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Important new analytic results have been obtained for the linear, ferromagnetic, spin- —,
Ising-Heisenberg model in a small magnetic field. Specifically, for zero field an expression,
which changes its form'at an intermediate value of the variable anisotropy parameter, has been
obtained for the thermal excitation energy gap. This special anisotropy value does not corre-
spond to a symmetry change in the Hamiltonian, but is associated with an. important difference
in the physical significance of the results. For anisotropy greater than the special value, the
dominant excitations correspond to bound spin complexes. For anisotropy less than the special
value, the dominant excitations are spin waves. These results govern the low-temperature
behavior of the specific heat. The effective magnetic excitation gap, which determines the low-

temperature susceptibility, is dominated at zero field by the bound states for all anisotropy.
More complex crossover effects occur in both specific heat and susceptibility when the analysis
is extended to nonzero field. These results may have an important bearing on the quantum sol-
iton problem in the linear ferromagnet.

I. INTRODUCTION

There has been a renewed surge of interest in ex-
act solutions of nontrivial, quantum-mechanical,
one-dimensional models. ' For example, exact and
fairly complete solutions are now available for the
one-dimensional (1D), delta-function potential, Fer-
mi and Bose gas models, ' the linear Hubbard
model of a metal-insulator transition, ' and the linear,
spin- —,, Ising-Heisenberg-X Y continuum model. The

method of solution of the linear magnetic continuum
model is based on techniques for solving the 1D,
field-theoretic, Tomonaga and Luttinger models. "
These techniques have been further exploited in a
somewhat different direction (incorporating the ef-
fects of spin and backward scattering) to obtain exact
solutions for a continuum electron gas ' and an
electron gas on a lattice. ""These are relevant to
the important field of one-dimensional organic con-
ductors. " Other interesting developments include
exact treatments of the ground state of a 1D plasma
with uniform background of opposite charge (which
crystallizes as a Wigner solid)'4 and exact results for
the Lai-Sutherland 1D model (which contains a dilute
magnetic model and a generalized Hubbard model as
special cases). '5 Models for organic charge transfer
salts can be mapped into a quantum magnetic
chain, ' '7 which in the antiferromagnetic limit
corresponds to the Hubbard dimer gas. ' ' At both

zero20 and finite ' temperature one-dimensional
quantum models of the general XYZ type can be
mapped into 2D classical models. Analytic results for
excitations of 1D quantum magnets in nonzero
field" "have yielded predictions of interesting new
phenomena in spin dynamics. ' ' Extensive applica-
tion of exact solutions (solitons) of the 1D, quan-
tum-mechanical, sine-Gordon, and related equations
has been made to charge-density waves in 1D con-
ductors. """" Very recent use of exact Bethe's
ansatz techniques has been made to solve the mas-
sive Thirring model. ' " Fadeev's review presents a
unified approach to all the models discussed above. '
Sutherland gives an overall view of the quantum soli-
ton concept, together with new results for the quanti-
zation of the Toda lattice. '

Despite this flurry of activity, the solution for
perhaps the best known model of all, the 1D, spin- —, ,

Ising-Heisenberg-LY model, first studied in the
1930's ""remains incomplete. The T =0 properties,
including the critical singularities, are now known,
but the general solution is incomplete. By this we
mean that for certain parameters ranges of the model
the behaviors of the thermodynamic properties, the
correlation functions, and the spectral excitations are
not known. Specifically, exact information is lacking
in the case of zero magnetic field on the anisotropic
Ising-Heisenberg ferromagnet and the isotropic fer-
romagnet, and only partial information exists for the
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where y is an anisotropy parameter which varies
between the Ising model (y =0) and the isotropic
Heisenberg model (y = 1). Our studies show that a
thermal energy gap exists for all y ( 1, vanishing
linearly as 1 —y as the isotropic limit is approached.
Specifically, for 0» y» 0.6

hE"'=
2 (E, —Eo) = J(l —y )' ' (1.2)

where the E; are the dominant excited states and Eo
is the ferromagnetic ground state. For 0.6» y ( 1

hE' =2J(1 —y) (1.3)

This crossover in behavior of the effective gap, mid-
way through the anisotropy range, is rather surprising
from smoothness-universality considerations. The
principle involved is that the physical properties of a
system should vary smoothly as a linear parameter in
the Hamiltonian varies, provided that the underlying
symmetry of the Hamiltonian remains unchanged. 4'

There is no apparent symmetry change in the Hamil-
tonian at y =0.6. However, on closer consideration,
no obvious problem occurs, since d E is, in fact, con-
tinuous at y =0.6. Further, the existence of a gap
for all y & 1 implies exponential behavior of the ther-

isotropic antiferromagnet.
In this work we discuss interesting and rather com-

plex results, which appear to be exact, for the ele-
mentary excitations and low-temperature thermo-
dynamics of the spin- —,, anisotropic, Ising-Heisenberg

ferromagnet. Circumspection must be exercised in
claiming an exact result for this fascinating but diffi-
cult problem because the form of solution depends
crucially on the nature of a set of assumptions con-
tained in the work of Gaudin. Previous work of
Johnson and McCoy and Johnson has resulted in
additional analytical developments which have been
used to extract finite-temperature results. When the
results were compared with available numerical infor-
mation, ' a favorable comparison resulted, thus
enhancing faith in the assumptions contained in the
derivation of the formalism.

