduced on the basis of examining the flows
observed in an approximate Migdal-Kadanoff renor-
malization procedure. They led naturally to a ther-
mal eigenvalue having the parabolic form of the ex-
tended den Nijs' conjecture near q, and to a latent
heat essential singularity in (q —q, ) r' of the form
found by Baxter. Fitting parameters in these equa-
tions to the extended den Nijs conjecture and
Baxter's result, it was argued that these equations
provided an accurate representation of the renormali-
zation group in the vicinity of the multicritical point.
Here we explore further the behavior of this mul-
ticritical point by adding an ordering field to break
the Potts symmetry, Carrying out nonlinear scaling
field transformations' we identify the structure and
universal parameters which enter the differential re-
normalization group relations through second order.
While the universal parameters entering the thermal
and dilution field equations can be determined from
the den Nijs conjecture and Baxter's latent heat
result, the parameters which enter the ordering field
equation can only be estimated on the basis of
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presently known results. We discuss this and then
proceed to explore the experimental consequences of
our renormalization group, examining a variety of
thermal and magnetic properties of the pure and di-

lute Potts model with q near q, .
The physical variable space of the dilute Potts

models depends upon the number of Potts states q,
the temperature, the ordering field, and on the con-
centration. As discussed in Sec. II, the renormaliza-
tion group equations can be expressed in terms of
universal parameters when scaling fields are used.
These scaling fields are analytically related to the
physical variables and for convenience we will call 0',
h, and P the thermal, ordering and dilution fields,
respectively.

The fixed point structure for q near q, found by
Nienhuis et al. , is shown in the q-Q-0' space in Fig.
1. Here the pure Potts model is approached for in-

creasingly negative values of P while positive values
correspond to a dilute system. The critical surface
corresponds to the plane P =0. On this critical sur-
face there is a smooth curve consisting of a (solid)
line of critical points and a (dashed) line of tricritical
points which join smoothly at q, . Along the critical
line, the eigenvalue associated with the dilution field
is negative and hence irrelevant while along the tri-
critical line it is positive and relevant. When these
lines meet at q„this eigenvalue goes through zero
and becomes marginal. As discussed by Wegner, '

this can lead to logarithmic corrections as well as
essential singularities.

In Sec. II, a scaling field analysis is carried out to
determine the structure of the renormalization group
equations expanded about the multicritical point,
Here the thermal and ordering scaling fields P and h

are relevant while the dilution field P is marginal.
Making the fundamental assumption of analyticity,
we find through second order that under an infini-

tesimal scale change dl

d (I) = a [y'(I) + e]
dl

= [y, + I y(l) ]@(I),dq (I)
dl

dI (I)
dl

= [yII + cy(l) ]h (I)

(1.2)

(1.3)

-0.25 0 0.25

0

Here e = q —q„and a, b, c, yT, and y~ are universal
parameters. The line of fixed points shown in Fig. 1

corresponds to 0'(I) = h (/) =0 and P = +(q, —q)'I'.
Equations (1.1) and (1.2) were introduced in Ref. 7

and their analytic solutions are given there.
Setting h =0 and using Eqs. (1.1) and (1.2), we

have constructed some renormalization flows in the
@-P plane corresponding to q (q„q= q„and q ) q, .

These are plotted as Figs. 2(a), 2(b), and 2(c),

(c)

0

FIG. 1. Fixed point structure in the q-p-gspace, A con-
tinuous line of critical points {solid curve) meets a continu-
ous line of tricritical points at a multicritical point

(q =q, , y=q=o).

FIG. 2. Renormalization flow lines in the g-Q plane for
h =0. The top figure (a) corresponds to q, ) q (q, —q

1= —) and shows the effect of the critical and tricritical
16

points on the flow. In the center figure (b), q = q, and the

critical and tricritical points have coalesced leading to flows

having an essential singularity at the multicritical point

p =p =0. The bottom figure (c) is for q ) q, .
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respectively. Note that they are symmetric with

respect to $ going to —$. For q & q„Fig.2(a)
shows the critical-tricritical crossover behavior. As q

approaches q„the critical and tricritical points
coalesce leading to the flow shown in Fig. 2(b). This
flow accounts f'or the essential singularity.

