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High- and low-temperature series, Monte Carlo simulations, mean-field calculations, and
renormalization-group ideas are used to analyze the behavior of the Ashkin-Teller model in
three dimensions. The data generated by series and Monte Carlo methods in the neighborhood
of the decoupling point are consistent with the renormalization-group conclusion that this sys-
tem cannot show a line of continuously varying exponents. Thus the phase diagram for the

d =3 system is quite different from that in d =2.

Indeed a new phase (not seen in d =2) is ob-

served, one in which the system spontaneously breaks its natural symmetry between its two
kinds of Ising spins. A variety of continuous transitions are observed and explained in terms of
an analysis which is fully consonant with renormalization-group concepts.

I. INTRODUCTION

The Ashkin-Teller (AT) model' may be considered
to be two superposed Ising models, which, respec-
tively, are described by variables o;-and S; sitting on
each of the sites of a hypercubic lattice. Within each
Ising model, there is a two-spin nearest-neighbor in-
teraction with strength J,. In addition, the different
Ising models are coupled by a four-spin interaction
with strength J4. Thus the Hamiltonian is

H=-31/(0,0;+5S)) +J40,0;55;]1 , (1.1
i)
where the sum covers all nearest neighbors on a lat-
tice.

This model has a rich structure in two dimensions.
Our knowledge of the two-dimensional structure has
been obtained from series analysis,? exact duality
statements*® (including connections with the 8-
vertex model solved by Baxter®), by expansions
about the point (J4=0) at which the model reduces
to two decoupled Ising models, and by quasiexact
analysis of limiting cases.” Unfortunately, much less
data can be obtained in three dimensions. Neither
the duality statements nor the connections with the
8-vertex model apply to the three-dimensional case.
The expansion about the decoupling point also gives
much weaker information in three dimensions than
in two. For d =2, J, is seen to be a marginal field,
i.e., one which is capable of generating a line of criti-
cal points. In general J4 has a scaling index at the

decoupling point which is given by
y4=2/v—d . (12)

For three dimensions®® v ~0.64, and so y, turns out
to be greater than zero. This says that J;is a
relevant field, i.e., one which is capable of completely
changing the nature of the critical point. Thus, in
three dimensions, there might be three completely
different critical behaviors for small x =J4/J,
depending upon whether x is just less than zero, just
greater than zero, or exactly equal to zero. This pos-
sible structure at the découpling point is a first indica-
tion that the Ashkin-Teller model might have a phase
diagram in three dimensions which is quite different
from the known 4 =2 form.

In fact this complex structure was indicated by the
e-expansions of models with symmetries analogous to
that of the Ashkin-Teller model.'®~'2 This type of
analysis showed three different types of behavior as
the possible end points of flows arising near the
decoupling point. One flow is to a fixed point which
describe two decoupled Ising models, another leads to
no stable fixed point and hence indicates a first-order
phase transition, and the third is to a » =2 critical
point analogous to that of the XY or planar model.
Hence, we should not be surprised if our analysis
shows these three behaviors for x =0, x >0, and
x <0.

An earlier series study? of the AT model in three
dimensions seemed to show that the critical index y
varied continuously with x near x =0. This conclu-
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sion, if valid, would imply that there was a serious
error in the predictions of the renormalization group.
One of the major reasons for undertaking the
research described here was to see whether the
behavior of this system could be explained by assum-
ing the correctness of the renormalization-group con-
clusions.

The present work seeks to establish the nature of
the phase diagram for the three-dimensional Ashkin-
Teller model by using several complementary tech-
niques.’> Our results are obtained by using data from
high- and low-temperature series for the free energy,
magnetizations, and susceptibilities and the impor-
tance-sampling Monte Carlo technique. These
results, when used in conjunction with exact state-
ments for limiting cases and with hints obtained from
mean-field theory, lead to a rich phase diagram with
several multicritical points.

We find that the series analysis method and Monte
Carlo technique, while each having their own
strengths and weaknesses, effectively complement
each other. While it is possible to determine the crit-
ical exponents and the transition temperature accu-
rately using series analysis in simpler parts of the
phase diagram (where crossover effects are not dom-
inant), the Monte Carlo technique is useful in find-
ing the different types of ordering and the transition
temperatures even in complicated regions of the
phase diagram. Even then (as discussed in Sec. IV),
our results are not entirely without ambiguities.

In the next section, we introduce our problem by
summarizing the known information about the two-
dimensional problem. Section III is devoted to a
description of the mean-field-theory calculation.
Then, the main body of our work is presented in Sec.
IV, which describes the most relevant series data and
the results of the Monte Carlo analysis. The tech-
nique for obtaining and analyzing the series and a
brief description of the Monte Carlo method are
described in the Appendixes.