However, it is still worth emphasizing that there is

no, a priori, obvious way to make the choice of as-
sumptions, and, if a wrong choice is made, the
analysis may be perfectly correct but the results will

be meaningless. ' Hence, it is valuable, even essen-
tial, to continue to compare the analytical answers
with approximate but reasonably reliable alternative
approaches, in this case perturbation theory and nu-
merical studies on finite linear systems with both
free-end and periodic boundary conditions.

For comparison with experimental magnetic sys-
tems, it is most convenient to express the Hamiltoni-
an in the well-known form

N

H = —2J X [SI*SI'~& —
4

+ y (S,"S("+i +S;Sf+i )), (1.1)

modynamic functions as T 0 and identical (ex-
ponential) critical behavior at T = 0.

Nevertheless, the behavior of the thermal excita-
tion energy gap for the ferromagnet is different from
the corresponding gap for antiferromagnets in that
the antiferromagnetic gap is given by a single, albeit
rather complicated, expression for all 0» y» 1. The
formula may either be expressed as

tS E (y) = y I J I sinh4
I)n

cosh n4 (1.4)

which is suitable for numerical evaluation near the
Ising limit, or as

(y) =y I

I""
cosh[(n + —,

'
) m'/4]

(I.S)

which is more rapidly convergent near the Heisen-
berg limit. Here 4 is a convenient parameter such
that cosh 4 = 1/y. Approximate forms of the expres-
sions (1.4) and (1.5) are, for the Ising and Heisen-
berg limits, respectively,

&E(y) =
IJ I(1 —2y)

y
1i'2

(1.6)

(1.7)

The antiferromagnetic energy gap is exactly half the
gap obtained by des Cloizeaux and Gaudin from
analytical studies on systems with periodic boundary
conditions. 43

For these reasons it is felt that the analytically
predicted behavior of the anisotropic, ferromagnetic,
thermal excitation gap is unusual enough to justify
supporting studies by perturbation and other numeri-
cal methods. These backup studies not only make
plausible the analytic result, but also are interesting
in their own right, since they indicate clearly the na-
ture of the different classes of low-lying excitations
which are competing for dominance. Furthermore,
these numerical studies are themselves, like the ana-
lytic approach, somewhat complicated, and may serve
as a guide to the application of approximate theoreti-
cal procedures to problems for which an analytic
solution is not, as yet, in sight, such as the alternat-
ing magnetic linear chain.

For 0» y ( 0.6 the dominant excitations are
bound corgplexes of 2,3, . . . , 2

N neighboring spins,
easily visualizable in the Ising limit. At low tempera-
ture they dominate both the susceptibility and the
specific heat in the limit as the magnetic field tends
to zero. The situation in the range 0.6& y & 1 is
more complex and therefore more interesting. The
excitation energy gap of Eqs. (1.2) and (1.3) is actu-
ally the effective thermal excitation gap; i.e., it
governs the low-temperature behavior of the specific
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heat. In the range 0.6 & y & 1 spin-wave excitations
dominate. The low-temperature behavior of the sus-
ceptibility, on the other hand, is governed over the
whole range of y, 0 ~ y ( 1, by the bound-state gap,
Eq. (1.2), which we may regard as the effective mag-
netic excitation gap. The unusual crossover effect
noted above is thus seen to occur only for the ther-
mal gap while the magnetic gap is given for all

0 ~ y ( 1 by the bound-state expression. For finite
magnetic field previous work" shows that the spin-
wave states dominate both susceptibility and specific
heat for all 0 ~ y ~ 1. Crossover effects abound,
therefore, in the field-anisotropy parameter space, as
will be discussed more specifically below. This com-
plex behavior emphasizes the point that "standard
spin-wave theory" may not correctly give even the
leading terms of the low-temperature expansion.

An experimental demonstration of these excitation
effects would be particularly challenging and interest-
ing. Far-infrared absorption experiments, which re-
veal the dominance of bound-state excitations near
the Ising limit, have already been carried out on the
Ising-like linear chain CoCI& 2H&O. Resonance ex-
periments and neutron scattering experiments might
profitably be undertaken on CoCI, 2(pyr)q, dichloro-
dipyridine cobalt (tt), a better ising-like linear chain
than CoC1~ 2HqO. The recent discovery of a good
Heisenberg-like linear ferromagnet4' TMCuC
(tetramethyl ammonium copper chloride) permits, in

principle, experimental studies in the low anisotropy
regime. However, quantum effects introduced by the
strong transverse (XY) spin-coupling terms may
cause some difficulty in distinguishing between
classes of bound and spin-wave states.

In Sec. II of the paper the analytic results will be
presented, and in Sec. III the supporting numerical
studies will be discussed. Conclusions are drawn and
a final discussion is given in Sec. IV.