Following our derivation of the form of the renor-
malization group equation, we turn in Sec. III to a
discussion of their physical consequences. In order
to make quantitative predictions it is necessary to
determine the values of the universal parameters.
Following a brief review of how yT, b, and a were
previously evaluated from the den Nijs conjecture
and from Baxter's result for the latent heat, we dis-
cuss two possible choices for yII and c. Here we lack
the exact results necessary to determine these param-
eters uniquely.

Using the basic renormalization group equations
(1.1)—(1.3) we investigate the thermal, magnetic,
and number density properties of both pure and di-

a)

lute two-dimensional Potts models with q near 4. For
the physically interesting case of q = 4 we find in the
pure Potts model ln[(T —T, )/T, ] corrections to the
usual power law behavior of the specific heat and the
spontaneous magnetization as well as lni corrections
to the I ~ power law falloff of' the order parameter
correlation function at T = T, . For the dilute q =4
state Potts model we find that the latent heat, the
discontinuity in magnetization, and the discontinuity
in density Ap across the first-order transition vanish
with an essential singularity as the temperature ap-
proaches the multicritical point. The schematic illus-
tration Fig. 3(a) of the phase diagram for a q =4
Potts lattice gas shows the cusp associated with this
essential singularity in 4p. This is in contrast to the
theoretically expected" behavior of the three states
Potts lattice gas illustrated in Fig. 3(b). Unfortunate-
ly, temperature variations and finite substrate size ef-
fects can alter the q =3 phase diagram of Fig. 3(b)
producing a cusplike behavior. " However, with the
increasing number of systems being explored, as well

as the introduction of x-ray and neutron scattering
techniques, we hope that it will prove possible to ob-
serve the type of phenomena we predict. In a more
formal context the results we have obtained for the
logarithmic corrections can be used to guide Pade ap-
proximations of series expansions. This same type of
analysis has also proved fruitful in understanding the
related bifurcation of the Ashkin-Teller model. '

II. SCALING THEORY NEAR THE
MULTICRITICAL POINT

(b)

0

FIG. 3. (a) Phase diagram for a q =4 Potts lattice gas
schematically indicating the cusp which arises from the
essential singularity in hp at the multicritical point. (b)
Schematic phase diagram for the q =3 state Potts lattice gas.

In this section the form of the renormalization
group equations given in Eqs. (1.1)—(1.3) is derived.
The basic idea is simple. We expand the RG equa-
tions about the fixed point at q = q, . Then, using the
fact that two of the fields are relevant while one is

marginal, we select new nonlinear combinations of
fields so as to eliminate as many nonlinear terms in
these equations as possible. Just as for the Ising
model, there could be an additional relevant field in

the symmetry breaking sector, but this will not alter
our results. The reader who wishes to skip this
derivation of Eqs. (1.1)—(1.3) can go directly to Sec.
III where the scaling predictions based on these three
equations are discussed.

In differential form the RG equations for the fields
x; are

dx;— ' =f(x, e)
dl

where the f; are nonlinear functions of their argu-
ments x and a=q —q, . The multicritical fixed point
lies at x =0, a=0, i.e., f;(0, 0) =0. The fundamen-
tal assumption is that f;(x, e) is analytic in a neigh-
borhood of the fixed point, so we may expand it in a
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Taylor series in x and e. To obtain the dominant
singularities for our problem we need consider only
terms up to second order, and we shall confine our
main discussion to this case, only briefly mentioning
the effect of third-order terms at the end of this sec-
tion. Most of the following general discussion paral-
lels that of Wegner, "with the addition of the 6

dependence.
To second order we have

ur = nX (2.3)

or
Xi ir ~r (2.4)

we obtain the RG equations for the u,

f(( x, 6) = c(f + X T(jxj + $ T(l„xJxk
j jk

+ XR,&X3e+d;e3+ . (2.2)
j

Let II(;, and @„;be the right and left eigenvectors of
T„"corresponding to the eigenvalue y, . Introducing
variables

and is undetermined otherwise (and can be set equal
to zero to the order at which we are working). Also