II. THE TWO-DIMENSIONAL CASE

Figure 1 gives the phase diagram®*7 of the
Ashkin-Teller model on a two-dimensional square
lattice plotted as a function of x =J4/J, and a cou-
pling strength, J,/kT =K,. Let us list the phases
shown.

(a) Paramagnetic, labeled as "para." If the cou-
plings are sufficiently weak the system falls into a
paramagnetic phase in which neither o nor S (nor
anything else) is ordered.

(b) A "Baxter" phase in which o and S indepen-
dently order in a ferromagnetic fashion so that
(o) =% (S). Itis also true that (So) is unequal to
zero and has the same sign as (S) (o). This phase
appears when the condition x > —1 is satisfied and

I l
———line of varying —
critical behavior

— Ising-style
critical lines —
o~
= 1
= Baxter
S Phase —

FIG. 1. Phase diagram of the Ashkin-Teller model in two
dimensions. The exact positions of the Ising style critical
lines are not known.

the temperature is sufficiently low (or the couplings
are sufficiently strong).

(c) A phase labeled (oS ), in which ¢S is ordered
ferromagnetically but (o) = (S) =0. This phase
arises for large K4 (which then tends to order ¢S) °
and small /, (which permits o and S to remain indi-
vidually disordered). '

(d) An analogous antiferromagnetic phase (labeled
(aS) ar) which arises for large negative J4 and small
J,. In this phase o and S are individually disordered
but their product, oS, is ordered antiferromagnetical-
ly.

A fuller understanding of this phase diagram may
be obtained by focusing upon the points labeled
A, B, C, .... The point A4 is a decoupling point at
which the AT model decomposes into two indepen-
dent Ising models. As mentioned above, in two di-
mensions (only) this is a point at which a marginal
operator may be shown to appear and to generate a
line isomorphic!* to the known critical line of the 8-
vertex model. In Fig. 1, this line of continuously
varying second-order phase transitions goes from E
to 4 to F. Its exact position is known via a duality
statement and the variation of critical indices from
(a=-1atE) to (a=0at A) to (a=§ at F) is
probably also known exactly.

Near points B and D, K, becomes negligibly small
and the entire ordering is produced by

K4=K2X

In the neighborhood of these points, the AT model
simply reduces to an Ising model in the variable oS.
In any dimensionality, the condition for criticality at
B and D reduces to

Ks=*K!, 2.1)
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where K/! is the critical coupling for the Ising model
in the appropriate dimensionality. The transition
near points B and D may be analyzed by doing
second-order perturbation theory in the small quanti-
ty K,. The result is that the second-order Ising tran-
sition persists in these neighborhoods and the curves
of criticality for x are '

x=th’/K2—K2 . (22)

Near point C, K, is very large. Hence oS is or-
dered fully and ferromagnetically. Consider for ex-
ample, the particular phase in which (oS)=1. Then
with a very high probability, S; will take on a value
equal to o;. In the neighborhood of the point C
then, the system will be governed by an effective
Hamiltonian in the variable o;=S;, which Hamiltoni-
an has the form

H=—2J22(Ti(fj+J421 . (23)
(/)] Cijy
This Hamiltonian will then produce a second-order
Ising-style phase transition for

Ky=3k!

in the neighborhocod of point C. This result may also
be expected to hold for higher dimensions. In fact,
one can estimate the order of magnitude of the
corrections to this result by looking at the probability
for producing a situation in which ¢S is misaligned at
one point in a d-dimensional hypercubic lattice. The
result is that for large x

_ !
Ky=1k!+0(7%%) . (2.4)

The point Flies at x =1. At this value of x, the
AT model has the additional symmetry of the four-
state Potts model for which the replacements

oi—asS ;, Si—S . (2.5)

are a symmetry operation additional to the usual
Ashkin-Teller symmetry operation

O'i_'S,‘ S,-"_’(T,' . (26)

In two dimensions (but not three) the four-state
Potts model is known to have a second-order phase
transition. Moreover the point F is known to be a bi-
furcation point at which the line EAF splits into two
transition lines as shown in Fig. 1. The exact form of
the curves FC and FB (which are believed to be
second-order Ising lines along their entire length for
d =2) is not known.

The AT model also shows a special symmetry on
the line x =—1. For this case, the Hamiltonian takes
the form

='"J2 2 (0',’0'1' +S,SJ"’ U',S,(TJSI)
i)

To see the symmetry divide the system into two sub-
lattices 4 and B such that each A site has as its
nearest neighbors B sites. Of course this division is
possible on a square lattice or a hypercubic one.
Then, on the B sublattice flip the signs of the spins,
making the replacement

S,‘_'—S,‘ , (27)

a; _ - o
on B sublattice the Hamiltonian now becomes

H=J, 2 (oi0;+S8,S;+0,0,5S;) . (2.8)
(i)

For positive J, this Hamiltonian cannot induce any
long-range order in two dimensions, and will, in fact,
produce a paramagnetic state for all /, > 0, as can be
seen from the Baxter solution of the 8-vertex model.
Thus the entire line x =1, including the lowest
nonzero temperatures, is paramagnetic in two dimen-
sions. As K; — oo, the width in x of the paramagnet-
ic region shrinks to zero so that the "Baxter" and
(oS ) or phases approach the x =—1 line.

