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The dynamics of melting in two dimensions is studied, assuming that solids me1t into liquids

via a sequence of dislocation and disclination unbinding tr &nsitions. The hydrodyn comics of
solids, hexatics, and liquids in the presence of dislocations and disclin ~tions is described ~s well

as the dynamical response near the solid-hexatic and hexatic-liquid transitions. Although the

theory is constructed with applications to free-standing liquid-cryst tl films in mind, it should be
suitable with various modifications for films on solid substrates, lipid monolayers on water, and

other systems.

I. INTRODUCTION

A. Purpose

There is now considerable theoretical and experi-
mental interest in melting of thin films which are
essentially two dimensional. Theoretically, one may
be able to understand melting of these materials in

terms of the dislocation mechanism proposed by Kos-
terlitz and Thouless. " According to this point of
view, melting occurs when thermally activated dislo-
cation pairs dissociate at sufficiently high tempera-
tures.

Of course, dislocations have long been proposed as
a mechanism for three-dimensional melting. ' Indeed,
it is very tempting to view ordinary melting in terms
of a sudden proliferation of dislocation loops in the
solid phase. Shockley' argued that a liquidlike
viscosity would result from the response of a tangled
array of dislocation lines to an applied stress. Unfor-
tunately, little analytical progress has been made in

elaborating this picture of a liquid as a "heavily dislo-
cated solid. "

The situation is quite different in two dimensions,
where dislocations are pointlike imperfections. Re-
cent theoretical analyses have brought powerful
tools developed in the renormalization-group theory
of critical phenomena' to bear on this problem. In
Ref. 5 (henceforth referred to as I), it was found that
two separate phase transitions are required to com-
plete the transition from solid to liquid in two dimen-
sions. Dislocations unbind at a temperature T into
a phase with short-range translational order, but with

persistent correlations in the orientations of bond an-
gles. The properties of this phase are similar to those
of a nematic liquid crystal, except that triangular lat-

tices melt into a phase with persistent sixfold, rather
than twofold order. Paired disclinations in this hexatic
liquid-crystalline phase ultimately unbind themselves,
driving a second transition at a higher temperature T;

into an isotropic liquid.

A precise characterization of the three phases
described above rests on the large distance behavior
of translational- and orientational-order-parameter
correlation functions. Translational order is described
by the local Fourier components p-„. ( r ) of the densi-

ty evaluated at a set of reciprocal lattice vectors [GI.
For the theories we shall consider here, one can take

(r) ego ~ u(r)
Ci

~here u ( r ) is the displacement field at position r .
Sixfold orientational order is characterized by the
complex quantity

y( r ) e6i8( r ) (1.2)

—q~(T)
(p-„. (r )po (0)) - r (1.3a)

lim (p( r ) p" (0) ) = const A 0
f ~OO

(1.3b)

It will be convenient to speak of "quasi-long-range

I

I r

FIG. I. "Bonds" (dashed lines) joining a central &tom to
its six nearest neighbors. Each such bond m ~kes an ~ngle 0

with a fixed reference axis.

where 0( r ) is the orientation relative to some fixed
reference axis of the bond between two neL0;hboring
atoms (see Fig. 1). Two-dimensional soli&is are
characterized by algebraic decay of translational corre-
lations at large r, but long-range order in the orien-
tations,
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order" when correlations, decay like power laws as in

the Eq. (1.3a). Translational order decays exponen-
tially in the hexatic phase, but there is quasi-long-
range order in Q( r ),

—.~&+~ ~)
(po(r )po(0)) —e (1.4a)

(y( r )y'(0)) —r (1.4b)

Both quantities exhibit short-range order in liquids,

-r/f+( T)
(po(r )po(0)) —e +

(P(r)y'(0)) —e" ~

(1.Sa)

(1.5b)

A schematic and very tentative pressure-temperature
phase diagram is shown in Fig. 2. All of the above
phases appear, together with a vapor phase.

What makes two-dimensional melting particularly
intriguing is the rich variety of experimental systems
which can be investigated. As discussed in I, the
theory is applicable with some modifications to physi-
adsorbed monolayers on a periodic substrate. ' The
Wigner crystal of electrons pinned to the surface of
helium observed recently by Grimes and Adams

may also melt in a way consistent with the theory.
Free-standing smectic liquid-crystal films' " might
provide some of the best realizations of isolated,
two-dimensional liquid and solid phases. Birgeneau
and Litster" have suggested that the theory could be
helpful in understanding bulk smectic liquid-crystal

phases. Finally, one might hope that the theory ap-

plies to lipid monolayers floating on water, provided
transitions associated with the hydrocarbon chains
can be excluded.

To make contact with these experimental situa-
tions, it is particularly important to extend the equili-
brium melting theory to dynamical situations.
Indeed, many experiments actually measure the
response of systems to space- and time-dependent
external perturbations. Moreover, the predicted ther-
modynamic properties are not always particularly
striking or even observable. Although there should
be a jump discontinuity in the shear modulus and
singular behavior in the structure factor at the dislo-
cation unbinding transition, pressure-area isotherms
and specific heat curves should have only unobserv-
able essential singularities. As we shall see, the
behavior of dynamical quantities can be more spec-
tacular.

In this paper, we extend the melting theory to the
time-dependent properties of solids, hexatics, and
liquids, and study the dynamics of the transitions
separating these phases. We shall focus in particular
on situations where most of the conservation laws,
applicable to truly two-dimensional matter, remain in-

tact. Temperature fluctuations are neglected
throughout, although this is not a fundamental limi-
tation of the theory. Our results pertain most directly
to free-standing smectic liquid-crystall films, where
momentum and number density are conserved to a

good approximation.
With suitable modifications, the theory can be tak-

en over to other interesting experimental situations.
For example, melting of a physiadsorbed monolayer
on a glassy substrate could be treated by discarding
the conservation of the momentum variable g ( r, t)
which enters most of our analysis. One must then
introduce an extra term in the equation of motion for
g which causes it to relax rapidly to a value deter-
mined by the local stress forces,

(1.6)

FfG. 2. Possible pressure-temperature phase diagram for
circularly symmetric molecules with an attractive potential.
Hatched lines indicate first-order transitions. The lines
T (p) and T, (p) are loci of the dislocation and disclination

unbinding transitions discussed in the text, Many different
phase diagrams are possible, and this figure represents only
one guess.

Here, o-„" is the usual stress tensor associated with a
conserved momentum density and the term propor-
tional to I breaks this conservation of g. Conserva-
tion of number density must also be discarded, if the
adsorbate is in equilibrium with a dense bulk vapor
phase.

For lipids or other amphiphillic molecules floating
on water, "one must solve simultaneously the hydro-
dynamic equations of the liquid substrate, together
with those for the lipid monolayer phase, with suit-
able boundary conditions. ' The transport coeffi-
cients worked out in this paper would enter as input
parameters in such calculations. The dynamics of
electrons on the surface of helium can be treated in a
similar fashion, provided one takes account of effects
associated with the long-range Coulomb interaction.
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Some support for the equilibrium melting theory
can already be found in recent computer experi-
ments. Frerikel and McTague" find two distinct
melting transitions, with no observable latent heat, in

a molecular-dynamics simulation with a 6-12
Lennard-Jones potential. A computer simulation by
Morf' suggests that the two-dimensional electron
crystal observed by Grimes and Adams' melts at a

temperature consistent with the theory, provided re-
normalization of the shear modulus is taken into ac-
count. The dynaInicat results reported here should
also be testable by molecular-dynamics methods,
The dynamical quantities measured by Frenkel and
McTague are discussed in Sec. VI E. Our conclusions
may be especially useful in estimating the times
necessary to reach equilibrium in a computer experi-
ment. There are pronounced "critical slowing down"
effects (divergent relaxation times) near the disloca-
tion and disclination unbinding transitions, so partic-
ular care is required in simulations near these tem-
peratures. A pair of such temperatures, where equili-
brium is reached very slowly, might lead to erroneous
"hysteresis loops" in computer experiments.

e(r)=(y), , =—~+le""" (1.8)

where ( ),,~~ means an average over a "cell" centered
at r. If there are no free disclinations present, it is

always possible to find cells large enough so that
()( r ) is single valued and contiriuous. Cuts must, of
course, be introduced to make the microscopic
bond-angle field 8( r ) single valued in the presence
of disclinations. The Frank constant K„(T), which
measures the energy associated with deformations in

0( r ), is related to q6(T) by'

where there are no broken symmetries, four hydro-
dynamic equations describe conservation of the
momentum g( r, t), number density»( r, r), and en-
ergy density e( r, r). At long wavelengths one finds a

pair of longitudinal sound frequencies, as well as dif-
fusive shear and thermal modes.

Hexatics are characterized by an additional term in
the free energy, relative to that for a liquid, namely,

g F„=—,K„(T) Jf )
'70 [' d'i

Here, 0(r) is related to a smoothed version of the
microscopic bond-orientation order parameter (1.2),

8. Generalized hydrodynamics
ne(T) = Ig&sT/~K„(T) . (1.9)

Our treatment of melting dynamics consists of two

parts. We first discuss the ordinary, defect-free hy-

drodynamics, ' of the solid, hexatic, and liquid

phases (Secs. II and III, below). This discussion
focuses attention on a few long-wavelength, slowly
varying modes determined by conservation laws,
symmetry considerations, etc. One finds results
parametrized by quantities like equilibrium elastic
constants, and by a set of unknown transport coeffi-
cients.

In the remainder of the paper we-concentrate on
the dynamic behavior in the vicinity of the two tran-
sitions T and T;. Our purpose is to predict the tem-
perature dependence of the transport coefficients ap-
pearing in the hydrodynamic equations, and to
analyze the breakdown of hydrodynamics at finite
frequencies, near the transitions. The treatment here
rests on a generalization of hydrodynamics to include
an equilibrium concentration of defects. Specifically
we regard the system near T as a solid with a small
concentration of dislocations (bound dislocations for
T ( T; free dislocations and bound dislocations for
T ) T ). Near T;, we consider the system to be a
hexatic together with a small concentration of discli-
nations. For simplicity we consider only the melting
of a regular triangular solid.

The independent hydrodynamic equations in a par-
ticular system are associated with the appropriate con-
served densities, as well as with the "phases" of any
order parameters characterizing a locally broken con-
tinuous symmetry. In two-dimensional liquids,

The temperature dependence of K„(T) between T
and T; was worked out in I, and is displayed in Fig. 3,

Five hydrodynamic modes emerge when an equa-
tion of motion for 0( r, r) is coupled to the conserved
densities. Longitudinal sound and thermal diffusion
exist, just as in a liquid, but there are two transverse
modes arising from the coupling of 0( r, r) to the
transverse momentum density. Just as in a nematic

kBTm ka Ti

kgT

FIG. 3. & striation of the renormalized Fr &nk constant
K& ( T) in the hexatic liquid-cryst tl phase. This quantity

jumps discontinuously to zero at T; and diverges like (+ ts

T T . The jump discontinuity is preceeded by ~ square-
root cusp, and must lie on a line with slope 72/m.
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liquid crystal, " the characteristic frequencies of these
modes can be either purely diffusive, or else acquire
a real part proportional to wave vector squared. Only
two transport coefficients, in addition to the Frank
constant K„(T), are necessary to completely charac-
terize these excitations at long wavelengths. In Sec.
VIE, we argue that these modes are purely diffusive
near the transition temperature T; found by Frenkel
and. McTague, "as well as near T .

In solids, the appropriate hydrodynamic order
parameter is an average of (1.1),

po ( r ) =
& po &«~~ =—

I po le' (1.10)

which defines a macroscopic displacement field
U( r ). For sufficiently large cell size, this field is

single valued and continuous, provided dislocations
exist only in neutral bound states. The two com-
ponents of U( r ), in addition to the conserved densi-
ties, must lead to six independent hydrodynamic vari-
ables in two-dimensional solids. As noticed by Mar-
tin et al. ,

' the shear and longitudinal sound waves
(four modes in all), together with the thermal diffu-
sion mode arising in standard treatments. ' of solid
hydrodynamics, do not exhaust this number. They
correctly identified the missing mode with a con-
served "net defect density" Nq( r, r), defined as the
difference between the density of interstitials N; and
the density of vacancies N„,

Na(r, t) =N;(r, t) —N„( r, r)

The quantity Nq( r, t) is conserved, because vacan-
cies and interstitials are created and destroyed in pairs
in a solid, and fluctuations in N~ relax by a diffusive
hydrodynamic mode. '

In Secs. II 8 and III C, where the results of Ref. 19
are rederived, we have found it convenient to elim-
inate Sn ( r, r), the local change in the number densi-

ty, in favor of SNq(r, r),

functions in two dimensions. When "mode-
coupling" nonlinearities in the hydrodynamic equa-
tions are taken into account, one typically finds diver-
gences in the Kubo formulas for transport coeffi-
cients. The eave- vector- and frequency-dependent
viscosity qR (k, co) of a liquid, for example, is expect-
ed to diverge for k =0 at low frequencies,

v)~ (0, o)) —ln'~'(1/(u)

Analogous divergences have been found" in trans-
port coefficients describing two-dimensional solids
and hexatics. It is unlikely, however, that such loga-
rithmically weak singularities have observable conse-
quences at experimentally accessible wave vectors
and frequencies. The theory described here predicts
much stronger divergences in certain transport coeffi-
cients as a function of temperature near the disloca-
tion and disclination unbinding transitions.