(2.14)

d II(1 I

d/
= TII III(I + (R IIII(I + R(3II(3+ R(3II(3+ c( ) e

R„,= R„'+2ga„„c('
f

When y„=y,+y„the coefficients T„,are universal in

nature, like the eigenvalues y„,and the simplified RG
equations (2.11) can be used to determine universal
scaling laws for the physical fields.

We now specialize to the dilute q-state Potts model
in the presence of an external ordering field. We as-
sume that there are two relevant scaling fields li(3 and

IJ/3 and a marginal field II(1, so that Y3 ) 0, y3 ) 0,
and y( ——0. In the absence of an ordering field, II(I

and II(3 are analytically related to the reduced tem-
perature t and the chemical potential p, which con-
trols the concentration. The field II(3 has the
symmetry-breaking properties of the ordering field h,
and is proportional to h for small fields.

From our general analysis, the nonvanishing
second-order coefficients in Eq. (2.11) are T„,,

T3/3 T33 j giving the RG equations

dl

" =y„u„+c„'e+X T„,', u, u, + QR,suse+d„'e'+

where
(2.S)

+d~ E' +

d Ii(3

d/
= (Y3+ T»III)3

(2.1S)

~r = r(~i

d,
' = X It(„;d;

I
T.s( = X 4 r(T if(llsII(k(

ijk

R„'= $@„TlII(l,

(2.6)

(2.7)

(2.8)

(2.9)

+ (R3(11((+R33II(3+ R 3311(3+C3 )e+ d3 ~ +
(2.16)

d II(3

dl
(Y3 + T33111(1)II(3

+ ( R 3( III I + R 33 II(3 + R 33 II(3 + C 3 ) t + d3 t +
(2.17)

We can simplify Eq. (2.S) further by making a non-
linear transformation to the scaling fields II(„,which,
to second order, is of the form

(2.10)

+ $R„s(I(so+dr'e'+, (2.11)

where

IJlr ur + g Qrs( us u( +
Sf

The coefficients a„„aredetermined by the require. -

ment that in the RG equations for II(, as many non-
linear terms as possible are eliminated. These equa-
tions then are

dQ,
d/

=Yr(I(r + Cr & + $ Trs(II(s4(

Rescaling and shifting the origin by the further
transformations

41 (C 1'/T111) I"0,
e3= 4 —C3 ~/Y3,

II(3= h —C3 e/Y3

we obtain

d
dl

= a ( II('+ e)

+ (R IIII(+RI3(t +R(3h)e+d(e +

—= (yr+ b4)4dst(

dl

(2.18)

(2.19)

(2.20)

(2.21)

and

(

if y, =y, +y& ~

T
,0, otherwise

(2.12)
+ (R3(II(+ R33(t(+R33h )e+d3e +,(2.22)

dh

dl
= (y„+CII()h

a„„=Ts(/(yr —
ys

—y(), if Y„AY,+y, , (2.13) + (R 3(II( + R 33$ + R 33h ) e + d3m + , (2.23)
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with a = (c&'T, ~, )' ', b = T2)2(cI/T)())'
c = T3]3(cI/Tjf f)' ', and with R» and d, linearly relat-
ed to R,, and d;, respectively. From Eq. (2.21) we

now see that, at the fixed points, e is 0 (P'), and

thus we should drop all terms involving R~ and d;,
consistent with our original assumption of dropping
cubic terms in the fields.