Apart from this point at x =—1, the system falls
into simple ground states at zero temperature. If
x > —1, the ground state has o, S, and oS ordered
ferromagnetically. If x < —1, the ground state has
oS ordered antiferromagnetically but o and S disor-
dered. Energetic analysis also shows that these
ground states are also formed in higher dimensionali-

ties in exactly these regions, x 2 —1.

To complete the phase diagram of Fig. 1, one must
draw a phase boundary between the paramagnetic
phase and the antiferromagnetic one. The exact form
and nature of this boundary is not known, except
near point D, but it is reasonable to assume that it
connects the points £ and D as shown and that it has
the character of a second-order Ising antiferromag-
netic transition throughout.

IIl. MEAN-FIELD THEORY

It is often said that mean-field theory represents in
some sense the infinite dimensional limit of statistical
systems.!® If this is true, it is particularly interesting
for us to study the mean-field behavior of the AT
model so that we may effectively bracket the three-
dimensional system between the mean field and the
d =2 behaviors.

To write the mean-field equations, let j (/)
represent the set of all nearest neighbors to the site /.
Then the potentials acting upon the spins o, S, and
oS at the site i are, respectively, h’,, hi, and hi s where

hy =3 (o;0) Kz .
i@

h§=2(sj(i)>K2 , 3.1
JG)

his= % (o708 Ka .
o ‘
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The spins at site / feel the effective Hamiltonian
e =hb o +hiSi+hbsaS; . 3.2)

The single-site partition function generated by the
Hamiltonian (3.2) is

Z'=4(coshhi, coshhicoshhig
+sinhh’, sinhhisinhhig) (3.3)

This Hamiltonian may also be used to calculate the
average of the spins at the site i in the form'®:

(o) = (tanhhi, +tanhhitanhhis)/D ,
(S;) = (tanhhi +tanhh tanhhis)/D

. . ) 3.4)
(0;S;) = (tanhh’ g +tanhh’, tanhh$)/D ,

D =1 +tanhhi tanhhftanhhis .

As is usual in mean-field calculations, one can also
obtain the basic averages by demanding that an ap-
proximate free-energy function

=— ZInZi +K2% ((a;) (o)) +(S:)(S;))

+K,4 2 (U'iSi>(0'jS/) (3.9
(i)

be minimized by the correct choice of the averages.
The minimization conditions obtained by substituting
Eq. (3.3) into Eq. (3.5) and then differentiating with
respect to the averages is, in fact, just the set of
mean-field Eqs. (3.4). Thus we shall solve these
equations. Whenever we obtain several solutions, we
pick the solution which minimizes the free energy
given by Egs. (3.5).

The mean-field equations can then be used to ex-
plore the possible behaviors of a whole variety of
possible phases of the system. Figure 2 describes the
result of studying the relative stability of all the
phases mentioned above. For example, to study the
(oS ) ar phase, we set (o) = (S) =0 everywhere and
let (o;S;) alternate in signs upon the two sublattices.
Since this particular phase apparently remains stable
up to the line x =—1, we are impelled also to study
the phase which is its counterpart under the sym-
metry operations appropriate for the Hamiltonian
(2.8). This phase has o ordered ferromagnetically
but (S) and (o;S;) vanishing. There is also an
equivalent phase with (S) #0, but (o) = (aS) =0.
At the line x =—1, the system apparently undergoes
a first-order phase transition from the phase (oS)ar
into this new phase, which we denote by (o).

The mean-field-theory phase diagram as shown in
Fig. 2 does give a suggestive picture of what behavior
might be expected for d =3. As expected there are
lines of second-order phase transitions emerging
from the points B, C, and D. In the mean-field cal-
culation, at the point 4’, to the right of the decou-
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FIG. 2. Mean-field theory phase diagram for the Ashkin'-
Teller model.

pling point A, the transition between the paramagnet-
ic and the "Baxter" phase becomes first order. This
first-order transition persists through the point P,
which lies on the Potts line, until the point F at
which the line of phase transition bifurcates into two.
The lower line, FB represents a second-order phase
transition between the paramagnetic and the (oS)
phase. The upper line FGC separates the (aS) and
Baxter phases. It is a first-order transition in the re-
gion FG and becomes second order thereafter.