Just as in ordinary phase-transition problems, "hy-
drodynamics becomes inadequate near the continu-
ous phase transitions separating solids, liquids, and
hexatics, To determine the dynamical response and
behavior of transport coefficients near T and T;, we
must generalize our dynamical equations to include
effects of dislocations and disclinations.

Dislocations and disclinations clearly can have an
important effect on the microscopic displacement and
bond-orientation fields. A simple illustration is pro-
vided by a square lattice solid with uniform shear
boundary conditions (Fig. 4). After a sufficiently
long time, dislocation pairs should nucleate, unbind,
and travel to the edges, relaxing the internal
stresses'4 (Fig. 4). Although this kind of "plastic
flow" can be treated using the diffusive model
described in Sec. IV D, we shall focus here on similar
effects produced by motion of fice dislocations, re-
garding the hexatic phase as a kind of "heavily dislo-

SN~( r, t) = Sn ( r, t) + l1OU;;( r, t) (1.12)

Here, ~lp is the average number density, and
SNa( r, r ) is the local change in the net defect densi-
ty. It is important to include in the free energy a
term coupling 5N ~ to the lattice dilation U;;, in addi-
tion to the usual elastic free energy,

Fel
=

) g ~ I' (2P R UI12 + ~R Ukk )

where

////////
I I / I I / I I
I I I // I I I

/ / / / / / I I////// / /////// I /

I I I I I I I I////////////////////////////////n /IIIII
UJ = —, (8;UJ+ BjU;) (1.14)

(a)
and p.~ and ) ~ are elastic constants defined at con-
stant net defect density.

Our discussion of hydrodynamics, and, indeed, all

the analysis in this paper, neglects mell-known prob-
lems ' caused by the slow decay of time correlation

FIG. 4. Relaxation of a cr, ystal under applied shear, by

the motion of dislocations through the sample (plastic flow).
Crystal (b) satisfies the same macroscopic boundary condi-
tions as (a), but there are no internal stresses.
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cated solid. " %e expect a density

nf =(~—2 (1.16)

of screened free dislocations (with a screening length
of 'order (+) in the hexatic phase, where (+( T) is the
correlation length defined by Eq. (1.4a). Near T it

has a very strong temperature dependence, '6

(+( T) —exp(b/( T —T~ ('"'" ) (1.17)

where b is a constant. If the recent theories of
dislocation-mediated melting are correct, the combi-
nation of free dislocation motion and solid hydro-
dynamics should produce the characteristic excita-
tions of a hexatic, with transport coefficients depend-
ing on»&. At finite frequencies, bou»n' dislocation
pairs will also contribute to the dynamics, both above
and below T .

Disclinations play a very similar role near T; ~ Dis-
clination motion couples to the microscopic bond
orientation field in much the way that vortices affect
two-dimensional superflow. "' Regarding a liquid as
a hexatic with a free disclination density

nf(6) —2

with'

C. Results and outline

The principal result of this paper is a semimicro-
scopic model of melting dynamics, which combines
the correct conservation laws and symmetries with
important dynamical effects due to dislocations and
disclinations. The equations of motion defining the
model can be applied to a wide variety of interesting
experimental situations. Of course, the modifications
necessary for systems on substrates described in Sec.
I A must be made. Although applications to specific
experifnents have not been worked out in detail,
there are a variety of interesting results, pertaining
most directly to free-standing liquid-crystal films,
which we summarize here.

Figure 5 shows different regions of the
temperature —wave-vector plane, corresponding to
different kinds of transverse excitations. Below T,
one finds the usual shear sound waves, which prop-
agate even above T at finite wavelengths. This
behavior is consistent with a uniform shear modulus
which drops abruptly to zero at T~,"-' but is con-
tinuous and nonzero through T at finite wave vec-
tors and frequencies. Damping caused by coupling of
shear sound to dislocations increases until shear
waves become ill defined in a region above T such
that

g& = exp(b'/) T —T; ('t') (1.19) q = const&+' (1,20)

we can determine the temperature dependence of
liquid transport coefficients just above T;. Bound dis-
clination pairs must be taken into account at finite
frequencies.

To implement this program we have constructed
"semimicroscopic" dynamical models of solids with

dislocations and of hexatics with disclinations. In
solids, we allow moving dislocations to interact with a

microscopic strain field u;, ( r, t) and a microscopic net
defect density Ant, ( r, t) The coupling t.o defects is

important, since dislocations "climb" (move perpen- '

dicular to their Burgers vector) only in the presence
of vacancies and interstitials. ' Defects are not re-
quired for a dislocation to "glide" parallel to its
Burgers vector. Disclinations interact with the»ticio-
scopic bond-orienta. tion field ()(rt),

Our model equations resemble Maxwell's equa-
tions, in the way that dislocation and disclination
charge densities and currents couple to the semimi-
croscopic hydrodynamic variables. Just as in the elec-
trodynamics of metals and insulators, constitutive re-
lations are used to eliminate dislocation and disclina-
tion currents, and obtain a closed set of equations.
The form of the constitutive relations is determined
by a temperature-dependent division of dislocations
and disclinations into free and bound pairs. Bound
singularities may be incorporated into a kind of
"dielectric constant, " while free singularities give rise
to a "conductivity" proportional to their density.

Below T, we expect that bound dislocation pairs
contribute an anomalous damping to shear waves,
which tends to zero at long wavelengths as a
temperature-dependent power of the wave vector q.
Although we have not studied this effect in detail, it
is very similar to the anomalous damping of third
sound worked out in Ref. 26.

SHEAR
WAVES

HEX
IDIO

ISCOUS
FFU SION

FIG. 5. Different regions of the w~ve-
number —temperature pl ~ne describing different kinds of
transverse excit 1tions. Transverse sound propagates below
T and above T up to the blurred region where
k —const/+ . In the hydrodynamic region (k(+) && 1

above T one finds the two diffusive excit1tions of the hex-
atic phase, which exist also above T, at finite wavelengths
and change into liquidlike excit actions for tt & (&'.
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co+= —D+Q i, cu = —D g I
2 2 (1.21)

The diffusivity D remains finite for q very small as
T T+, while D+ diverges strongly,

As q tends to zero at fixed T & T, one eventually
passes through the region (1.20), and finds the
characteristic excitations of a hexatic. Here, both
hexatic frequencies are diffusive, with no real part,

include effects of free and bound dislocations, are
contained in Sec. V. We expect a peak in the absorp-
tion above T, and a finite frequency shear modulus
which is continuous through the dislocation unbind-
ing transition.

The propagation of longitudinal sound near T is
also quite interesting. Compressional sound waves
propagate with characteristic frequencies,

D (2 (1.22)
+ I~I- =+clq ——DIq i (1.25)

This behavior is only manifest for q « const)+',
however, and may be difficult to observe experimen-
tally. As one would expect intuitively, the viscosity
of the hexatic phase is inversely proportional to the
density of free dislocations, so that the viscosity
diverges as f2+, when T T+.

As shown in Fig. 2, the Frank constant K„(T) is

expected to remain finite as T approaches the transi-
tion T; to the isotropic phase. Correspondingly, one
finds transverse hexatic hydrodynamic modes above

T, at finite wavelengths, with a changeover into
liquidlike excitations for

(1.23)

above the dislocation unbinding transition. Belo~ T
there are additional, nonanalytic contributions to the
damping, s'imilar to those discussed above for shear
waves. The damping constant DI diverges as T T+
in the hexatic hydrodynamic region,

(1.26)

and is associated with a diverging viscosity. At the
same time, a mode which becomes defect diffusion
below T exhibits "critical slowing down, " relaxing
at a rate (+'. When measurements of D, (T) are car-
ried out at finite momenta, we expect a maximum at
temperatures above T such that

In the liquid hydrodynamic region (q « g&'), the
shear viscosity remains continuous through T;, and
becomes equal to the viscous coefficient q(T) in the
hexatic hydrodynamic equations,

g( T;+) = g( T; ) = const (1.24)

There is actually some ambiguity in the definition of
a hexatic shear viscosity, since there are t~o
transverse diffusive modes. If, following Frenkel and
McTague, "one defines an effective shear viscosity

7) ff in terms of the zero-frequency transverse-
momentum correlation function, the resulting quanti-

ty should jump discontinuously to a IargeI value as T
is decreased through T; ~ This jump is related to the
jump in K„(T) at T;, and will be rounded off at fin-
ite wave vectors and frequencies (see Fig. 3 of Ref.
15). The relation of the hexatic hydrodynamic
parameters to various macroscopic measurements of
an effective viscosity is discussed in Appendix A.
Gradients in the bond-orientation field relax to zero
more and more slowly as T T;+, at a rate propor-
tional to $&'.

Important insights into two-dimensional melting
could be obtained by studying the response to a uni-

form, time-dependent shear near T . Such an exper-
iment would be very analogous to the oscillating sub-
strate experiment of Bishop and Reppy, ~' which
showed clearly the importance of vortices in under-
standing superfluid helium films. It should be very
straightforward to adapt the analysis of Arnbegaokar
e( a/, ' for the superfluid, and predict the frequency-
dependent shear modulus and absorption of energy
near T . The necessary equations of motion, which

q = A exp( —8/~ T —T ~""" ) (1.27)
0

where A and B are constants. The sound velocity
cj(T) should rise smoothly with decreasing tempera-
tures from its hexatic value to a larger value in the
solid. For reasons explained in Sec. V, the response
to a uniform, time-dependent compression at T is
somewhat more complicated than the corresponding
shear experiment. Nevertheless, we expect an
anomalous absorption of energy just above T, and a

rise in the frequency-dependent bulk modulus with
decreasing temperatures.

The remainder of this paper is arranged as follows:
In Secs. II and III, we describe the long-wavelength
static and hydrodynamic properties of solids, hexat-
ics, and liquids. The capital letters U;, 5Nq, and 0
are used to denote the displacement, defect density,
and bond-orientation fields in these sections to em-
phasize that these are macroscopic, smoothed analogs
of the corresponding microscopic fields, with no
singularities due to dislocations and disclinations. A

semimicroscopic model of a solid with dislocations is
described in Sec. IV, where u; and Snab denote micro-
scopic versions of the displacement and defect densi-
ty fields. The model is solved near the dislocation
unbinding temperature in Sec. V. A similar program
is carried out for a hexatic with disclinations in Sec.
VI, where 0 denotes a microscopic bond field.

The relation between the hydrodynamic coefficients
and various measurements of the viscosity in the
hexatic phase is discussed in Appendix A. Some
computational details of our study of the dynamics
near T are given in Appendixes 8 and C.



2520 ZIPPELIUS, HALPERIN, AND NELSON

II. EQUILIBRIUM PROPERTIES

In this section, we review the long-wavelength
properties of liquids, hexatics, and solids in equilibri-
um. Although liquids and hexatics are quite easy to
treat, care is necessary to properly incorporate defects
like vacancies and interstitials into the description of
a solid. Temperature fluctuations will be neglected
for simplicity.

A. Liquids and hexatics in equilibrium

Following the usual methods of equilibrium statist-
ical mechanics, '8 we expect that the probability of
fluctuations in the momentum density, g ( r ), and in

the number density, n ( r ), are given by a free ener-

gy in the liquid phase of the form,

of the elastic degrees of freedom and the conserved
densities. As was pointed out by Martin et a/. , it is

important to distinguish between local lattice defor-
mations and local changes in the number density. At
any nonzero temperature interstitials and vacancies
are present in finite concentrations, allowing for mass
transport independent of deformations of the lattice.