We have thus derived Eqs. (1.1)—(1.3) quoted in

the Introduction. Note that we have assumed
c]'T]&~ & 0. If this were not the case, we should have
identified e as q, —q instead. However, this would

lead to q ) q, being the interesting region of critical
and tricritical behavior. We know that this is not the
case. If we keep the higher order terms, Eqs.
(2.21)—(2.23) yield two fixed points at

y+=+( —e)' '+ (R))/2a )t+
Q=h =0

(2.24)

(2.25)

+ [R22 —(b/2a)R~~]e+

ye(q)+ =yg + c ( —e) '"

+ [R33—(c/2a)R ~, ]E+

y'(q)+ = +2a ( —e ) '~'+

(2.26)

(2.27)

(2.28)

The last eigenvalues are the first nonleading ones in

the thermal sector. Note that while our Eq. (2.21)
gives no 0 (e) correction to Eq, (2.28)

„
these can

arise through possible 0 (P') terms on the right-hand
side of Eq. (2.21). Such terms can also give ~ddition-

tl contributions to the O(e) coefficients in the equa-
tions above.

and we interpret the upper (lower) signs as giving the
tricritical (critical) fixed points for e ( 0. The corre-
sponding eigenvalues are

yr (q)+ =yr + b ( —e) '"

points, respectively. To avoid confusion we wH1 in

this section explicitly label the magnetic eigenvalues
using sub t for tricritical and sub c for critical. From
the Ising model one knows that the critical index

vII(2), = —.The recent result of Baxter'~ that 8=14
for the hard hexagon model implies that vI~(3), = —„.
This model would appear to be in the same universal-

ity class as the three-state Potts mode. This is corro-
borated by the series work of Kogut, Pearson, and
Shigemitsu'4 for the three-state Potts model which

5
strongly suggests that P = —, and v = —, for q = 3,
which implies that 5= 14 by scaling. In addition to
these exact pieces of information, there is the conjec-
ture of Barber and Baxter" that 5 = 15 for the eight-
vertex model. Relations' between the eight-vertex
model, the Ashkin-Teller model, and the four-state
Potts model then suggest that 5=15 for q =4.

The problem is to make use of this information to
obtain the expansion coefficients vII and i. As a first
try, we ignored the linear term in Eq. (2.27) and sim-

ply used a two-parameter fit to the Ising v,i(2), = —,
28

and Baxter vir(3), = —„values obtaining v~1 =1.847

and c = —0.020. The result for vII(q) is plotted as
the curve labeled (I) in Fig. 4. A similar two-

parameter fit for the thermal eigenvalue yr(q) leads
to a 12% error in y~, compared with the exact value

of —, and even larger errors in the tricritical value

yr (2)+. However, it does reproduce the general
trend of the q dependence implied by the continua-

2.0

y„(q)

III. SCALING PREDICTIONS l.9

We now examine the consequences of Eqs.
(1.1)—(1.3) for the pure and dilute Potts models.
First we evaluate the universal constants

(yr ,ya, a, b, c) by comp'arison with available informa-
tion. For e =q —4 ( 0, the q dependence of the
thermal and magnetic eigenvalues is given by Eqs.
(2.26) and (2.27), respectively. Equation (2.26)
agrees with the expansion for q & q, of the conjec-
ture of den Nijs, 8 connecting the. thermal exponent of
the q-state Potts model with that of the eight-vertex
model, if we take yr = —, and b =3/(4rr). Next we

turn to the problem of the determination of the con-
stants y& and c in the expansion of the leading mag-
netic eigenvalue yIq(q), Eq. (2.27). As noted previ-

ously, the plus and minus signs in Eqs. (2.26)
through (2.28) give the tricritical and critical fixed

DECI

I.8-

FIG. 4. Curve (I) is a two-parameter fit v&&(q)„
= 1.847 + 0.020(4 —q) ' to the critic ~l and tricritical m ~gnet-

ic exponents constructed to pass through v&&(2), and

vII (3),, while curve (II) is i three-p 1r ~meter fit vI&(q)„
=1.875+ 0.0285(4 —q )'~ +0.020(4 —q) which «iso passes