To the left of the decoupling point there is a
second-order phase transition along the line AH
which separates the Baxter and paramagnetic phases.
Then at x =— % a new phase (o) appears. This

phase is squeezed between two first-order lines which
come together at x =—1. The line separating the
(o) and (oS )ar phases, KE, lies exactly at x =—1.
Finally, the (oS ) r and paramagnetic phases are
separated by a second-order line, KD. Our mean-
field analysis does not indicate the existence of a
phase with (o) and (S) being unequal and different
from zero. This contradicts the results of our Monte
Carlo analysis (Sec. IV), which seems to indicate the
possibility of such an ordering in three dimensions.
Notice that mean-field theory indicates a somewhat
different low-temperature (K, — oo) behavior than
that seen in two dimensions. In d =2, for large K>,
as x increases through the value —1, the system suc-
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cessively passes through the phases (oS ) ar, para,
and "Baxter." As K, gets larger and larger these
phases get closer and closer to one another. The
mean-field picture is the same, except that the inter-
mediate phase is not paramagnetic as in d =2, but

(o).

IV. APPLICATION OF SERIES DATA
AND MONTE CARLO ANALYSIS

Figure 3 shows our proposed phase diagram for the
three-dimensional AT model and indicates some of
the data we have used to support the assignment of
this diagram. Recall that we know quite precisely the
behavior of the system in the neighborhoods of the

0.7 e [ ]
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FIG. 3. Phase diagram of the Ashkin-Teller model in
three dimensions obtained from series analysis and Monte
Carlo simulations. The nature of the transition H/ has not
been established unambiguously (see Sec. IV for a discus-
sion). The phase transition FB is believed to show an Ising
critical structure as does GC and KD. AFG is believed to be
first order while AH is a continuous transition with XY ex-
ponents. The behavior on KH is unknown. Error bars are
shown on a few series points. For those without an error
bar, the apparent error is smaller than the size of the plotted
point.
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FIG. 4. Plot of series estimates of y and vy, as a function
of x. "Theory" shows accepted y values as a function of n
plotted where we believe they might apply.

points B, C, and D. That is, we know that there is a
second-order phase transition in these neighborhoods
which are characteristic of an Ising ferro- or antifer-
romagnetic transition, and we know the nature of the
states on both sides of the transition. Furthermore,
we know that point A has the character of two decou-
pled Ising transitions and that there is a relevant
operator which can make the transitions just to the
left and to the right of point 4 to have totally dif-
ferent character from each other and from that at 4.
The series analysis and the Monte Carlo technique
effectively complement each other in filling in the
rest of the phase diagram.

A first indication of the behavior near 4 is given
by an analysis of the magnetic susceptibility. We ob-
tained a 10-term high-temperature series (see Appen-
dix B) in the usual magnetic susceptibility

X=2<U,crk) _ (4.1a)
JK

and for the corresponding quantity constructed from
a$, ie.,
X, =3 (0;S;0kSk) . (4.1b)

JK

We call the latter quantity the polarization suscepti-
bility. To analyze the series, we fixed x =J,;/J, and
obtained expansions in ¥ =tanhK,. Padé and ratio
analyses of the singularities in these quantities show
a reasonably well-converged singularity and enable us
to calculate the related critical indices y and y, as a
function of x. Figure 4 is a plot of these critical in-
dex values. Some of the critical values of tanhK,
related to these series are plotted in Fig. 3.

A. Theregion 0 < x <1

Now focus upon the region between 4 and Fin
Fig. 3 and the corresponding region between x =0
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and 1 in Fig. 4. At x =0, there are only five nonzero
terms in the series for X,, so we cannot gain much
information from the value of y, near x =0. How-
ever y seems to decrease continuously from

1.25 £0.01 at x =0 to 0.84 £0.03 at x =1. It would
appear from these data (and from similar earlier
data) that there exists a line of second-order transi-
tions between A4 and P with continuously varying crit-
ical indices.

2547

However, renormalization-group theory'%~!2 sug-
gests that such an explanation must be incorrect.
There is no obvious marginal operator in the pair of
three-dimensional Ising models which exist at point
A. Hence we seek an alternative explanation.
Mean-field theory suggests a first-order transition in
this region. These values of y might be a reflection
of an approximate pseudospinodal behavior in a tran-
sition which is really first order.