We shall consider only small deviations from a
state of thermal equilibrium at a temperature Tp and
a reference pressure pp. Expanding the free energy F
up to second order in small fluctuating quantities,
and assuming a constant pressure pp at the boun-
daries, we find

F= JI d'r(g(r)('
271 0771

+ —, JI d'r [2p,a U„'( r ) + XR U;,'( r ) ]

F = d'r[g(r)['+ — d'r[gn(Y)]'
277171p 271 0

(2.1)

+, —
J d'r [5!Vg( r ) ]'-

2ilp XR

FR =F1 + —,Kg Jtd'r('70)' (2.3)

where A& measures the resistance to long-wavelength
distortions of the bond-angle field. Since disclina-
tions have already been averaged out in this descrip-
tion we can take 8( r ) to be a single-valued, continu-
ous function. The stiffness parameter K„(T), which
is analogous to a Frank constant in a nematic liquid

crystal, is expected to have the temperature depen-
dence shown in Fig. 3, as one goes from the solid
transition temperature T to the transition to a liquid
at T, . '

B. Solids in equilibrium

To apply the general formulas of thermodynamics
to solids, we must know the free energy as a function

Here, Sn (r) is the deviation of the number density

from its equilibrium value 71p, and the probability of a

fluctuation is proportional to exp( FL/ka T). Th—e
quantity in is the mass of the constituent particles,
while the inverse isothermal bulk modulus or isother-
mal compressibility is just

1

1 (jA (2.2)
Qp

where A is the area of the system, and p the two-

dimensional pressure.
According to the results of I, a phase of matter can

exist in two dimensions with residual sixfold order in

bond-angle correlations, but with short-range transla-
tional order. Fluctuations in the average bond-angle
field 0( r ) of this hexatic phase may then be
described by a free energy,

+ Jtd'r U;;(r)SNq(r)
il p

(2.4)

where XR and yR are phenomenological coefficients,
and the remaining quantities have been defined
above, in the Introduction and in Sec. II A.
(Throughout this paper we use a summation conven-
tion on Latin indices, and we use the notation U„" to
mean U»U;, . )

The physical interpretations of the four terms on
the right-hand side of (2.4) are as follows. The first
term is simply the kinetic energy associated with the
momentum density g. The second term represents
the elastic energy of a deformed isotropic body„as
given by continuum elasticity theory, ' and neglecting
any changes in the net defect concentration N~, de-
fined as the difference between the density of inter-
stitials and vacancies. The third term is the free en-
ergy change due to a change in the net defect concen-
tration when the lattice constant is held fixed. Final-
ly, the fourth term gives the coupling between fluc-
tuations in the defect density and the strain field; it is
the only possible bilinear coupling between the tensor
U;, and the scalar 5A'z. Fluctuations in the local
number density n ( r ) are accounted for by changes
in U;; and SJV~, as mentioned in the Introduction,
and discussed further in Sec. III C below.

The coupling between the elastic degrees of free-
dorn and fluctuations in the local temperature has
been neglected in (2.4). The strength of this cou-
pling is determined by the relative difference
(C~ —C„)/C„of the specific heats at constant pres-
sure and at constant volume. This quantity is usually
small in solids. However, temperature fluctuations
can be easily incorporated into (2.4) by an additional
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term in the free energy'

F =— d 2r [5T ( r ) 1'
2 Tp4

+alii „I d'r ST( r)U;;( r)

current. Thus

8
i) dl Xg= — d2r

at 4 9t

or equivalently

gfdl Xg= — d r SNa

(2.13)

(2.14)

++i J d'r ST(r)SNr, (r) (2.5)

SNa( r ) —= lVa( r ) —Nii,

N,'=N, '-N„' .

(2.7)

(2.8)

It is easy to show that at low temperatures, the sus-
ceptibility XR is proportional to (N„+ N; )/ka T,
which is very small for sufficiently small T.

It will be convenient below, to consider the
response of the solid to a small change in stress ap-
plied to the boundary, For this purpose, one should
add to the interior free energy (2.4). a boundary term,

F = g) dl rr,g(
&

)i; U& +
2

li& U; + lio li; li&Xg), (2.9)

where the integral is along the boundary of the sys-
tem. Here„and throughout this paper, o.;, ( r ) is the
deviatio)t of the stress tensor from its equilibrium
value at the reference pressure pp. The quantity
U ( r ) is the displacement at point r, and ii is a unit
vector in the plane of the film and normal to the
boundary of the sample; i.e. ,

])dl= —z xd I', (2.10)

where z is the normal to the sample, and d 1 is
tangent to its boundary. The quantity Xa( r ) appear-
ing in (2.9) is the net number of extra atoms per unit
length accreted at the surface because of the flow. of
interstitials and vacancies to this boundary. Conser-
vation of particle number implies

=)l ' Jg
Bt

(2.11)

at the surface and

QNg = —'7 Jg
at

in the interior, where J q is a macroscopic defect

(2.12)

Temperature fluctuations could be accounted for in

the liquid and hexatic phases in an analogous fashion.
Henceforth, we shall neglect temperature fluctuations
in the solid phase.

We may note that at low temperatures, there will

be an equilibrium density of vacancies and intersti-
tials N„and N;, proportional to Boltzmann factors,

—E/k T —E/k T
N ~e " N;ce (2.6)

where E„and E; are the enthalpy changes associated
with the creation of a vacancy or interstitial. By def-
inition, we have

Let us now specialize to the situation where the
stress at the boundary is caused by a uniform hydro-
static pressure so that

a.
)J

= —5g5p (2.15)

where hp =p —pp. Since U is single valued in the
solid phase (no dislocations are present at this level
of description), we can use Green's theorem to write

—, g
) ( ii; U& + ii, U; ) dl = „' d'r U,& (2.16)

Using (2.14) and (2.16), we can now transform the
boundary free energy F' ' to an integral over the
area of the film, F' '(U, Xa) = F' '(U;, , SNa), where

F' '=Sp J d'r(U;; —no'SNa) (2.17)

We may note that the integral in (2.17) is just 5A,
the change in area of the system, relative to the
equilibrium area at pressure pp.

In equilibrium the free energy must be minimized
with respect to small variations of U;,. and 5N&

5(F +F )/SUi =0
5(F+F )/5(SNa) =0

For the pure compressions under consideration,
(2. 1 8) reads

(pR+hR) U;;+yRSNa/»0= Sp, —

(2. 1 8)

(2.19)

(2.20)

describing a mechanical equilibrium, which is reached
in a relatively short time, comparable to the system
size divided by the longitudinal sound velocity. For
complete equilibrium, (2.19) must also hold,

XR'SN, /no+ y R U, , = Sp (2.21)

The characteristic time scale for this equilibrium to
be reached, however, is given by the defect diffusion
time, which in the long-wavelength limit is much
longer than an inverse sound frequency.

Solving (2.20) and (2.21) for U;; and SNa as func-
tions of Sp, one can express the compressibility (i.e.,
the inverse bulk modulus),

1 SAB
A Sp

U;; 1 SNg+-
Sp )1p Sp

(2.22)

in terms of yR, X& and the elastic constants p, R, A. R.

B '=(PR+hR yRXR) ll+(PR+hR+2y )X R)R

(2.23)
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If one were to measure the bulk modulus at times
long compared to the elastic relaxation time but short
compared to the defect diffusion time, the resulting
equilibrium would be determined by (2.20) and the
relation 5%&=0. The effective bulk modulus in this
situation would be

A. Liquid hydrodynamics

For an isotropic fluid the conserved densities are
the only slow variables. Equations (3.1)—(3.3) have
to be supplemented by constitutive relations for the
stress tensor o.„" and the energy density current j,,

"

U;;
&err I/(v'R + &R )

Sp
(2.24) o„=—P5„+o-,jD", (3.4)

D = ~ [Bg+Bg (v g)5 1+ ( (v g)5
nl np I pin p

U„" = —( W„"+ W;;)

8',
q
= 9;UJ.

(2.25)

(2.26)

Then W„obeys the condition

It should be emphasized that in situations where
the strain is nonuniform, the components U, U~,
and Uyy cannot be regarded as three independent
variables at each point. The condition that U& is
derived from a single-valued displacement function
U ( r ) imposes restrictions on the strain. lt is con-
venient to express U;, in terms of a nonsymmetrized
derivative of the displacernent field,

(3.5)

gj .= (co+ po) —Kr'77'
nl Il p

(3.6)

The quantity K~ denotes the thermal conductivity, q
and ( the shear and bulk viscosity, and eo and po the
equilibrium energy density and pressure. The argu-
ments ( r, r) of all fluctuating quantities have been
suppressed. Solving (3.1)—(3.6) in the long-
wavelength limit, one finds in two dimensions pro-
pagating sound (cu,+-), one heat diffusion mode (cur),
and a decoupled diffusion mode of the transverse
momentum (cu, ). The eigenfrequencies are

~k ~k &~ =0
~ (2.27) =+ cI&. ——ID&&

1.
(3.7)

where e„ is the antisymmetric unit tensor

1

—1 0 (2.28)

with

and

&( 8/l&1I1 p
, 2 (3.8}

%hen a net density of dislocations is present, it is
no longer possible to derive H „" from a continuous
and single-valued displacement field U( r ), and Eq.
(2.27) is no longer valid.

and

q+f Kr Cp

nlnp nlnpC& C„

QJ r = I ( K r/I&111 OC p ) 4

(3.9)

III. HYDRODYNAMICS ~, =-i(t)/nuip)1' . (3.11)

In this section we review conventional hydro-
dynamics for the. solid, hexatic liquid crystal and fluid
phases, following Refs. 19 and 29. One first has to
isolate those degrees of freedom whose relaxation
rates go to zero in the long-wavelength limit. In all
three phases the conserved densities of momentum
g, energy e, and number n of particles have to be
considered

If the coupling between temperature fluctuations and
sound modes is neglected, the speed of' sound is
changed from its adiabatic value cI to the isothermal
value and the sound-wave damping has only a
viscous contribution.

B. Hexatic hydrodynamics

II, n ( r, r) = —( I/m) '7 g ( r, r), (3.1)

f),p; ( r, r) = r), o„(r, r) (3.2)

I),e( r, r) = —'0 j,( r, r) (3.3)

All quantities are averages over a hydrodynamic
volume, small with respect to macroscopic scales and
large compared to microscopic scales.

Both the static and dynamical properties of the
hexatic phase resemble those of nematic liquid crys-
tals. Because of the underlying sixfold symmetry,
fewer hydrodynamic parameters are required to
characterize the motion than for a nematic. "'
There are five hydrodynamic modes in all, associated
with number, energy, and momentum conservation,
as well as the local orientational order. With the
neglect of temperature fluctuations, we are left with
four independent hydrodynamic equations.
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ASH 1= ——'7 g9t 771

(3.12)

Qg i . -
2

B-= —
2

K„(z & "vr) 7 0 — '78—n
9t 7?p

+ ~ '7'g+ ~ '7('7 g)
771H p 77?Hp

(3.13)

Hydrodynamic equations of motion for 8( rr),
g ( r, t), and n ( r, i) which relax to an equilibrium
probability distribution controlled by Eq. (2.3) are
readily constructed using, say, the methods of Ref.
17. To linear order in these quantities, we find

and

D, = (q+ i;)/mn, (3.18)

If temperature fluctuations were considered, an adia-
batic bulk modulus would replace the isothermal one,
and there would be additional contributions to the
damping.

The two transverse modes both involve the
transverse momentum and the bond orientation as in
nematic liquid crystals, 3'" the eigenfrequencies can
either be purely diffusive, or else acquire a propagat-
ing part proportional to q2, depending on the sign of
the quantity

Qo~

&(~ 8/gj + K 7 0"
Bt 277?Hp

(3.14) K~

771Hp
K

77?H p

(3.19)

where q and j are shear and bulk viscosities, and z is

a unit vector perpendicular to the plane of the hexat-
ic. The irreversible coupling K can be expressed as
the product of a kinetic coefficient I 6 and the stiff-
ness K&,

K= I,K„ (3.15)

The first term of (3.14) just gives the precession of
bond angles in the local vorticity field (see Fig. 6). It
has a counterpart in the first term of (3.13), which

sho~s that the fluid moves in response to inhomo-
geneities in the bond-angle field. It is easy to check
that, when appropriate Langevin noise sources are
added to (3.12)—(3.14), the system relaxes to an
equilibrium probability distribution given by

exp( —F&I/k&T). The terms coupling the bond angle
and transverse momentum fields together can also be
derived by considering the "Poisson-bracket" rela-
tion between 0 and g.

Projecting Eqs. (3.12) and (3.13) onto the trans-
verse and longitudinal parts of the momentum densi-

ty g, one finds the usual longitudinal sound excita-
tions, with characteristic frequencies-

For 5 negative, the modes are

cu;+(q) = —,
' D+q'i—

with

D+= ~ +K+
77?71 p

. 7l
K

77?H p

' 2 K 1/2

771Hp

where

771Hp

7l
K

771H p

2 i/2

and

D, = +K
17?71p

while for positive 5, they become

c,+ (q) = + —,
'

c-,q' —,
'

D,q'i—

(3.20)

, (3.21)

(3.22)

(3.23)

(3.24)

1o)l- (q) = + c,q —, D,q'i— (3.16) C. Solid hydrodynamics

where

c, = (B/mn0) 'i'-

I

e(t)

(3.17)

0=
2 (B„Uy —

By U„) (3.25)

In the solid phase we must incorporate the two

components of the displacement field into our hydro-

dynamic description. These quantities relax slowly,
even though there is no genuine long-range transla-
tional order in two dimensions. The bond-angle
field, 0( r, t) is not an independent hydrodynamic
variable in this phase, but is„ in fact, slaved to the
displacement field U( r, t);

FIG. 6 Precession of the bond-angle field ()(t) when

&Xylo.