15
through the Baxter-Barber conjecture of vI~ (4) =—.The

data points a (Ref. 19), b (Ref. 20), ~ (Ref. 21), and fl (Ref.
22) correspond to various calculations of the tricritical ex-
ponent v&&(2), while e (Ref. 17) is ~ percolation value for

vg(1), .
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(3.1)

This gives y~ = —,c =0.0285 and is shown as the

curve labeled (Il) in Fig. 4.
Also shown in Fig. 4 are approximate results for

the exponents of the percolation problem" y„(l),
and for the tricritical pointy~(2), of the Blume, Em-

ery, and Griffiths model. " The approximate estimate
of 5 for the percolation problem gives a value of
y„(1),(point e in Fig. 4) which is in fair agreement
with both fits. It is along the tricritical branch that
the fits (I) and (II) significantly depart from one
another. Unfortunately the current estimates of the
tricritical value y~(2)r are inconsistent with each oth-

er and thus do not rule out either fit. The results of
a d-3 expansion'9 (point a of Fig. 4) as well as real

space renormalization group calculations'0" (points b

and c of Fig. 4) favor fit (II), and are consistent with
[5

the Barber-Baxter conjecture that y„(4)= —;.On

the other hand, the Monte Carlo estimate"
8 =10.8+ 0.7 (point d of Fig. 4) favors fit (I), and

would imply that 5 = 12 for the four-state Potts
model, in disagreement with the Barber-Baxter con-
jecture.

After obtaining these results, we have learned that
a curve similar to fit (II) has been recently obtained

by Nienhuis et al. " In addition, Nienhuis et at. "
and Pearson'4 have independently conjectured that

15+8x +x'
8+4x

(3.2)

Here x = 2/7r cos ' ( —,Jq ), with —1 ~ x ~ 0 corre-

sponding to the critical phase and 0 ~ x ~ 1 to the
tricritical phase. Expanding this near q =4, one ob-

tains a curve similar to fit (II) with y„=—, and

e = I/16m. We will use these parameters in the same
spirit as those obtained from the den Nijs conjecture. '
As we will see, they give very simple exponents in

the results which we will obtain.
There is one more piece of exact information avail-

able which can be used to fix the parameter a. This
is Baxter's result for the latent heat in the pure
model for q & 4. This was previously discussed in

Ref. 7 and will be reviewed belo~. Following this,
we proceed on the basis of our equations to derive a

number of scaling laws valid at, or close to, q =4.
The existence of the marginal field at q =4 leads to

tion of den Nijs's conjecture, with the tricritical value

yr(q)+ lying above the critical value yr(q) as it
should.

Now, our fit (I) for the magnetic exponent yrq(q)
fails to pass through the Baxter-Barber conjecture
year(4) =

~
. In order to take this into account, we

]5

will keep the linear (q, —q) term in Eq. (2.27), ob-
taining the three-parameter fit

yg (q)„=1.875 + 0.0285 (4 —q ) ' '+ 0.020(4 —
q )

several interesting consequences, notably logarithmic
corrections at q =4, and essential singularities in

some quantities. Our results are summarized at the
end of this section. Since the derivations tend to be
rather similar, we describe in detail only a few of
them, and comment on those which are physically
most relevant.