19 r T T . T © . :
2l ' 1 « High T
(a) e High T (b) * High T 21F o Low T .
1.8k (c)
20} .
‘,7" 19} -
16 1.8 =4 -
f
17k .
151 t .
16k .
1.4
0
15F -
K¢ K
I
0l
K2

14 .

|
0l 02
Ko

FIG. 5. Plots of the series estimates of the free energy f vs K, for various values of x. Error bars are shown, when the ap-
parent errors exceed the size of the points. The critical values of K are Kc”, taken from the high-temperature susceptibility
series, and KCL, taken from the low-temperature magnetization series.
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To examine this possibility, one needs low-
temperature series for the free energy per site f, the
magnetization

M =< 2 (T,'> (4.2a)
i

and the polarization

P=(3as) . (4.2b)

i
From past experience,!”'® we conclude that a com-
parison of 7, estimates from high- and low-
temperature series do not provide the best way of
distinguishing between first- and second-order phase
transitions. The errors in T, are sufficiently large to
mask the effect under consideration. An alternative
is to see where the high- and low-temperature series
estimates of the free-energy f cross and then exam-
ine whether the crossing occurs with finite slope (a
first-order transition) or zero slope (second order).
The low temperature expansions were first obtained
as double series in the variables X =exp[ —4(K,
+K4)] and Z =exp( —4K,). Convenient contact
with the high-temperature analysis was made by fix-
ing the ratio x =K,/ K,=J4/J, so that the low-
temperature variables were powers of one another,
X =Z'"*. When | +x was chosen to be a simple ra-
tional fraction, series in a single low-temperature
variable could be obtained and analyzed. For exam-
ple, in the region we are now discussing, we analyzed
low-temperature series for x = —; % and 1. These
series are respectively 48, 36, and 24 terms long and
contain many zeros.
Figure 5 shows several plots of the reduced free

energy per site,

f=—F/NKT . 4.3)

Figure 5(a) shows a clear indication of free-energy
crossing with nonzero difference in slope and hence a
first-order transition for x =1. Figure 5S(b) can be
interpreted in several ways, but to our eyes it shows

some indications of a first-order behavior at x = X

Hence, we tentatively identify the transition between
x =0 and 1 as first order. Additional evidence for
"this identification can be found in the 7y values in this
region (see Fig. 4) which are lower than those in any
of the standard three-dimensional universality
classes. The apparent B values are also lower than
the usual d =3 values, 8= é and are suggestive of

a discontinuity —which could be represented by 8=0.
For example, 8=0.17 £0.05 at x =% and 3=0.170
+0.003 at x =1. All in all, series data suggest a
first-order behavior between x =0 and 1.

Monte Carlo data at x =0.75 also show clear evi-
dence for a first-order transition, with discontinuous
jumps in the magnetization and internal energy. For
smaller x, the Monte Carlo analysis was less defini-

tive. At x =0.5, data were taken on a 10 x 10 x 10
lattice. The transition temperature was unambigu-
ously determined to be that indicated in the phase di-
agram (Fig. 3). The order parameter ({a) or (S))
and internal energy were plotted as a function of
temperature. Reasonably smooth and continuous
curves were obtained in both cases indicating that ei-
ther the transition was continuous or if it was first or-
der, it was only weakly so. The second possibility is
not very surprising considering that x =0.5 is not too
far from the tricritical point at x =0. Further data
were taken with a 18 x 18 x 18 lattice to clarify the na-
ture of the transition. Starting from a random config-
uration, the system was quenched to a temperature
slightly below the transition temperature and the
internal energy was studied as a function of time.
Some evidence could be seen for a relaxation process
which occurs in two stages, being perhaps indicative
of a system which has gotten "hung up" in a paramag-
netic phase for up to a hundred and fifty Monte Car-
lo steps. These data partially support our inclination
to believe in a first-order transition in the entire
range between x =0 and 1.

B. The region x =2

In this region, we can establish the position of the
lower branch in Fig. 3 by looking for the divergence
in the high-temperature series for the polarization
susceptibility and the position of the upper branch by
looking for zeros in the low-temperature magnetiza-
tion. The latter calculation is performed at
x =8, 5, 4, and 2. The former calculation shows a
clear value of y,=1.25 for all x =2 (see Fig. 4) so
we interpret the lower branch once again as an Ising
second-order transition in which (oS) orders. For
x =4, 5, and 8 the upper branch appears as a zero in
the magnetization series at one-half the critical cou-
pling for the Ising transition; i.e., K, =0.110, in ac-
cord with Eq. (2.4). At these points 8=0.30 +0.04,
so that the phase transition does appear to have an
Ising character once more. At x =2, K, has risen
slightly, as suggested by Eq. (2.4) and we estimate 8
to be 0.24 +0.05 but the convergence of the series
appears to be worse at x =2 than for larger x. One
can interpret this decrease in 8 and worsened conver-
gence to be indicative of an approach to tricritical
behavior somewhere in the neighborhood of x =2.
(Recall that, at a classical tricritical point, ",B=%.)

For x > 2, our data therefore show a pair of Ising
style 'second-order phase transitions just as in the
mean-field theory or the two-dimensional case.

For x =4, the free-energy series [see Fig. 5(c)]
supports this interpretation. The high- and low-
temperature series never meet, so there must be a re-
gion (say between K,=0.54 and 0.11) in which there
is another phase entirely and neither free-energy
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series correctly represents f. On the other hand, for
x =2, the free-energy data can be given any of
several different interpretations so we cannot use
these data in helping us decide whether the upper
transition is first order or continuous.