In a perfect lattice the time derivative ?nnpB, U would

be identical to the momentum density g, implying
5H = l?pdivU. If, however, vacancies and intersti-
tials are present, the number density differs from
that of an ideal lattice by a "net defect density, "'
defined to be the density of interstitials minus the
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density of vacancies. With this definition, we have

5tl ( r, t) = —npU;; ( rt), + 5Ng( r, t) (3.26)

B,Nq( r, t) = —V Jq( r, t) (3.27)

lt follows from (3.1), (2.25), and (2.26) that the net
defect density Nt, ( r, t) is conserved and obeys a con
tinuity equation

tuations are taken into account) with the equations of
motion

1

= ~j 2v R Uy+ ~R Ukk~g+~gyR-
9f ll p

+ BJ[BIgt+BjgI ( 7' g)5 jIj
ill ll p

where JII, ( r, t) denotes a defect current, defined by + ~ B;('7 g )
ill ll o

(3.34)

g ( r, t) = Itttl pBIU( r, t) + m J It( r, t) (3.28)

We have used the single valuedness of the displace-
ment field in setting

I

5N , 5Ã=1 V' XR' +yl, U;;9t »o»o (3.3S)

9,U;;=V 9, U (3.29) BU; g;, SNAB+I 0; XR'— +yRU
91

(3.36)

Rev + Dis
IJ Ij IJ (3.30)

with the same dissipative part as for an isotropic
liquid (3.5) and

gF - 5Ng
ij P R ij R kk ij yR ./5U„" »p

To obtain a closed system of equations we must
specify constitutive relations for Jq and o-;j. Neglect-
ing the coupling to temperature fluctuations, a-;j is

given by

The system (3.34)—(3.36) decouples into two
transverse modes and three longitudinal ones. The
transverse displacement can be recovered from the
strain field Up(k) by taking the projection

(h„e„;k,/h') Up( k ) = , ih„e„;—U;(k ) (3.37)

Solving the coupled equations for the transverse
momentum and displacement components, one finds
the usual sound excitations with the dispersion
relation,

(3.3l)
pIr = + CIh Ih' 'II/2IIIII p

+ (3.38a)

where p, R and XR are the isothermal elastic constants.
For the defect density we assume purely relaxational
dynamics

where

I't = II, II/IIIII p (3.38b)

SFJg= —I »p V'
5(5NIt)

, 5Ng= —r», V x +y, U„
»p

(3.32)
0)l = + ('lk

2
ik Dl

+ I (3.39a)

The longitudinal modes involve coupled excit Itions
of the defect density and the longitudin Il components
of momentum density and displacement field. The
characteristic frequencies are

where I denotes a constant kinetic coefficient. At
the boundary of the sample, the normal component
of the defect current is given by

n Jg= —np r"'5(F+F'~')/5X~

=r'*'Itp(X, '5N, /np+ynU;; o,jti;Iij), (3.33—).

with

II2 = (2II,n + A, II )/ntn„,

2P, R + gR

q+( . yRDl= +I yR+I
ll 1» o

(3.39b)

(3.39c)

where l is the unit vector normal to the boundary
and I '" is a boundary kinetic coefficient. The varia-
tional derivative in (3.33) is taken subject to the con-
straint that a change in Xq is accompanied by a

change in N~ in the neighborhood of the boundary

with )I XItdl = —J15NI, II'r. Clearly, the defect
current to the surface should vanish when this
deri vati ve is zero.

These constitutive relations complete the hydro-
dynamic description of the solid phase. Altogether
there are five slow modes (six, if temperature fluc-

and

QJg = —/Dgk .2 (3.4Oa)

where

D, =rx„-' —y,'r/(2„, +i., ) —rx;, ' . (3.40b)

For sufficiently small temperatures (small XR ), longi-
tudinal sound and defect diffusion decouple.

Note that the longitudinal sound velocity is given
in terms of 2p, R + A. R, instead of the bulk modulus 8
discussed in Sec, II B. This result is certainly to be
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expected, since defect diffusion times are slow com-
pared to inverse longitudinal sound frequencies at
long wavelengths. Indeed, the coupling of the defect
density to longitudinal sound in a solid without tem-
perature fluctuations is rather analogous to the cou-
pling of thermal fluctuations to longitudinal sound in
an ordinary liquid. In the latter situation, the sound
velocity is usually given by an adiabatic rather than
isothermal compressibility, since temperature fluctua-
tions relax so slowly compared to sound propagation
frequencies.

IV. MICROSCOPIC MODEL: A SOLID
WITH DISLOCATIONS

Close to higher-order phase transitions, hydro-
dynamics must be generalized to include any addi-
tional strongly fluctuating variable responsible for the
phase transition. In this section, we give a precise
formulation of a model of a solid with dislocations,
interacting with microscopic versions of the momen-
tum, strain, and number-density fields described in

Sec. III. As will become clear in the next two sec-
tions, the model reduces to the hydrodynamic
description of either a solid or a hexatic at long
wavelengths, depending on whether or not the dislo-
cations are bound. Many microscopic models are
possible; we describe here only the simplest one
which gives the correct physics. In Sec. V, we shall
use this model to determine the temperature depen-
dence of various hydrodynamic parameters near T .

A. Microscopic fields in the presence of dislocations

When isolated dislocations are added to a solid
phase, it is no longer possible to define a single-
valued, continuous-displacement field U( r ). If the
dislocations are all bound in pairs (or other charge-
neutral entities), however, one can define a continu-
ous, single-valued displacement field by smoothing
over regions of space large compared to the pair
separations. Although dislocations will indeed be
paired for solids in thermal equilibrium, we must
construct equations of motion for microscopic strain
and displacement fields in order to treat the transition
into the hexatic phase, where dislocations are un-
bound.

Consider a set of M dislocations at a discrete set of
points IR }, v= I, 2, . . . , M, with Burgers vector
b . We may define a single-valued {but discontinu-
ous) displacement field u ( r ), provided we introduce
cuts K„, terminating at R, such that u ( r ) jumps
by aob'"' upon crossing K„, in a direction counter-

~(v)
clockwise with respect to rotations about R . The
quantity ao is the lattice constant of the triangular
crystal, which we have introduced so that our Burgers

vectors are dimensionless. The derivative of the dis-
placement wj( r ) is then defined at all points not on
a cut by

~:„(r) =S,u, (r) (4.1)

in analogy to the macroscopic relation (2.6). At the
cuts, we define w„"( r ) as the limit of (4.1) as a cut is

approached from either side, thus excluding a 5-
function contribution. The same definition would
arise if we took w„"( r ) to be the derivative of a mul-
tivalued definition of the displacement field. Note
that w&( r ) is single valued and continuous at all

points r except the locations ~R j of the disloca-
~(v)

tions themselves. If C is a contour enclosing R
then we have

IIII w,, rtl, = aors,
'"'

It follows from (4.2) that

(4.2)

(4.3)

so that the compatibility condition (2.27) is violated
for these fields at isolated points.

A local, microscopic strain field «,, ( r ) can now be
defined as

(4.4)

and we can determine a local excess defect density
Sna( r ) from

B. Microscopic free energy and equilibrium results

The microscopic fields defined above reduce to the
macroscopic hydrodynamic fields of Secs. II and III in
the absence of dislocations. We shall also assume a
microscopic free energy analogous to (2.4), namely,

F „=& JI rl I'(2po«, J~'+ho«kk)+ — I &/ I'~g(
211O'l)1

+,Xo' JI d'r (S»g)'+ —JI d'r u;;Snq
2)l () I&0

(4.6)

where the dislocation degrees of freedom enter
through the constraint (4.3). Equation (4.6) then
reduces to the hydrodynamic result (2.4), provided
dislocations can be neglected, As will become ap-
parent later, Eq. (4.6) also agrees with the results of
continuum elastic theory when dislocations are
present. '4

Snq( r ) —= S»( r ) + no«, , ( r ) —= S» (r) + now;;(7)
(4.5)

where S» ( r ) is the local fluctuation in number den-
sity.

We shall use the symbol g( r ), as in the previous
sections, to denote the local momentum density.
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Fk =T ~
-«r (2poui, '+ ko(lk'k )

where A. p is given by

~o=~o —~pro .

(4.7)

(4.8)

The equilibrium properties associated with (4.6)
were, in effect, worked out in I. To make contact
with the results of 1, we first integrate exp( —F;,/.
k((T) over the defect number density 5»k, and the
momentum density p. The resulting elastic free ener-

gy FE, with a constant term suppressed, is

coefficient A. p,

Bel = pp+ Ao {4.9)

((,
&

( r ) = (t „(r ) + ((,(d" ( r ) (4, 10)

The shear modulus is unaffected by the coupling to
vacancies and interstiti ~ls. Dislocations renormalize

p, p, as well as Xo, yo, and Xp in the combination (4.8).
To study this point further, one can decompose

((J( r ) into a smoothly varying part $;, ( r ) and a part
due to dislocations,

To understand the physical significance of A. p, imag-

ine a pressure force hp which acts to change the lat-

tice constant, but does not couple. directly to the mass
density. Assume that there are no dislocations but
that vacancies or interstitials are present. Equilibri-
um is then determined by an equation analogous to
(2.20), but also by an equation analogous to (2.21)
with the right-hand side set to zero. The resulting
"elastic" bulk modulus then measures the Lame

The free energy FE then breaks into two parts,

FE = Fp+ F» (4.11)

with

Fo= —, J «'( (2po4 &+'I o@kk) (4.12)

and where F» is a vector Coulomb gas of interacting
dislocations,

FD

kgT
b( r ) b(7 ) ln

rWr

b(r) (r —r )b(r ) (r —.r ) E,+- ' Ib(r ) ~'

fr —r'f' kBT
(4.13)

The summations in (4.13) are over, say, a square lat-

tice of possible sites for dislocations with lattice spac-
ing equal to the core diameter a. The Burgers vector
b ( r ) on site r may be written

tial recursion relations, '"
(

dK '
3 21/8~I K

77$ e
dl ' '

8m

(

K2 K/8wl
4 8m

b(r) = n((r)e (+(»r)e 2 (4. 14)
(4.17)

where I ( r ) and» ( r ) are integers (possibly zero)
and e~ and e2 are unit vectors spanning the underly-
ing triangular lattice. The coupling Kp is

4po(po+ "o)ao
Kp=

(2po+ Zo)k((T
(4. 15)

while E, —= —k& T lnyp is the core energy of a disloca-
tion. When evaluating the partition sum associated
with (4.13), one must sum over distinct complexions
of Burgers vectors satisfying a charge neutrality con-
dition,

gb(r)=0 . (4. 16)

The elastic constants p, p and A. p are supposed to in-
clude effects due to excitations like vacancies, inter-
stitials, and phonon anharmonicities, but not disloca-
tions. To take dislocations into account, renormaliza-
tion equations were constructed in Refs. 5 and 6, us-
ing a procedure which effectively increases the dislo-
cation core radius from a to ae'. A renormalized
Coulomb-gas Hamiltonian results, with effective cou-
plings K (I) and y (I), which are solutions of differen-

1

dy K 2 K/16m I K
dl 8' '

8m
(4. 18)

1

a(2) dp, '

3~ ~2eK/8n I K
ka T dl

'
8m

ao d(p, +X) '

= 3m v'eK '" I, K—I) 8'

(4.19)

{4.20)

The macroscopic "renormalized" elastic constants are

where lo(x) and I((x) are modified Bessel functions.
The solutions K(l) and y(l) must, of course, agree
with Kp and yp when I =0. For K ~16m (above a
temperature T = T ), there is an instability toward
large y (I) signaling the dislocation unbinding transi-
tion predicted by Kosterlitz and Thouless. '

Two other results from the static theory will be of
importance here. First, length-dependent elastic con-
stants p, (l) and A. (l) may be constructed, which are
related to K (I) in the same way that p, p and Pp are re-
lated to K, , in Eq. (4.15). The recursion relations
for p, (I) and X(l) are'
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These formulas imply that p. & and A. ~ jump discon-
tinuously to zero at T, preceded by a cusp singulari-

ty, and that

4PR(PR+) R)aP
lim = 16mr-r (2pR-+XR)kttT

(4.21b)

Second, one finds that translational correlations decay
above T, with a correlation length that diverges as T
approaches T from above as

g+(T) = a exp(C /t") (4.22)

where

t = (T —T~)/T~, v=0.36963. . . (4.23)

Although this correlation length controls the behavior
of the structure factor above T, it also determines
the density of free dislocations nf,

11J=4+'-2 (4.24)

It can be shown' that the dislocations unbind into a
"hexatic" phase with quasi-long-range order in the
bond-orientation field. The hydrodynamic descrip-
tion of this phase was described in Secs. II A and
III B. The bond-orientation Frank constant K„(T)
diverges as T approaches T from above,

then given by

p, „(T)= limp, (l), ) R(T) = lim X(l) . (4.21a)
. I ~oo I ~oo

large contour C enclosing a surface S

,,d, =..d)—t, d.e, =
&I

-d a,J„.,
(4.29)

Transforming the surface integral to one over the
contour C, we have

—apeRJk dr; =0~ wij J
c Qt

(4.30)

It follows that

g wiJ —ap~]k Jk = —8;:"J
t

(4.31)

where =( r ) is a single-valued function of position.
Inside a dislocation core, we expect that I)w;, /Bt is

dominated by ~;kJk, so that 9; J is unimportant.
Away from all dislocation cores, however, Jk van-

ishes, and we must examine the form of:,.
I."ar away from dislocation cores, we can define a

local defect current j ( r ) by

j (r) = —g(r) —/1p
1 9u

m 9t
(4.32)

For r on a cut K„, we interpret Bu/rit to be the lim-

iting value of this quantity as r approaches the cut,
so there are no delta-function contributions arising
from the motion of cuts. It follows, however, from
(4.32), that away from these regions,

KA —nJ
' —gp (4.25)

I1 p
—

w;J = —Q;gJ
—Q; jJ

Qt m
(4.33)

C. Equations of motion
Comparison with (4.31) then gives the identification,

In order to study the dynamics near T, we must
construct microscopic equations of motion for the
time evolution of wJ, Sf1g, and g in the presence of
moving dislocations. To determine these equations,
we first define a Burgers-vector charge density,

1 1 -. ~g+ j
npn1 np

so that it follows more generally that

Q w,J ~ ~J ~t~J + +p~ikJk
gf npm I1 p

(4.34)

(4.35)

(4.26)

If the dislocations move around in space, we hive a
Burgers current of the ith component of dislocation
charge in the jth direction, namely,

(4.27)

9n 1 '7 g
mp

we can combine (4.5) and (4.35) to find,

(4.36)

This result, which is fundamental to our subse-
quent analysis, may be checked by using it to evalu-
ate Bna/f)t Since one a.lways has

Conservation of the total Burgers charge requires an
equation of continuity,

Qng (jn Q wtt
+I1p = +' j +np&pE'ikJk9t 9t 9t (4.37)

I
Q Ji

9f J J (4.28)

One further equation can be obtained by taking the
time derivative of the integral of w;, ( r ) around a

This equation identifies j as the current associated
with a defect density nq which is conserved in the ab-
sence of dislocation currents. The term e;k Jk acts as
a source which breaks this conservation law. Equa-
tion (4.37) reflects the well-known fact that a disloca-
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tion moving perpendicular to its Burgers vector (in
the climb direction) must act as a source or sink of
vacancies and interstitials.