The singular part of the free energy per site, f„
satisfies the scaling relation

f, (Q(0), $(0),b (0)) =e "'f, (r/r(/), $(/), b (/))

(3.3)

— = I + 5/ [yr + b r[r (/) ] + 0 ( 5/')
by(/)

(3.5)

By iterating this infinitesimal transformation, Eq.
(3.4) can be written

r

L(r/r(0)) =e "'exp ' [y +brlr{l')]dl' L(r[r(/))
(3.6)

%e have argued that if we choose / such that

Here the dimensionality d =2. We now imagine, be-
ginning with b (0) =0, close to the critical surface
[$(0) small] in the pure model [r/r(0) negative and

0(—1)]. For q ) 4, if rtr(0) =0 initially, the RG
flows go into the discontinuity fixed point. However,
we choose to terminate the renormalization when

r/r(/) is positive and 0 (1). At this point, cubic and

higher order terms in the RG equations become im-

portant. However, r/r(/) = 0 (+1) represents a

strongly dilute system where we expect the latent
heat to be 0 (1) also. We therefore incorporate this
as an assumption. Within a specific RG scheme, one
can iterate all the way out to the vicinity of the
discontinuity fixed point and calculate the latent heat.
However, the iterations from r]r(/) = 0 (+1) to the
fixed point will give only an 0 (1) renormalization of
the latent heat. The scaling behavior which we wish

to extract will be dominated by the flow in the vicini-

ty of the multicritical fixed point. Similar arguments
and assumptions must be made for all our other
results, and we shall not repeat them. Ultimately,
one can always appeal to a specific RG scheme.

Since rtr is a temperaturelike field, the latent heat L
is proportional to the discontinuity in the derivative
0f,/8@( )0across the critical surface. By Eqs. (3.3),
(1.1), and (1.2) this is

0+

L (y(0)) = f, {$(0),y(0), 0)
Brb 0 @(0) 0—

0+

=e " ~ f (P(/), y(/), 0)—
By(0) Bg(/)

(3.4)

As long as 8/ (( I, we can approximate from Eq. (1.2)



2566 JOHN L. CARDY, M. NAUENBERG, AND D. J. SCALAPINO

The integral is elementary and yields, 7 for P(0) & 0,

L (y(0)) ~ ly(0) I "exp[—(d —y. )/a ly(0) I]

x exp [—(d yr ) 7—r/a Ke] [ I + 0 (e) ] . (3.8)

Baxter's exact result9 implies that L ~ exp rr'—/2Je,
3so since d = 2 and yr ———we conclude that a = I/m.
2

For the pure model lg(0) l
= 0 (I ), but we have ex-

plicitly kept the P(0) dependence to show that, as
P(0) 0, the coefficient of the essential singularity
vanishes. For P(0) ) 0 we can repeat the calculation
to show that the latent heat is smooth on passing
through q =4. A similar calculation to the above,
with h (I) replacing $(l), leads to a similar essential
singularity in the jump in the spontaneous magnetiza-
tion at T = T, but with y& and b replaced by yii and c,
respectively, in Eq. (3.8).

We now give an example of a calculation for q =4.
In Ref. 7, the temperature dependence of f,

'

in zero
external field was evaluated. This gives rise to a log-
arithmic correction to the specific heat, We shall cal-
culate the temperature dependence of the zero-field
magnetization M as T T, . An almost identical ar-
gument to that leading to Eq. (3.6) gives

M (y(o), y(0))

= e d'exp J [y„+eg(I')]dl' M(@(l), P(l))

(3.9)

If we now renormalize out to $(l) = —1, the last, fac-
tor in Eq. (3.9) will be 0(1). At q =4,

y(1) =— 1

al —y(0) '

so that
t r

ln
$(l) b al —t (0)=yg I ——ln
d (0) a —y(0) '

(3.10)

(3.1 1)

P(l) = 0(+I), then the last factor in Eq. (3.6) is

0(1). The exponent in Eq. (3.6) is easily evaluated

by writing it as

«t" (yr —d+bP)dP»"& (yr —d+bP)dP
dp/dl J e~» a (Q + f)

(3.7)

Then, integrating Eq. (3.10)

J) y(l') dl'= ——
1 —p(0)

(3.13)

P = (d .vtt )/vt (3.15)

Note that, in principle, it is possible for p(0) to van-
ish, in which case there are no logarithmic correc-
tions. This appears to be the case for the free energy
in the Baxter-Wu model, "which is in the same
universality class as the four-state Potts model.