Monte Carlo data were taken at x =4.0. Two tran-
sitions (both continuous) were observed at tempera-
tures (couplings) in excellent agreement with that ob-
tained from series data. The transition at the lower
temperature (higher coupling) was one in which o
and S became disordered, while oS remained or-
dered. The other transition was from this intermedi-
ate phase to a paramagnetic phase.

C. Theregionl <x <2
At x =1, the Ashkin-Teller model reduces to a

four-state Potts model which exhibits one first-order
transition with finite latent heat.
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FIG. 6 (a) The absolute values of the magnetizations and
internal energy as a function of the inverse coupling for
x =1.25. (b) The absolute values of the magnetizations as a
function of the inverse coupling for x =1.75.

At x =1.1 and 1.25, there was clear evidence from

- the Monte Carlo data for one and only one transition.

Figure 6(a) shows a plot of the magnetization and
internal energy as a function of temperature for

x =1.25. It is to be noted that ¢S, o, and S all dis-
order at the same temperature. Discontinuous jumps
in the magnetization and the internal energy confirm
that the transition is first order. However, Monte
Carlo data at x =1.50 showed two transitions with
the upper branch (higher coupling-lower tempera-
ture) being first order and the lower branch being
continuous. This result is also indicated by the series
data in which (at x =1.5) the high-temperature esti-
mate of K.! (from X,) is significantly below the
low-temperature estimate from the magnetization.
Furthermore, the low value of 8(0.20 +0.05) is
again suggestive that the higher K, branch is first or-
der. At x=1.75, the Monte Carlo data suggest that
there are two transitions, both transitions being con-
tinuous [see Fig. 6(b)].

The data at our disposal suggest the existence of a
critical end point at x =1.4 £0.1 (where the splitting
into two transitions takes place) (see point F in Fig.
3). The upper branch remains first order until a tri-
critical point at x =1.6 +0.1 is reached (see point G
in Fig. 3). However, because it is difficult to distin-
guish between weakly first-order and second-order
behavior and between two different phase transitions
when they lie close to one another, the reader should
be warned that our error estimates on the x values
for the critical end point and the tricritical point are
far from definitive.

D. The region —0.5 < x < 0.0

Our series analysis for small negative x indicates a
continuous transition with indices suggesting possible
XY behavior. The high-temperature susceptibility is
well behaved until x ~—0.7. The values of y (Fig.
4) show a change from the Ising value of 1.25
through the XY value of 1.33 at x =—0.25 to the
Heisenberg-like value of y =1.39 £0.01 at x =—0.5.
For x < —0.5, y decreases while the singularity be-
comes less converged. The B value at x =— -4-(,8
=0.305 +£0.040) is also suggestive of a second-order
behavior and consistent with the n =2 value,
B=0.33. All this behavior is consistent with and
suggestive of an X'Y-like transition in the region
0 > x > —0.5 and a Heisenberg-like multicritical
point at x —~—0.5. The variation of the critical in-
dices in the vicinity of the multicritical point may be
attributed to crossover effects.!®

The smooth meeting of free energies in Fig. 5(d)
further indicates a continuous transition in the region
-05<x<0. Atx =—1l— and —%, the critical point
obtained from the low-temperature series is in good
agreement with that obtained from the high-
temperature series. At x =—0.5 [see Fig. 5(e)] the
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free energies meet with equal slope but not at the lo-
cation expected from the high-temperature analysis
suggesting that we are in a complicated region.
Monte Carlo data at x =—0.25 indicate a continuous
transition from a ferromagnetically ordered state of o
and S to a paramagnetic state.

All these data, and the renormalization-group
analysis as well, can be consistently interpreted by
saying that for —0.5 < x <0, the system has an n =2
critical behavior.

E. The region —4.0<x < —0.5

Monte Carlo data were taken at x =—4.0, —2.0,
and —1.25. In all three cases clear evidence was
found for one and only one continuous transition
from a state where oS is ordered antiferromagnetical-
ly to a paramagnetic state. Figure 7 shows a plot of
the order parameter as a function of the reduced
temperature for x =—2.0 and —1.25.

The series analysis is not very reliable to the left of
x =—0.5. The complicated intermediate phase in the
region —0.5 > x > —1.0 is very difficult to study us-
ing our series. For x < —1.0, we did not calculate
series for the high-temperature staggered susceptibili-
ty, which would have been the best quantity to study
in this region. On the other hand, the regular sus-
ceptibility is expected in an Ising transition to show a
maximum near the antiferromagnetic transition. The
critical-point data was therefore obtained by looking
for a singularity in the logarithmic derivative of the
susceptibility series. For large negative values of x,
our series data are consistent with our Monte Carlo
results and also with the analysis given in Eq. (2.1).