Our final equation of motion is just the conserva-
tion of momentum,

in analogy to (3.33).
Away from the boundaries, the reversible part of

the stress tensor is given by

(TJ ( r, t) = 5F; /5uj = 2p pu J + Xpukk5 J+ yp(5n~/np) 5,,
Bg;/et = B,o-„, (4.38)

(4.42)
where a.;, is to be determined. Equations (4.28),
(4.35), (4.37), and (4.38) constitute the basic equa-
tions of motion of a solid imbedded with moving
dislocations.

D. Constitutive relations

To complete our discussion of equations of motion
on a microscopic scale, we must specify constitutive
relations for j, a-;, , and J,'. For j and cr;, , we

simply extend the macroscopic relations of Sec. III C
to microscopic length scales of order the vortex core
diameter. For j, we write,

J = I l1' V (5F;,/5n ) + 't) ( r, t)

When the argument r approaches a point on the
boundary of the sample, o;, ( r, t) must equal the
external stress at that point. Strictly speaking there
should be a dissipative term in o-;, analogous to Eq.
(3.5), and a corresponding noise source. These
terms are negligible, however, in the limit k —0,
when dislocations are present.

To model dislocation motion producing the current
density J, , we consider a collection of M dislocations
moving in the Peach-Koehler force.""We shall
only consider dislocations whose Burgers vector b'"'
is one of the six elementary lattice vectors of the tri-
angular lattice. We designate these Burgers vectors
with the symbol b' ', with o. = 1, 2, . . . , 6, and

= —I'pnpV(Xp'5na/np+ypu;;) + g ( rt),
(4.39)

(1) ~(2)
b = —b 0 (4.43a)

where rt ( r, t) is a Gaussian Langevin noise source
with mean zero and

(4.43b)

(qa( r, t)rtja( r, t')) =2k„TI pnp 5;,5( r —r )5(t —t')

(4.40)

On the boundary we assume

tl '
J = Inp p(Xp 5na/ltp+ ypu; tr l1 t1 ), (4.41)

(4.43c)

r

I

~(v)
The position R of a Burgers vector of species o. is
assumed to obey a Langevin equation of the form

(v) (a)
=-ap " (b„' 'etj+bt' 'e„, )[ (oR«" )+p(R'"')5«]+q;"(t)

dt I BT
(4.44)

where

~F ~p(r ) =np "=[Xp'np '5na(r )~cpu;;(r )] . (4.45)
Sng

(Note: We shall continue to use the index v, with
1 ~ I ~ M, to label the various dislocations and the
symbol o, to designate which of the six species is in-
volved. Our notation implies summation over Latin
indices, which denote Cartesian components, but no
summation over Greek indices. ) The quantity p and
the stress tensor a.«appearing in (4.44) should be in-

terpreted as the average over a small circle enclosing~(v)R, so that one excludes the singular angle-
(v)

dependent contribution from the dislocation at R
The [g;"(t)] are fluctuating Gaussian noise sources

with variances given by the diffusion tensor D;,' ',

(q,"(t)q~(t')) =2D„' '5(t —t') (4.46)

We assume there is no correlation between the noise
sources for different dislocations.

The coefficient D;,"/ktt T in (4.44) is the mobility
tensor by the Einstein relation. The factor multiply-
ing the mobility is the "driving force" for the dislo-
cation motion. The terms proportional to o-kl give
the usual "Peach-Koehler force, " ' because of
stress in the lattice; the term involving p arises be-
cause dislocation motion in the climb direction neces-
sitates a change in the net number of defects (inter-
stitials minus vacancies). Note that if the defect den-
sity nq is allowed to reach thermal equilibrium in a
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system under a uniform hydrostatic pressure, so that
n j =0 at the boundaries, then (a.kt+pgk() =0
[cf. Eq. (4.41)]. We find then that there is no driv-
ing force to cause dislocation motion, as one would
expect.

In an isotropic medium the diffusion tensor D;,' '

may be written,

Df~ ' = D((b 'b,' '+ Dg(s,t —b 'b,' ') . (4.47)

(v)
Decomposing dR /dt into components parallel and

(a)
perpendicular to b

dR
'

ll

dt
b (n)b (a)(b (a) + b (n) )i j k jI/. kj kI

B

+( (r))(( (4.48a)

and

we can identify Dll and Dq as the glide and climb dif-
fusion constants. Glide motion does not involve a
change in particle number and proceeds more rapidly
than climb motion, which can only occur by the ab-
sorption or emission of defects. Consequently, D& is

usually much smaller than Dll."
To complete our microscopic description of disloca-

tion motion we should take into account processes by
which dislocations are created or destroyed, e.g. ,
processes in which a pair of dislocations with opposite
b are created or destroyed at some point of the sys-
tem, processes where two dislocations combine to
form a single dislocation whose Burgers vector is the
sum of the first two, etc. These events change the-
number of dislocations of the six species
(u = 1, . . . , 6) but do not change the total Burgers-
vector density(B( r ). This latter quantity is all that
will be needed in the following section,

To obtain a constitutive relation for the dislocation
current density J,', one must, in principle, solve the
Fokker-Planck equation for the dislocation charge
density following from (4.44). In practice, one can,
in fact, guess the form for small deviations from
equilibrium. The form of the dislocation current
depends crucially on whether or not free dislocations
exist in equilibrium. Indeed, the situation is not un-
like that in electrodynamics, where very different
conductivities are used to describe the current in
metals and insulators. The precise form of J,' ap-
propriate above and below the dislocation unbinding
temperature T will be discussed in the next section.

~(v) DdR ) (8 b(a)b(a))dt, . kB T
i

(bk ~(i+ bl ~kf) (rrkl+Pgk()+ ( I )r

(4.48b)

V. DYNAMICS NEAR THE DISLOCATION
UNBINDING TRANSITION

In this section we establish the relation between
the microscopic description of a solid with disloca-
tions, developed in the preceding chapter, and the
macroscopic hydrodynamics of Sec. III. We show
that in the long-wavelength limit the microscopic
dynamics reduce to the macroscopic description of a
solid or hexatic liquid crystal, depending on whether
free dislocations are present or not.

We first consider the motion of free dislocations in
detail and discuss the dynamics immediately above
the melting temperature. In particular, we explain
how the presence of free dislocations leads to a
nonhydrodynamic decay of fluctuations in the defect
density and a discontinuous change in the longitudi-
nal sound velocity accompanied by an anomalous
damping. We describe in addition how propagating
transverse sound evolves into two diffusive modes in

the hexatic-liquid-crystal phase.
To investigate the dynamics below the melting

temperature we propose a simple approximation for
the dynamic polarization of bound dislocation pairs.

A. Dynamics of free dislocations

as the average over the microscopic fluctuating noise
The quantity (I( r, t) ) can be written as the sum

of the densities I' '( r, t) of dislocations with a par-
(a)

ticular Burgers vector b

a l

(5.2)

I' '( r, t) obeys a Fokker-Planck equation of the
form

= —f)j ' '(r, t)+Q' '(r, t), (5.3)

. (a) .
where j is the current and Q( ' the net production
rate of dislocations of type b . Conservation of
(( r, t) ) implies

6

y Q'a)(r, t)=0 .
a 1

(5.4)

We shall neglect the detailed interactions between the
dislocations, and assume that each dislocation dif-
fuses independently and drifts under the influence of
the macroscopic stress field o „"(r ) and "defect pres-

In the hydrodynamic region above T, relaxation
effects are dominated by free dislocations at a density
ltf (+ ~ We define a smoothed Burgers-vector den-
sity

(5.1)
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sure" p. Using the Langevin equation (4.44) the
current can then be written

D "a
i(a)(r () i (6(a)~ q 6(a) )

8

(The general case Dl~ ~ Dj is discussed in Appendix
B.) With (J;") expressed in terms of o.„" and p, the
system of dynamic equations closes and we can
proceed to study the dynamics immediately above T,

x ( (r kl +p 5kl )F ( r, l ) B. Transverse excitations above T

D—"5 r'&( r)-, . (5.5)

In the present investigation we shall restrict ourselves
to linear deviations from equilibrium. We can then
replace the quantity I"' ' in the first term on the
right-hand side of (5.5) by its equilibrium value , »f-
We shall also restrict ourselves, for the moment, to
situations where the time scale for variations is long
compared to the mean collision time between free
dislocations, so that equilibrium between the dif-

ferent species is established and I' '( r, l) — »f —is
determined by the averaged Burgers-vector density
(GY( r, r)):

r"(r, i) =-,'», + —,'i,"((B,(r, r)) . (5.6)

We then find

6

(J,") = X &."i,"= C,"„I(.~kl+ —p5«) D,l"BI((Bk)—,
a I

(S.7)

i «I($„)—= —ik (J„")

ikwr„——((B„)ao,
—i«Iw~ = (ik/npm) gr + (Jr)ap
—i «Igr ——ik p,o(w~+ wr„) =ik Ir~

(S. l 1)

(5.12a)

(5.12b)

(5.13)

The equation for the time derivative of e~, is redun-
dant with (5.12a) and (5.11) and has not been exhi-
bited. With the approximation of a diagonal diffu-
sion tensor we have

The set of equations (4.28), (4.35), (4.37), and
(4.38) can easily be separated into sets of three and
five equations decoupled from each other. The form-
er set describes transverse excitations of momentum
and displacement field coupled to the longitudinal
Burgers-vector component. For example, if we take
k in the x direction, the nonzero variables will be
w~, wr, g~, (S„), (J„"),and (Jrr). The equations
of motion are

where

Cki = ( l1fQ p/4kII T) ( (D(( —Dg) 5I e(n+ (D((+ 3Di ) nk li ~

(5.8a)

(Jr') = —(vo/ao)~~ .

(J„")= ( /vp)a(pr„(1r+iDk'/«I) '

where it has been convenient to define

vp = ( D/ks T) l1fQ p

(5.14a)

(5.14b)

(5.14c)

Dnl" ———(D(( —Dq) (5;„51k+ 5;k51„)+ 4 (D((+ 3Dl) 5il5nknk 1

(5.8b)

Solving (5.11)—(5.13) in the limit (k((+) (( 1,
one finds two diffusive modes and one relaxational
mode with eigenfrequencies

For purposes of illustration we shall assume a sim-
plified model, in which D~~= Dq=—D. In this case Eq.
(5.7) may be written

«I( = —Ik 1/211 pl11 Vp I (k (+)

QJ2 = —/Dk

(s.ls)

(5.16)

(J;"( r, I) ) = —(Da plIf/ks T) el; ( (r„i +p 5„1)

—D ), ($(„(r, l)) (5.9)

+ Ik; E[,k, ( «I + IDk ' )

D aoI1f
X ((r„l+p5„f)

k8T
(5.10)

By means of the conservation law (4.28), the
Burgers-vector density ((B) may be expressed in
terms of the current (JP). After a Fourier transfor-
mation, one finds

Da Onf(J;"(k, (o)) = —— kl;(Ir„l+p5.1)
8

«(3 = I 2P pvp I gn. (5.17)

The relaxational mode exhibits critical slowing down
with the same temperature dependence as (+', and
describes the decay of fluctuations in the density of
free dislocations. The two diffusive modes describe
coupled excitations of the transverse momentum and
the bond-orientation field. One of the diffusion coef-
ficients diverges like f1+.