For q ~4, the dilute model exhibits tricritical
behavior, in the sense that in the (T, It, ) plane there
is a line of second-order transitions which become
first order at a tricritical point. We can use our equa-
tions to find the singular behavior of the discontinui-
ties of various quantities across the first-order line, as
we approach the tricritical point, for q ( 4.

As an example, we calculate the latent heat, by ap-
plying Eq. (3.6), beginning with P(0) ) e'
=—(4 —q)' ', and integrating out to p(I) =0(+1). A

similar integral to Eq. (3.7) leads to
r

L (y(0)) ~ ~
y(0) —e'

&& l[y(0) +e'][y(0) —e']l ' " (3.16)

We emphasize that our results are given to lowest or-
der in (l4 —q l)'I'. Both the exponents and the coef-
ficients have corrections which are linear in (4 —q)
which we have not calculated, This discontinuity AM
in the magnetization has the same form as Eq. (3.16)
with the parameters (vr, b) replaced by (ytt, e).

If we fix q and let P(0) (4 —q)'I2, the quantity
[$(0) —(4 —

q )'I'] is a measure of the distance down
the first-order line from the tricritical point, which is
proportional to T, (p, ,„)—T, ( p, ). Thus we find

substituting in Eq. (3.9), and noting that g(0) is
analytically related to the reduced temperature f, we
obtain

M (ty(, 0))

~ (—t)t'[I+ (a/vr) lp(0) l( —lnltl)] ' a+' '
(3.14)

Here, as usual,

where, of course P(0) & 0. Solving Eq. (3.11) for I

with $(l) = —I

I =———In [P(0) 1
1

L ~ [ T, (tt, ,„)—T, ( P, )] '

where

(d -yr)
2a (4 —q ) 'I'

(3.17)

(3.18)

—(a/y, ) Inly(0) I+ [—y(0)] '

+ ln-
Qy y. [—y(0) ] '

(3.12)

On the other hand, if we first let q 4 in Eq. (3.16),
we obtain. ,

L (P(0)) ~ P(0) b 'exp[ —(d —yr)/a P(0)], (3.19)
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where now P(0) is proportional to T, (p,„)—T, (p, ).
Since the chemical potential p, is also coupled to @,
the discontinuity 4p in the concentration of vacancies
behaves in a similar way. This has interesting conse-
quences for the phase diagram of the dilute four-state
Potts model. In the (T, p) plane, the region of phase
separation should disappear as T, T, (p,„)with a

sharp cusp [see Fig. 3(a) in Sec. I], which should ex-
hibit an essential singularity rather than a finite ex-
ponent cv1. This is in striking contrast with the q =2
and 3 cases where ta~ ( 1, [see Fig. 3(b)].

at T = T, for the pure model varies as

M ~ lIIl'/'(-Inlel) '""=
lnH

1/15

(3.24)

with g=yH(2 —yH) '.
(iv) The spin-spin correlation function at the criti-

cal point for the pure model has a logarithmic correc-
tion to the usual power law decay

G (r) cc r "( lnr ) "' = t' ' ( lnr ) (3.25)

IV. SUMMARY OF RESULTS

Our results will be expressed in terms of the five
universal constants (yr,y„,a, b, c). Then, following
these general expressions which show the particular
combinations of constants which enter, we wi11 give
the result which is found when we take the values for
these parameters obtained from the exact and conjec-

3 15
tured results: yr = —,, y,t = —,a = I/m, b 3/4=or,

and c =1/167r.

where q =2(2 —,yqI ). This should be contrasted with
the r ' ( lnr)' behavior of the correlation function
of the two-dimensional xy model found by Koster-
litz."