We remind the reader that the region —1.0 <x

l [ l
1.0} o x=-2.00

ox:=1.25
— ]
o 3
S 0.5 —
—_— [e]

®

o8

0 0.5 1.0 15

(K;/Kz)

FIG. 7. The absolute value of the staggered magnetiza-
tion |(0'S>AF| plotted as a function of the reduced tempera-
ture for x =—2.0 and —1.25.

< —0.5 is one in which mean-field theory predicts an
intermediate phase at sufficiently low temperatures
with the symmetry broken between the o and S
spins. To map the phase diagram, Monte Carlo runs
were conducted both as a function of temperature for
constant x = K4/K; and as a function of x for con-
stant K,.

The presence of the intermediate phase (labeled
(o) in the phase diagram, Fig. 3) was confirmed by
studying the ordering as a function of x for K,=0.6,
0.75, and 1.5. Figure 8 shows a plot of different
magnetizations of a 10 x 10 x 10 lattice versus x for
K,=0.75 and 1.5. The figure clearly indicates a
range of x values for which the ordering is such that
(o) #0and (S)=(aS)=0.

The transition between the (oS )ar phase and the
(o) phase (the line KE in Fig. 3) occurs at x =—1.0
and is clearly first order since it is characterized by
discontinuous jumps of the order parameters and a
very small, possibly zero change in internal energy.
Data taken at x =—0.9 as a function of K, suggest a
continuous transition from the (o) phase to the
paramagnetic phase. From the Monte Carlo data, we
estimate that the range of x values in which the (o)
phase exists shrinks to zero as K, — o or as
tanhK, —1.

To study the nature of the transition between the
(o) phase and the Baxter phase, Monte Carlo data
were taken on a 14 x 14 x 14 lattice at K, =0.75 as a
function of x. Over most of the range of x we see
evidence for one of the two expected phases. For
—1<x <-0.78, there is a "(o )" phase in which
one of the pair =(1/N) 3, a;0r §=(1/N) 3,5, is
negligibly small and the other has a value of order
unity. For —0.75 < x the Monte Carlo system falls

(OShe (0T)  Baxter (TSNe(T)  Baxter

1.0 LTS N 1.04- “Tgew Ta¥ ¥
. .'x 00X
.
Mo 8§ x | M| ; i
° x
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Ke/ K, K, /K,

FIG. 8. Plots of different kinds of magnetizations as a
function of x =K,4/K, for K, =0.75 and 1.5 for a
10 x 10 x 10 lattice. The triangles represent | (oS ) Ag| the
closed and open circles the larger and the smaller of (o)
and (S), respectively (called M| and M, in the text) and
the cross represents (oS). When a symbol is not shown,
the corresponding magnetization is zero.
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FIG. 9. Plot of M, and M, as a function of x for
K,=0.75 for a 14 x 14 x 14 lattice.

into a "Baxter" phase in which |&| = |S| is of order
unity. However for —0.75 > x > —0.78, an unex-
pected behavior occurs. The system seems to have
both & and. S different from zero but = S. The
system seems to have two fixed values of the magni-
tudes of the order parameter, M; and M,, with

M, > M,. For a while |&| =M, and |§|=M,. Then
after a time the roles will interchange and |&| = M,
and |S| =M,. Figure 9 shows a plot of apparent M
and M, values. If there is really a range in which

M, > M, >0, this is a new phase not seen in mean-
field theory. However, the range for which this oc-
curs is very narrow, and even though the result does
not seem to change with changes in lattice size (from
10 X 10 x 10 to 14 x 14 x 14), it may nonetheless be a
finite-lattice effect.

APPENDIX A

In this Appendix, we sketch some details of the
importance-sampling Monte Carlo technique,? as ap-
plied to the Ashkin-Teller model in three dimensions.
Most of our data were taken on a 10 X 10 x 10 lattice
with periodic boundary conditions using a code writ-
ten in FORTRAN. The time needed for each spin-flip
trial was about 175 usec (including the time for com-
puting averages) on a CDC 6600.

Typically, starting from an equilibrium configura-
tion at a nearby point in (K,,K4) space, the system
was allowed to equilibrate at the new K, and K4
values by making 100—200 passes through the entire
lattice. We tested several different sequences of
spin-flip trials. The first consisted in going through
the simple cubic lattice and at each site considering
first the o spin and then the S spin as the "reference"”
spin. In the second, during the first pass through the

lattice, at each lattice site, only the o spin was con-
sidered as the "reference" spin and during the second
pass, the S spins were candidates for the spin-flip tri-
al. It was found that the latter method took signifi-
cantly longer to equilibrate the system than the form-
er starting from an ordered nonequilibrium config-
uration, so that only the former method was used in
actual runs. :

For large values of x (x = K4/K, > 4), it was found
to be advantageous to consider the o and S spins on
the same site simultaneously as candidates for a
spin-flip trial. Around the temperature where the o
and S spins became disordered, while the product oS
remained ordered, this led to an efficient way of
equilibrating the system starting from an ordered
state.