It is instructive to compare these results with hex-
atic liquid-crystal hydrodynamics which was discussed
in Sec. III B. There we found two eigenfrequencies
with a I' dispersion, but it was impossible to discrim-
inate between propagating and purely diffusive
modes. The results (5.15)—(S.17) show that close to
T the latter case is realized. In Appendix C, we
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q = I/(2vo) (5.18)

compare the hydrodynamic equations more closely
with Eqs. (5.11)—(5.13), and we conclude that r)

diverges like (+, and K remains finite at T . In terms
of the actual parameters of our model, we find

tions of motion read

—t~(, ) = lk—(i~),
w» ———i (ap/k) (Ry)

—iptw =i (k/l1pln)g„

(5.22)

t5.23a)

1K= —D
2

Kg = D /vp = ktt T/llf a o

(5.19)

(5.20)

I'k [Xo Sna/no+yo(w + w»)]+ao(iy)

(5.23b)

Note that K„also diverges like (1+, as predicted by
the static theory. '

If we allow for different diffusion constants for
climb and glide, the results (5.15)—(5.20) are slight-

ly modified, The single diffusion constant D must be
replaced by the quantity ( —Dp+ , Di) wher—e it ap-1 1

pears in Eqs. (5.14c) and (5.20), by the quantity Dnr

where D appears in (5.19) and by the quantity
(

4 Dp+ ~ D1) where D appears in (5.16) and in
3 1

(5.21) below. (See Appendix C for details. )
At wave numbers k & (+' above T the dislocation

density again decouples and shows purely diffusive
motion

OJ = —Ik D (5.21)

In addition we recover the propagating shear waves
of the solid phase for k » g+'. However, the polari-
zation of bound pairs becomes important in this re-
gion. We expect a renormalization of the sound
velocity, as well as additional contributions to the
damping of sound waves. This point will be dis-
cussed in Sec. V D.

It is interesting to contrast these results with those
suggested by straightforward application of the
dynamic scaling hypothesis. ""Since the shear
modulus is finite even at T, we would expect prop-
agating shear waves with a linear dispersion at finite
wave vectors above T provided kg+ & l. If the
characteristic frequencies pt;(kg+) of transverse ex-
citations were to scale, it would then have to be with

dynamic scaling exponent z = 1, pt; = k 0+(kg+).
In view of the expecteII hexatic behavior described in

Sec. III B, it is very tempting to assume propagating
hydrodynamic shear excitations above T with the
dispersion relations (3.22). Dynamic scaling would

predict that the real part of ~,—dominates near T
with e, ~ g+. The analysis of this subsection, howev-

er, shows that this is not the case. The dynamic scal-

ing hypothesis fails near T .

—i ptg„=ik [2ppwzz+ hp( w~+ w»)+ ypst1a/ttp]

(5.24)

—t 5tt /t1 = —Ik [X gtt /Il +y (w +w )]

+ ao((i,") —(i.') ) (5.25)

With the aid of (5.10) the required components of
the Burgers-vector current can be worked out

(iy") = —(vo/ap)(~ +p), (5.26a)

and

2'novo
-2 (5.27)

pt1 = 2t vp(pp + Xp+ Xp + 2yp) (+ . (5,28)

Both modes exhibit critical slowing down with the
temperature dependence of g+'. The other two
modes are longitudinal sound excitations with disper-
sion relations

(J~) = (vp/ap)(tr»+p)(1+iDk /pt) ', (5.26b)

where we have assumed a diagonal diffusion tensor.
The equation of motion for the redundant variable

wyy has not been displayed.
The free dislocations present above T provide a

local source or sink for the defect density and allow a
stress to relax by the process of dislocation motion.
The decay of fluctuations in the defect density and
the strain field becomes nonhydrodynamic, as is evi-
dent from the relaxational terms proportional to
vp nf in (5.23b) and (5.25). However, the total
number density, 5t1 = t1pM;;+5t1g, as well as the
longitudinal component of the momentum density
are still conserved. We therefore expect two hydro-
dynamic and two relaxational eigenfrequencies. Solv-
ing (5.22)—(5.25) in the region (kg+) « 1 one
finds for the latter

C. Longitudinal modes

We now proceed to solve the five coupled equa-
tions for longitudinal excitations near T . Choosing
k in the x direction, the nonzero variables are
w, w», (~), g„, (it' ), (ig), and gna The equa-.

with

+
cut

—= + et! ID1A

Dt 'x —~ g+
1

Elf

go+ ~o P0Xo
ttlt1 oCt Bo

1 + Xp(2yp+ lMp + Xp)

(5.29)

(5.30a)

(5.30b)
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ILIl I (DIt+ Dl) jII p11fa p /kB T f+'
pI, = —j2Dq(jI, p+ Xp+ Xp + 2yp) IIfap/kB T

(5.31)

(5.32)

Solving (5.22) —(5.26) in the region (kg+) & I

above T we recover the solid hydrodynamic modes
of Sec. IIIC, and find in particular that the speed of
longitudinal sound is eI = [(2jIp+ Xp)/II pm j'j'. The
dislocation density decouples and shows purely dif-
fusive behavior

pI = —i (D((+3Dj)k'—. 1 (5.33)

Comparing (5.30b) with Eq. (2.23), we see that Bp is
equal to the bulk modulus of the solid within the
current approximation, where we neglect the renor-
malization due to bound dislocations. (In fact, we

expect the bulk modulus and all its derivatives to
vary continuously as one passes through T from the
solid to the hexatic phase, ' so that B0 is a good ap-
proximation to the bulk modulus in both phases. )

The sound velocity is determined by the bulk
modulus, since above T fluctuations in Snab now re-
lax rapidly compared to the inverse sound frequency,
due to the presence of free dislocations and since the
shear modulus is zero. Thus, there is indeed a
discontinuous change in the longitudinal sound vel-

ocity at the dislocation unbinding transition as was
suggested by the results of Sec. III. The discontinu-
ous change in the real part of col+— is accompanied by
a sound-wave damping constant DI diverging like f1+.

Such a remarkable temperature dependence should
be readily detectable in sound-absorbtion experi-
ments.

The eigenfrequencies (5.29) and (5.30) correspond
to the longitudinal hydrodynamic excitations
(3.16)—(3.18) found in hexatic liquid crystals. The
divergent damping constant DI implies a divergence
of q+( near T in the liquid-crystal phase.

In the more general case of different glide and
climb diffusion constants the relaxation rates co~ 2 are
changed to

We restrict ourselves for the moment to a situation
below T, where no free dislocations are present and
consider a bound pair in an applied oscillating stress
field Ir;, (pI). The stress tends to polarize the pairs,
giving rise to a Burgers-vector current J,'. It is con-
venient to introduce a symmetrized current

JI = ( B k Jk + Bf1 Jl ) (5.34)

x ( )= J" drx(r)
a0 .-2I OJ + D [[/'

D .—2

I OJ + Dgl'

—= X„(PI) (5.36)

The diffusion of dislocation pairs tends to relax the
strain field u;, according to (5.12a) and (5.12b). Ap-
plying Eq. (4.35) in the limit k 0, we have

which, in linear approximation, is proportional to the
driving field o-„"+ph, &,

JIJ(~) =I~XIIkI(~)[~,1(~)+p(~)gkjl . (5.35)

Having separated out a factor i cu from the general-
ized susceptibility X;,kI(pI), the latter should be finite
at zero frequency, if there are no free dislocations
and therefore no current in a static field. In fact, the
situation is quite analogous to a more familiar prob-
lem in electrodynamics: the dynamic polarization of
bound charges in an insulator.

In principle X;,kI(pI) can be calculated from the
Fokker-Planck equation for the number density of
dislocation pairs, as was done by Ambegaokar and
Teitel' for the dynamics of vortex pairs in superfluid
films. Since such an analysis is rather involved due
to the coupling between different Burgers vectors, we
limit ourselves to a simple approximation for X„"kI(pI).

Let us consider in particular the response to a pure
Shear ~Ir( )p,IWhiCh Can be relaXed by diSlOCatiOn

glide and climb. We assume that these processes can
be characterized by two relaxation rates vp(r) and
vq(r), which we estimate to be of order D pr

' and
Dpi '. Both processes can be approximately
described by a two-pole function

However, just as in the case of the transverse |'.xcita-
tions, the polarization of bound dislocation pairs
must be taken into account to describe this region
completely.

I (W~pI+ WI,z) = I QI2u~ = j pIX Ir (5,37)

To ensure the correct static response we choose
P oo p oo d

—I ( I.)X~~(pI=0) =2 J dr X(r)= J~. dr
0 a0 dj'

D. Dynamics of bound dislocation pairs (s,38)

Thus far we have only considered the effect of free
dislocations, which dominate the dynamics above T
in the long wavelength, low-frequency region, Just
above T for short wavelengths (kg+) & I, as well as
in the hydrodynamic region below T the dynamic
polarization of bound dislocation pairs becomes im-
portant.

where dp, '/dr is determined by (4.19) with r =ape'
To study the effect of bound dislocation pairs on

propagating transverse sound, one should investigate
the response to a nonuniform applied stress and gen-
eralize (5.35) to finite wave numbers. As in the case
of third sound in superfluid films' it is possible to
approximate X~(k, pI) by X„(k =0, pI) in the regions
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of interest here. To see this, we have to estimate the
characteristic length scales for the diffusion of dislo-
cations and defects and compare it to the wavelength
of transverse sound. During one period of sound a
dislocation can glide over a distance sp —(D~~/rp)' '
and climb a distance Sq —(Dq/rp)' ' In .the hydro-
dynamic region 5~~ and Sq are much smaller than the
wavelength of transverse sound h. = c,/co, which is
therefore perceived as an effectively uniform pertur-
bation by dislocations.

Climb motion is necessarily accompanied by a local

change in the defect density na( r ). However, a uni-

form shear leaves the macroscopic defect-density un-

changed. Using the same arguments as above, one
can show that transverse sound appe'ars as an effec-
tively uniform shear for defects, provided co is suffi-
ciently small. Therefore, defect diffusion and
transverse sound decouple in the hydrodynamic re-

gion below T and above T for (kg+) » l.
%e therefore approximate the contribution of

bound dislocation pairs to the current J~ by

was defined

K-'(I) = (I/16~) [I+x(() j (5.45)

in terms of which the recursion relation for p. ' is ap-
proximately given by

(5.46)

where c is another nonuniversal constant.
Estimating Res„(cu) and Ime„(a&) as in Ref. 26

and expanding (5.42) in the ratio Ime„(a&)/ Res„(cu)
one finds for T ( T,

o)+(k) = + c, (0)k —iD, kk (5.47)

where near T, (KR/grr —2) —
~
T —T I" D, can

be related to the climb and glide diffusion constants.
%e have neglected dissipative couplings in the hydro-
dynamic equations (4.42), which would give addition-
al contributions to the damping proportional to k'.

At T„we find with the help of (5.46)

J~(q, co) =i ppX„(pp)a~(qrp), (5.39) ru = + c, (0)k —iD, 'k/In2(ka p) (5.48)

k
+-( ) = + (~,( ) 1'" /c,

with

(5.40)

Inserting this expression into (5.11) and (5.12) and

solving for T ( T, where no free dislocations are
present, one finds the following dispersion relation
for transverse sound

so that transverse sound is indeed propagating in the
long-wavelength limit.

For T & T and (k(+) » I, e„(co) is effectively
constant and can be replaced by its value at T,
E&((al) = E = pp/p R ( T ). Solving (5.11)—(5.13) in

this approximation we recover the results of Sec. III C.