(v) For the dilute model, the latent heat L, and
the discontinuity b, p in concentration, versus distance

t = [T,(/b„)—T, (P, )]/T, (tb„)

along the first-order line exhibits an essential singu-
larity

A. q&4 —(&—
yZ &/acr

L, oc Q p tx e (3.26)

(i) The latent heat, L, at T = T, in the pure model
varies as

L ~exp[ —(2 yr)7r/a(—q —4)' ']

Here A is nonuniversal.
(vi) Similarly, for the dilute model, the discon-

tinuity in magnetization AM vs t is

= exp —[m 2/2(q —4) ' '] . (3.20)

A similar result holds for the discontinuity Ap in the
number of vacancies, for the nearly pure model.

(ii) The discontinuity in the zero-field magnetiza-
tion AM, at T = T„in the pure model varies as

—(2—
yI~ )/an't

AM I:e

with A the same as in Eq. (3.26).

C. q&4

(3.27)

AM ~exp[ —(2 —y„)m/a(q —4)'/']

= exp —[m2/8 (q —4) '/'] (3.21)

(i) For the dilute model, the latent heat L and the
discontinuity b p versus distance along the first-order
line t have the power law form

B. q=4
—ol

1I ocQptxt (3.28)

'( —lnlt l)
2/y 2b/ay-

(- inlt l)
(3.22)

(ii) The zero-field magnetization M, for t ( 0, in

the pure model also has a logarithmic correction

(i) The singular part of the free energy /'„ in zero
field, versus reduced temperature t, in the pure
model has, in addition to the usual power law depen-
dence„a logarithmic correction 2a (4 —

q )' ' 4(4 —q)' ' (3.29)

Here, as previously discussed, there are corrections
of order (4 —q).

(ii) Similarly, for the dilute model, the discon-
tinuity in magnetization AM vs t varies as

Expanding about q, =4, the leading behavior of cd] is

given by

M ~ (—t)tt( —lnltl) tt' ' ' = (3 23)
b

(-lnltl)' '

with P = (2 —y„)/yr.
(iii) The magnetization M versus external field H

AM ~t

and to leading order

2a(4 —q)'/' 16 (4 —q)' '

(3.30)

(3.31)
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V. CONCLUSIONS

Here we have studied the structure of the loga-
rithmic and essential singularities which occur when a

line of critical fixed points merges with a line of tri-
critical fixed points, Logarithmic singularities are also
known to occur at an upper critical dimension. Some
examples are the critical point in four dimensions, "
the tricritical point in three dimensions, ' and the
critical behavior of a three-dimensional uniaxial fer-
romagnet with strong dipolar coupling. '9 In these
cases, however, there is a crossing of a line of non-
trivial fixed points with a line of Gaussian fixed
points. Below the upper critical dimension the non-
trivial fixed points are stable and the Gaussian fixed
points unstable, while above the critical dimensionali-
ty they exchange roles. In the case we have con-
sidered, the lines form two branches of a parabola,
merging at a critical value of a parameter q, .

In developing this theory we have used an ap-
proach which proceeds in three stages: (i) based on a

knowledge of the important physical variables and
their marginal or relevant character, the form of the
RG equations for a set of nonlinear scaling fields
are constructed; (ii) the coefficients in these equa-
tions are fit to exact, conjectured or experimental
results; (iii) these RG equations are used to
describe the local scaling behavior near the multicriti-
cal point and supplemented by physical conditions

outside this region.
For the particular problem treated here, we believe

that the parameters obtained from Baxter's latent
heat result, den Nijs's thermal exponent conjecture, '
and the recent Nienhuis e& al."and Pearson' con-
jecture for the magnetic exponent are in fact exact,
Thus this approach offers a way of obtaining addi-
tional exact results which may be very difficult to ob-
tain by direct calculation. These results also bear on
other two-dimensional systems such as the Askin-
Teller' model and the planar zy model. They
should also be useful in providing information neces-
sary in designing Pade approximate procedures and in

organizing Monte Carlo calculations. Finally, we
hope that these results will give further impetus to
the experimental search for a submonolayer adsorbed
gas system which can provide a physical realization of
the four-state Potts model.
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