The transition temperature was identified as the
point of maximum slope in internal energy (and) or
the appropriate order parameter as a function of tem-
perature. Due to finite-size effects,? we expect our
transition temperatures to be systematically, but only
slightly different from the true transition temperature.

A first-order transition is signaled by hysteresis and
discontinuous jumps in the internal energy and/or
the order parameter. As noted by Landau and
Binder,? first- and second-order transitions may be
distinguished by the buildup of the magnetization on
quenching the system from a disordered state (corre-
sponding to.an equilibrium configuration at very high
temperatures) to a temperature just below the transi-
tion temperature. Due to the presence of long-lived
metastable states, a two-step relaxation process is ex-
pected in the case of a first-order transition, whereas
a smooth buildup is observed in the case of a con-
tinuous transition.

APPENDIX B

The series, whose derivation we describe here, are
not included for reasons of space. They can be ob-
tained on request from the authors or from the Phys-
ical Review depository.

The quantities calculated for high-temperature ex-
pansions were: (i) free energy—11 terms; (ii)
susceptibility —10 terms; (iii) polarization
susceptibility—10 terms. The quantities calculated
for low-temperature expansions were: (i) free ener-
gy; (ii) magnetization and susceptibility; (iii) polariza-
tion and its susceptibilities. The high-temperature
series made use of the skeleton graph list of Fisch?
and his lattice constants which go up to 10 lines. We
added the 11th line graph for the free energy.

The partition function is linearized to be?

z=Tr [Jexp(—BH,;)
ij)
=Tr H W[] +y(o',-0'j+S,~Sj) +ZO'/0'jSiSj] ,

i
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where

W =cosh?K,coshK 4 +sinh?K,sinhK, |,
y =tanhK,(1 +tanhK4)/(1 +tanh?K,tanhK,) ,
z = (tanh?K, +tanhK4)/(1 +tanh?K, tanhK )

The result is that
f=Ind+dInW + 3 a,,y"z"
1 1 1 1
FX=5+ D bumy"z™ . TXp=7F + X Camy"z" .

Using the primitive series-expansion method
described in Domb?* with different bonds for o, S, and
oS one obtained the coefficients from the workings
of all possible skeleton graphs with » o and S bonds
and m oS bonds.

Susceptibility graphs have two special vertices with
free o variables; polarization susceptibility graphs
have two vertices with free oS variables. The pro-
cess was computerized and for many dimensionality d
a set of three matrices can be produced a,,, b,m, and
¢nm- The matrices for d =3 are included in the Phys-
ical Review depository. Others are available on re-
quest too.

We chose to analyze these series in two variables
by setting the ratio of x = K4/K; constant and obtain-
ing a series in the one variable K,. Pade analysis us-
ing a variant of the Elliott program? was done on
dInX/dtanhK; and 91nX,/dtanhK,. Poles and resi-
dues were estimated in the standard way.

The high-temperature free-energy analysis was
done by taking Pade approximants of F —31InW,
series part.and then adding In4 +3In W (x) to the
result.

The low-temperature series were calculated by an
extension of the method of Sykes ei al.?® We includ-
ed all graphs containing up to six points together with
some of the more connected graphs of seven and
eight points. Unlike the Ising case or even the four-

state Potts case, each graph here has a different
weight so all lattice constants are needed and not only
sums of certain groups. We used Sykes and co-
workers Ising series coefficients?’as checks on ours as
they are sums of groups of graphs with equal number
of lines.

Each graph is evaluated by a small computer pro-
gram which sums up the various possibilities for
overturning o and S at each vertex. For the cases in
which, respectively, o, S, or both are overturned at a
given vertex, the appropriate vertex weights are
X% X9 and Z*. Here, X =expl —4(K,+K4)1,

Z =exp( —4K,). Each low-temperature contribution
must also be multiplied by an appropriate factor
describing the configuration of the nearest-neighbor
bond. The four types of bond factors are, respectively,
obtained when one (a) overturns o at both ends of a
bond; (b) overturns o at one end and S at the other;
(c) overturns o at one end and both spins at the oth-
er; (d) overturns all four spins in the band. In these
four cases, the resulting bond weight is, respectively,
X71,zx"1,Z71,Z72. Finally, each of these overturn-
ing possibilities is weighted by a factor which depends
upon the number of sites at which only o is over-
turned (N,), the number of sites at which only S is
overturned (Ng), and the number at which both are
overturned (N,s). The magnetization and polariza-
tion, susceptibility are, respectively, multiplied by fac-
tors of (2N, +2N,s), and (2N, +2Ng).
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