E~(0) ) = I + X~(CU) pp (5.41)

Below T„ the imaginary part of e~(co) is much small-
er than its real part. Expanding (5.40) in

Ime„(rp)/ Rem„(co) one finds

with

Ime„(cu )
k —(co) =+ + —i

c, (co) ' c, (rp ) Res~(rp )
(5.42)

e, ] go
c((QJ) =

Res~(co) mn p Res„(cu)
(5.43)

(4 KR/4m )
p, R

—p, (r) —r (5.44)

At T and for length scales r ( g below T we use
the results of Ref. 5 for the recursion relations in the
vicinity of K =16vr. There a small deviation x(i)

The real part of e„(co) renormalizes the sound veloci-

ty and the imaginary part determines the damping.
To discuss the damping of transverse sound due to
bound dislocation pairs, we estimate the real and im-

aginary part of e„(co). Below T we follow Ref. 26
and introduce a correlation length g (T), which close
to T diverges like g (T) —exp( /~cT —T ~"),
where c is a nonuniversal constant and v is given by
(4.23). For r & g one finds

VI. HEXATICS WITH DISCLINATIONS

A. Microscopic model: A hexatic with disclinations

To exploit the analogy with superfluidity, we con-
sider the dynamics of a microscopic vector field
analogous to the superfluid velocity,

Vp( r, r) —= '7e( r, r) (6.1)

The hydrodynamic description of the hexatic phase
described in Sec. III B should be applicable (neglect-
ing long-time tails) for small wave vectors q any-

where between T and T;. Indeed, since K„(T) is

finite just below T;, we expect that qualitatively simi-

lar hydrodynamic modes will persist even above T;,
provided q ~ g&'. A finite density n)6' —g&' of free
disclinations destroys quasi-long-range order in 0
above T;, however, and reduces the number of hy-

drodynamic modes which persist as q tends to zero.
To study this further we must incorporate disclina-
-tions into a microscopic dynamical description. This
will be done in close analogy to the treatment of third
sound in superfluid films by Ambegaokar e( al.
with, however, qualitatively different results.
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'7 x v„(r, r) =S(r, t) (6.2)

rather than the dynamics of the bond-angle field it-

self. In the presence of disclinations, t)( r, t) can be
made single valued only by introducing jump discon-
tinuities across cuts in the xy plane. The gradient of
tl( r, t) is a smooth function of r except at the isolat-
ed points occupied by disclinations. It is defined to
exclude the delta-function contribution at the discon-
tinuities of tl( r, t)Si,nce the integral of vj, around

any closed path must be —,vr times the enclosed in-

teger "disclinicity, " we must have

B. Interacting disclinations in equilibrium

The microscopic probability distribution, to which
our hexatic equations of motion must relax, is pro-
portional to exp( —Ftt/ka T), where

F(( = FL + 5F(( (6.10)

wavelengths, we recover our previous hydrodynamic
description. The microscopic field t/( r, t) can then be
replaced by the macroscopic quantity 0( r, t), if we

neglect renormalizations due to bound pairs.

where S ( rt) is ,a disclination charge density,

S( r, t) = —,7r gs„h(r —R" (t)) (6.3)
Here, FL is the usual liquid-free energy Eq. (2.1),
and

In Eq. (6.3), the summation is over disclinations at
points (R" (t)) carrying "disclinicity" s„=0,
+1, . . . . We can also define a disclination current
density

dR" k
dt

Because disclinations can be created or destroyed
only in pairs of opposite sign or at boundaries, we

have a continuity equation

5Fjt = —,Kg J d'r ('7//)' 4,
'6. 11)

p ' 2 2SFjt = —,Kgo „dzr ('7j/j)'

rrKg
g

t' —f

rWr

Decomposing t/( r ) into a smoothly varying part
jJ ( r ) and a part due to disclinations, we can rewrite
(6.11) in the form

as +V J,=O .
Qt

(6.5)
+p(6) Xs2( r ) (6.12)

Since Eqs. (6.5) and (6.2) can be combined to read

d vh —zx J6 =0
dt

(6.6)

the quantity d v„/dt —z x J6 must be the gradient of
a smooth scalar function without singularities. To re-
cover the results of Sec. III B in the absence of discli-
nation currents, we take this function to be the
right-hand side of Eq. (3.14) and find

where E,' ' is a disclination core energy. The vectors
r run over the sites of a lattice whose only physical
significance is to provide a short-distance cutoff.

The statistical mechanics of (6.12) is isomorphic to
the scalar Coulomb-gas model of superfluidity and
XY magnetism treated by Kosterlitz, "except that dis-
clinations play the role of vortices. Taking over his
renormalization equations to the present situation, we
have

gVh

Qt
7 (Ej/()jgj) + K 7 ( '7 vjj ) + z x J,

2(nnp

d(K„'(/)) '

dl
= 144~'y,' (/), (6.13)

(6.7)

The two remaining hydrodynamic equations are un-

changed,

dy, (/)

dl

where

j

= 2 — K„'(/) y, (/)
j

(6.1 4)

Ban 1= ——"7 g
Qt (n

(6.8) y6(0) = exp( —E,j6'/ka T) (6.15)

+ ~ '7'g+ ~ '7('7 g)
('Un p n1 np

(6.9)

Note that the "conservation of vh" is broken expli-
citly by disclination currents. Below T, , where discli-
nations are bound and J6 vanishes at long

gg ! p ~ B= ——,Kz (z x '7) ('7 vj, ) — 75n-
9f np

K„(T)= lim K„'(/)
( ~ ao

(6.16)

and that disclinations unbind at temperature T;, such

and Kqo(/) and y6(/) describe "partially dressed" cou-
plings with fluctuations on scales a to ae' integrated
out. Here a is the disclination core diameter.

Using these results, it is straightforward to show'
that the renormalized Frank constant K„(T) is
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that

(6.17)

clination charge density St„,( r, t) averaged over a
small hydrodynamic volume, which must be of the
form

driving a transition into an isotropic liquid phase.
The Frank constant K& vanishes above this tempera-
ture, Bond-orientation correlations then decay ex-
ponentially, with a diverging correlation length,

(&( T) —exp(b/i T —T, ('jz) (6.18)

e)6 ( T) = 1 8 I t) T/rr Kq ( T) (6.19)

Just above T;, the density nf' ' of free dislocations
can be expressed in terms of (6.18),

just above T;. At all temperatures in the hexatic
phase, one has the result quoted in the Introduction,

free +O' J6 f„„=0
9t

. (6.24)

to ensure conservation of Sf„„. For small deviations
from equilibrium, the current of free disclinations
must take the form

J6 t«, ( r, t) = ypz x v6 ( r, t) —D6'vtS„„„(r, t), (6.25)

where D6 is the disclination diffusion constant and y0
is proportional to a disclination mobility. ' %'e re-
quire that zero-current results from the equilibrium
distribution Sp(r) associated with a uniform vector
field vh. This quantity is

n(6=)( '(T)f (6.20) Sp( r ) = n) 'exp( —F6 r/kaT) (6.26)

where nf' ' is the density of free disclinations, and

C. Equations of motion for disclinations
0 1 0 0

F6 = 'tr Kg sv(z X vtr ) (6.27)

F6(R ",t) = ——erK„s„z x v6(R, t) (6.21)

%e now associate a simple Langevin equation for
the disclination position with this force, namely,

~Z0Dd R er w 6 -
(
R(v) )

(v)(

dt 3k' T

Physically, we expect that discliriations will move in

response to inhomogeneities in the bond-angle field.
To proceed further, we need a model of disclination
motion which allows us to calculate the disclination
currents produced in the presence of a finite vh. Fol-
lowing arguments which lead to the Magnus force on
vortices" and the Peach-Koehler force on disloca-

(v)
tions, "we ask for the force on a disclination at R
with charge s„ in the presence of a "velocity" field

v6( r, t). The requirement that this force gives the
correct energy for a disclination pair leads to a discli-

nation force

This constraint of zero current gives the Einstein
relation

yp = 'jr Kg D6tl) /3kB T (6.28)

In what follows, we assume that D6 remains finite
near T;, so that the dominant temperature depen-
dence in yp comes from nj ' = (&'.

D. Dynamics above T;

c h free (6.29)

In order to use the results for Sf„„and J 6 f„„
derived above, we first break the currents and

charges in Eqs. (6.2) and (6.7) into free and bound

parts, and assume that bound disclinations can be
taken into account by a bound dielectric constant e, .

Taking over the standard treatment of free and

bound charges in, e.g. , Maxwell's equations, these
equations become

where D6 is a diffusion constant, and the g„(t) are
fluctuating Gaussian noise sources with variance

Qvh

Qf
'7 (E')j()(g, ) + k'7 ('7 Vtr ) + Z X 36 tree

2tHI1 0
(6.30)

(q "'(t)gj'"'(t')) =2D65j8„„5(t—t') . (6.23)

Equation (6.22) represents diffusive disclination mo-

tion with a mean velocity proportional to the magnus
force F6. Just as in Ref. 26, these equations could be
used in conjunction with (6.7) to study the response
to homogeneous, time-dependent perturbations.
Here, we are interested instead in hydrodynamic exci-
tations at long wavelengths in the presence of a dilute

gas of free disclina-tions.
To study this situation further, we consider the

Fokker-Planck equation implied by (6.22) for the dis-

i ypq x v6(q, 6))
Stree( q —i cu+D6q

One then finds from (6.25) that

(6.31)

J6, free ( q (r)) yp 6ij
6qiq(6lj j

( ) (6 32)—I Ol + D6g

while (6.8) and (6.9) are unchanged.
Passing to Fourier transformed variables

v6(q, ep), S(q, (p), etc. , we can close the system of
equations (6.30), (6.8), and (6.9) by first solving

(6.24) for
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Inserting this into (6.30), and projecting the equa-
tions of motion onto the longitudinal and transverse

parts of v& and g, we find five distinct eigen-
frequencies. The transverse momentum and longitu-
dinal part of vt, couple to give the analog of the cou-
pled vorticity-bond orientation modes discussed in

Sec. III B. As q tends to zero, free disclinations now
produce one viscous shear mode

co, (q, gq) =.—(q/tnno)q'i (6.33)

and a frequency which controls the relaxation of vt„

tp,+(q, (p) = —(yo/e, ) t ——(q't (6.34)

Z6 2 (6.35)

Note that the coefficient of rt' in (6,33) remains fin-

ite as T T;+, in contrast to the behavior of the
viscosity near T . The frequency eo,+, on the other
hand exhibits pronounced critical slowing down. It is

interesting to note that (6.33) and (6.34) are what

could be expected on the basis of dynamic scaling ar-
guments" applied to this problem: Since K& is finite
at T;, one expects the hydrodynamics sketched in

Sec. III B to be qualitatively correct even at T, .

Hence, if dynamic scaling is to hold at all, frequen-
cies must scale with a characteristic exponent

E. Hexatic dynamics in a Lennard-Jones fluid

Our discussion of dynamics near the disclination
unbinding transition has left open the question of
whether the transverse hexatic frequencies just below
T; are purely dif'fusive or have instead a real part pro-
portional to q', The answer to this question is

nonuniversal, depending on hydrodynamic parame-
ters not fixed by the theory. However, with slightly
more information, obtained from experiment or com-
puter simulations, it is possible to make a prediction.
Frenkel and McTague" have studied a two-
dimensional Lennard-3ones fluid, and found evidence
for a hexatic phase bordered by low-temperature solid
and high-temperature liquid phases. They examined,
in particular, the relaxation of transverse momentum
currents in the liquid and hexatic phases. It is possi-
ble to estimate the transverse hexatic frequencies just
below T;, from their measurements of the ~ =0
transverse-momentum autocorrelation function.

To make contact with this simulation„we calculate
the trans verse-mo men tu m au tocorrelation function
below T;, by adding appropriate Langevin noise
sources to the equations for the transverse hexatic
modes. Since disclinations are bound, we neglect dis-
clination currents, and use the linearized hydro-
dynamic equations discussed in Sec. III B. Upon de-
fining

Equations (6.33) and (6.34) are the only results con-
sistent with this exponent and liquid hydrodynamics.

The transverse part of vt„which decouples from
the remaining four variables, has the characteristic
frequency

and

t;r(q, t) =—q x g(q, t)/q

v = 7t/nln p

(6.37)

(6.38)

oto(q (p) = ~(yo/e )+Deq']i

= —(y p/e, )i ——(p'i (6.36)

we have

f)i, r(q, t)—' —= —vq'pI-{ q t) + —K~iq'0(q t)+ ({q t)
t

According to (6.29), this is also the relaxation rate
for Sr„„(r, t). We can think of this frequency as
describing in a rough way the relaxation of fluctua-
tions in the atnplitude of the hexatic order parameter.
[i.e., in Pp, where P = Ppexp(6it)) ], since these fluc-
tuations are represented in the present model by the
vortex cores in Sf„„.

The longitudinal modes decouple from the disclina-
tion dynamics in this approximation, and we recover
the longitudinal eigenfrequencies quoted in Sec. III A.
One would not expect longitudinal sound to couple in

an important way to vorticity —bond-angle excitations,
since it relaxes much more rapidly. Indeed, the situ-
ation seems rather analogous to first sound near the
A. temperature in superfluid helium. ' Because of
mode coupling nonlinearities, neglected in the above
analysis, compressional sound can, in fact, decay into
vorticity and bond-orientation modes. One might ex-
pect a small anomaly in the damping due to these
nonlinear effects.

(6.39a)

rlt) ( q,t), I
Kq 0( q, t) + — -iqp&-( q, t) + Y{q, t)

211lfl p

(Y(q, f) Y(q, t')) = 2l ektt T5(q + q ) 5(t —t')

{6.40b)
From these equations, one readily finds the
trans verse-momentum autocorrelation function,

+ T ( tt, pt ) —= ( I sr ( q, pt )
l

' )I ( ktt T»t»t o )

vent'(&o'+ ~'q') + (K, /4tttno) xq"

la(q, (p) l'
(6.41)

where the Gaussian noise sources ((q, t) and Y(q, t)
satisfy

(](q, t) ((q, t')) = 2qk„Tq'5(q + q )5(t —t')

(6.40a)
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where

5 ( q, Qt ) = td + ( v + K ) q 'i co —[ v K + ( Kg /4lntt p ) ]q

(6.42)

transverse hydrodynamic frequencies,

pt,+(q) = —4 ltrd. e/m q't

pt, (q) = —2 5(r.de/m q'i

(6.49a)

(6.49b)

There are poles in Gr(q, a&) at the characteristic hy-

drodynamic frequencies pt,-(q) discussed in Sec.
III B. Fourier-transforming in time, one sees im-

mediately that Gr(q, t) is a weighted sum of two ex-
ponential decays, with characteristic times pt,-(q).

Upon defining an effective viscous parameter

vgff=—ltm [q'Gr(q, pt = 0) ]
q~0

it follows immediately from (6.41) that

(6.43)

'vgff r)off/mltp = v [ 1 + (Kg/4~vmnp) ] (6.44)

v = 1. 5Jae/m (6.45)

where o-, e, and rn are the length, energy, and mass
parameters of the Lennard-Jones system. Since the
dynamical theory of the previous subsection suggests
that v is nondivergent as T T;+, we assume that v

has roughly this same value below T;. As observed
in Ref. 15, v, ff increases by about 50% upon passing
through T;. From Fig. 3 of this reference, we esti-
mate that

v„„=2.3a Je/m (6.46)

just below T; in the hexatic phase. According to Eq.
(6.17), one further piece of information can be ex-
tracted from the value of the disclination unbinding
temperature, ka T; =0.57m. One must have

Remembering that v = rt/mn p, we see that this is the
same effective viscosity that would be measured in

the macroscopic "free boundary condition" experi-
ment discussed in Appendix A.

This effective viscosity is enhanced over its value

in the liquid, due to the coupling to the slowly relax-

ing bond-orientation field. Frenkel and McTague ac-

tually observe a shoulder in v, ff at T; which can be
understood in this way. Above T;, where v, ff v,

they find a viscosity which is roughly temperature in-

dependent, "

The necessary inequality for diffusive modes (3.19)
Kg/ln»p) ( (K —v)' holds close to T, because of the

rather large value of K. This is the product of a relax-
ation rate I 6 and K,&, which is bounded from below

by (72/7r)ka T. This product will be rather large if 16
and AT; are of order unity in Lennard-Jones units.
As T is approached from above, the analysis of Sec.
V B shows that v as well as K„diverge like g+, while
K remains finite. Therefore, close to T the inequali-
ty holds due to a large value of v. Hence ~ —v must
vanish for some temperature To, T ( To & T;, so
that the transverse eigenfrequencies acquire a real
part over some temperature interval within the hexat-
ic phase. The imaginary part probably dominates at
all temperatures„however. From calculations of v, ff

only one cannot infer whether at some temperature T
the hexatic modes are actually propagating or over-
damped. Further information on the dynamic auto-
correlation function Gr (q, tp ) is needed.

From Eq. (6.44) we see that v, tt diverges like g+ as
T T+. Frenkel and McTague" do in fact find a

strong increase in v, ff near T . Finite size effects in

a numerical simulation will, however, change the ex-
ponential increase of v, tt in an infinite system (6.36)
to a rise in vgff from its value in the hexatic phase to
a very large value in the solid phase. (The value of
v ff should be infinite in the solid but is limited by
finite-size effects in the numerical simulation).
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Kg (7; ) = (72/m)ks T; = 13.1e (6.47)

K = 5.1a Je/m (6.48)

Substituting these results into the formulas com-

piled in Sec. III B, we find two purely diffusive

Substituting Eqs. (6.47), (6.46), and (6.45) into Eq.
(6.44), together with the appropriate density
(»p=0.8o. '), we can solve for the only remaining

hydrodynamic parameter just below T, ,

APPENDIX A: VISCOSITY IN THE HEXATIC PHASE

In this appendix, we examine the relation between
the transport coefficients of the hexatic phase and the
results of a conventional viscosity measurement ap-

plied to a film in the hexatic state. We shall see that
the results depend on details of the experiment. 4'

For an idealized experiment let us consider a sys-
tem which is infinite in the y direction, and confined
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by walls (i.e. , lines) at x = 0 and x = W. We assume
that the wall at x =0 is stationary, while the wall at
x = H'is moving in the y direction at a velocity Vy.

For a conventional fluid, in the limit where & is

large compared to the atomic scale, and where V~/W
is small, compared to atomic relaxation rates, the
steady state will have a momentum density gy, which
increases linearly with x, with

1

0, x=0
Py

=
np»'1 V,

1

x= JK (A I)

~xy = ~yx =.~

If the force per unit length on the walls is f; then the
stress tensor is given by

Note that under these conditions, Eq. (3.14) be-
comes

gH Vy

9t 2N
(A10)

B»0" = —( I /2/11f1 pK ) 7)»gr (A I I)

Under these conditions we find an effective viscosity

Thus the bond orientations precess at a constant rate,
everywhere in the sample.

A different situation occurs if we assume that the
bond orientations are pinned at the walls, so that
BO/6/ =0 for x =0 and x = W. Now a steady-state
solution requires 8()/13/ =0 everywhere, and hence,
from (3.14),

and the liquid shear viscosity can be obtained from
1

q, /7= W/r»„/ Vy
——q+ —K„/K (A12)

tr= a„W»/ Vr (A3)

+(r//IIII/p)CI), g/+(), g; —('v7 g)g;, ]

+ ((//I'I/7p)II V '
g (8/lip)17ll (A4)

Boundary effects can be separated from the viscosity
that one cfishes to measure, by repeating the mea-
surements for several values of 8', and extrapolating
appropriately to the limit of infinite 8'.

Let us now consider the results of such a rneasure-
ment when the film is a liquid crystal, obeying the
hydrodynamic equations (3.12)—(3.14). The relation
for the stress tensor, which leads to (3.13), may be
written as

'fJij
2

+A (+ik~k~jo+ jk~k~iH)
1

This is identical to the quantity q, qf defined in terms
of the momentum-density correlation function in Eq.
(6.44).

As one approaches the temperature T from the
hexatic side, the coefficient q and K~ are predicted to
diverge as (+, while K remains finite. Thus, the two
terms on the right-hand side of (A12) are found to
have the same temperature dependence.

The viscosity of an isotropic fluid can also be ob-
tained from the viscous penetration depth in an ac
experiment. For example, if a wall at x =0 is made
to oscillate at a frequency co, and if the width 8'is
sufficiently large, then the momentum density p will

vary exponentially with x, as

In the present geometry, g„=5» =0, and we may as-
sume that all quantities are independent of y. Then

g»(x) ~e

/1 = (////17/1 p/'g )

(A13)

(A14)

Ir = Kg 8»0 + ('ll///I//p) t)»gI,

For a steady state, we assume r)p~/I)t = 0, and
I)'0/8 I)7X=0, whence, using (3.13) and (3.14):

In the hexatic phase, when Eq. (3.20) applies, there
will be two exponential decaying modes at the given
frequency cv. The. inverse decay lengths are given by

/»+ = (2p//D+)'7', (A15)
t)»/r»» =

7
ICg 8»0'+ (7)/Ill/1 p) |I»gr '= 0

( I/2///lip) 9»gr + K7)»0 = 0

(A6)

71,/1
——W/rr„/ V» = p (A9)

From these equations it follows that 8'0= 9'py =0,
and hence from the boundary conditions (A1):

//r (x) = Ill/1 p V»x/ W

The value of 9„'0, and thence the stress tensor
(A5) depends on the boundary condition for H.

If we assume "free boundary" conditions on 0,
which is to say 9„0=0at x =0 and x = W then we
find 6 0=6„'0=0, everywhere, and /„r»=qV»W/.
The effective viscosity measured under these condi-
tions is given by

where D+ are given in Eq. (3.21). At large distances
from the wall, only the slower exponential is impor-
tant, corresponding to the choice D+ in (A15). Close
to the solidification transition (T T+) the value of
D+ is equal to 2TI/IIIII p, so that /»+ is then related to r7

by an expression identical to that applicable to the
liquid phase, Eq. (A14).

APPENDIX 8: BURGERS-VECTOR CURRENT
WITH D() A D~

In this appendix we evaluate the Burgers-vector
current (J,") for the general case Dp A Dz Using the.
conservation law for the total Burgers-vector density
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(4.28), we can write (5.7) as

(il") = —Cjkj( jrkj+Pgkj) —iD/j" (kjkj/oj) (Jj")
(Bl)

To eliminate k, (J,") in terms of (jrkj+ pSkj) we mul-

tiply both sides of (Bl) by k;

[Gr 'P l(k) + Gj 'P l(k) ]kj(i,') = k—j&jkj(irk/+ p5kj),
(B2)

and

k2 D]]+3Dg
Gy=' = 1+i-

cd 4

k2'3Dll+ Dg
GL

' =1+i- '—
cd 4

(B4)

~here P„&' ( k ) are transverse and longitudinal

projector s

P„',(k) =8„/ k„kj/-k', P'i(k) = k.ki/k', (B3)

The matrix [aPrj(k) +@PL/(k)] is easily inverted, to
yield k, (J,') in terms of jrk/+pgk/. Equation (Bl) can
then be rewritten

s

(Ji ) Cikj(~kj+pgkl)+ Dirk/ Plm( k ) lm( k ) kjCjks( jrks+pgks) (BS)

For k in the x direction, the four independent components of (J;") are given by

Ilfap Dll+ DJ
(B6)

(J, ) = —(J„")[1+(ik'/ )D ]
l

Dll+ Dg
(/r„„+p)—

(D//+ 3DJ )
((r,, +2p)

(B7)

(B8)

»faP
(iy") = G, (a, , +2p)—

Dll+ DX

2
( +p) i+—'-D (B9)

APPENDIX C: TRANSPORT COEFFICIENTS

AND TRANSVERSE MODES NEAR T~

but independent of position, while

We present here the method used to obtain the
transport coefficients of the hexatic phase and the
transverse hydrodynamic modes, near T, from the
equations of motion of the dislocation plasma,
developed in Sec. V, Eqs. (5.11)—(5.14). Actually,
we shall use rather than (5.1'4), the constitutive rela-

tions developed in Appendix B, for the more general
case where Dll A Di. The analysis of the longitudinal
modes can be carried out in a similar fashion.

Before we analyze the equations of motion at finite
k and cd, let us calculate the viscosity q in the hexatic
phase by analyzing the dc experiment described in

Appendix A, in which the substance is bounded by a

stationary wall at x =0 and a moving wall at x = 8',
with free boundary conditions on the orientation an-

gle 0. In this experiment, we reach a steady state,
with cJ'yz a constant, and gy =g'x, where
g' = /lorn Vr/IK .We expect, by symmetry that the
Burgers-vector currents (J„") and (Jrr) will be nonzero,

(J„")=—(ij', ) = voao
' jr~

where

»fap Dll + Dz

kgT 2

(C2)

Note that Eqs. (C2) and (C3) reduce to Eqs.
(5.14a) —(5.14c) in the case Dj/= Dj. Using Eqs.
(A9), we see immediately that

0~11pt)1

g 2vp
(C4)

From Eqs. (5.11) and (5.12), we see that in this
geometry

~Py
+ao((Jrr) —(J„")) =—(wr„+ w~) . (Cl)

»par ex ' " "
el

Since ( w~„+ w~) = jr~„/p, o, the right-hand side of
(C 1) must vanish in the steady state. From Eqs.
(B1) and (5.8a) we find



2540 ZIPPELIUS, HALPERIN, AND NELSON 22

which is the result quoted in (5.19).
If instead of free boundary conditions we had as-

sumed that dislocations could not be created or des-
troyed at the boundary, we would have had to intro-
duce a nonvanishing gradient of the Burgers-vector
density ((B„),so that the current (J„") would vanish.
The analysis in that case would lead to a result for the
effective viscosity (A12).

Let us now consider the dynamic equations
(S.l 1)—(5.13)„(A6),and (A7), at finite k and cu.

For simplicity we shall choose units where
Ilp)71 = op = 1. After some manipulation, we can ob-
tain three coupled equations for the quantities
o~, g~, and ((B„),which we write in matrix form as

Close to T, where vp is small, we find

, D—+=1/(2vo) (Cl 1)

—D =D
2

(C12)

2vprr =-ikp + , ik (D—o+Dg)($)1

(C13)

where we have suppressed the Cartesian indices on
the variables. We can then use this to eliminate o-

~
from the second and third rows of (CS) giving

For frequencies of order k', in the hydrodynamic
limit k 0, the three equations (C5) can be reduced
to two. From the first row of (CS), we see that in

this limit,

2 vpp. p

+ / 0) gy
= /k

((B„) ikvo

1

Ik+p Ik (D +oDi)ijo o

0 0

0 (-', D, +-„' D, )k' (. )

(C5)

k'(Do+ Di)
/0)g = p+ ((B),

2vp 4vp

i&a((B) = ——,k'g+ , D,k'((B—)

(C14)

(CIS)

The eigenvalues of this equation are the roots of the
cubic equation

(i co) —(i cu) (Dk + 2vppp)

In order to compare directly with the hydrodynamic
equations for the hexatic state, we would like to elim-
inate ((B) in favor of the variable 6 = —, ( w„~

—w~„).

Using Eqs. (S. l 1)—(5.13), (B6), and (B7), one finds
that

where

+ (I ~)(vop pD„k'+ @ok') —poDk'=0, (C6)
2(u(1 = kDo($) —kp (C16)

3 1D
4 Dll +

4 Dg

In the limit k 0, the eigenvalues become

(C7)
After some algebra, one can obtain from
(C14)—(C16) two equations of the hydrodynamic
form„

M = —2/ vppp

o) = ——/k D+1

2

(C8)

(C9)

—

icing

= —iK&k 0 —qk g
1 . 3 2

1

/COO = /kg Kg g

(C17)

(C18)

with where q is given by (C4) and K& and ~ are given by

po+povoDo+ l(po+ povoDo) —8povoD)' '
—D+=

4p, pPp

(C10)

1

K = —,Dll

K„=ka T/nfao2

(C19)
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