II. ANALYTIC APPROACH

In this section the Gaudin free-energy expression
is discussed and a complete solution is then given for
zero field in the form of a low-temperature expan-
sion, paying careful attention to error terms at every
stage. The results are then generalized to small finite
field. It is then shown how simplified spin-wave-type
arguments may be used to derive the same results
more easily. Finally, a detailed discussion is given of
the behavior of the susceptibility and specific heat in

various regions of the field-anisotropy parameter
space.

The Hamiltonian (1.1), which is convenient for nu-
merical studies and comparison with experiment, is
not appropriate for exact analytic work. Hence, we

use the following form of the Ising-Heisenberg Ham-

iltonian in a field

—Hp $S;* . (2.1)

This may be compared with Eq. (1.1) in which a Zee-
man term —g/3HM X,S;* has been added. In what

follows, therefore, 5 = y ', T =kBTp/(2yj), and
Hp =gPHM/(2y J ). Tp is the physical temperature
and k& is Boltzmann's constant.

A. Formalism of Gaudin for Hp-0 and LL & 1

Gaudin has obtained the following expression for
the free energy per site:

Dn($) = (K„/rr) dn(K„Q/rr, k) (2.3a)

where K& is the complete elliptic integral of the first
kind and dn($, k ) is one of the Jacobian elliptic func-
tions. 4' The modulus k of these functions is given by

K,/Kg =4/m (2.3b)

where k'= (1 —k')' '. Explicitly,

~ (~) sinh4 " Dn($) sinh4 d$ . (2.4)
2n "-~ cosh@-cos$

For the antiferromagnet, when T 0, the integral in

Eq. (2.2) vanishes, whereas for the ferromagnet,
when T 0, the integral cancels with Ep(/J, ) to give
zero (independent of 6). This is, of course, the fer-
romagnetic ground state for our Hamiltonian (2.1).

Clearly, to determine the low-temperature excita-
tions, we must find an expression for the function
e~($). For this we must solve an infinite set of cou-
pled, nonlinear, integral equations; namely,

I

e~(@)= J Dn(@ —P') ln(1 +e z )d@'2'

+ sinh@Dn(@) (2.5a)

and

x(1+e'~-~'P ' )dy', n ~ 2 . (2.5b)

F( T) = —Ep(/J) —
J Dn(@) ln(1+ e'' ~'~ )«4

277

(2.2)

where Ep(5) is the antiferromagnetic ground-state
energy when 5 = —4. The known function,
Dn($), is defined as
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FIG. 1. Plot of the ~„(@)for T =0 and large anisotropy,
a =4,0(y =0.25),

FIG. 2. Plot of the ~„($) for T =0 and small anisotropy,
LL = 1,05(y =0,952).

The set of equations for the e„(it ) is completed with

a boundary condition lim„e„($)/n =0. Equations
(2.2) through (2.5) completely determine the free en-

ergy F ( T), which may then be differentiated to ob-
tain the entropy, S, and constant field specific heat,
CH, per spin.

To give the reader some idea of the behavior of
the e„(it ), we present in Figs. 1 and 2 the zero tem-
perature e„(@),n =1, 2, 3, . . . , ~, for i5 =4.0 and
1.05. A point to note is that, as n increases, the
e„(i)))) goes to a constant independent of both n and

We describe this effect, for n large, as "satura-
tion. " As we go from large 5 to 5 = 1, the value of
n at which the curves saturate goes from a rather low
value to much larger values. We shall see later that
this saturation phenomenon, in particular the it in-
dependence, is an important ingredient in extracting
an exact solution. Lack of saturation near 5 =1 is
one reason why our analysis cannot be extended to

e„'= Tin[(eo/'+n)' —1], n ~1 (2.6)

If D = 2 sinhip1(max, min) [Dn($) ] ]/T, the result-
ing e„' give (upper, lower) bounds on the e„(@).
Furthermore, if, at some n = n p, 6„ is chosen to

bound e„(it ) below (above), then the e„',n )no,

also bound the e„($), n )no, below (above). '
These bounding properties of the ~l imply that

this important limit. Finally, we note that the e„(iti)
are not energy dispersion curves, although they are
related to them.

In what follows we require what we term the "Ising
solution" of Eqs. (2.5), which plays the vital role of
putting bounds on the e„(it ). If the driving term of
Eq. (2.5a) is replaced by a @-independent term DT—

2

the equations can be solved analytically. The solu-
tion is

0 & mine, ($) & mine2($) « mine/($) & mine/+i(it ) & (2.7)

B. Low-temperature expansion for
Hp 0and h&1

I

and

g„(it ) =sinh(nd))/ [cosh(nip) —cosset)] . (2.8b)

It is useful, for the sake of conciseness in the fol-
lowing work, to define

Since error estimates are an important feature, it is
useful to define error terms

g„(@)=ln(1+e " ) (2.8a) 0 ( The c/re mina„iie)/r )-—(2.8c)
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where b is a number, not large (say less than 10) in
absolute value, and c ~0. We also need

S(a) = O ( T&e
—ai'r) (2.Sd)

where again a ~ 0 and b is not large. In what fol-
lows, a, b, and c are used, as above, to denote
numbers defined only for the equation of interest.
(b and e, in fact, can have different values within the
same equation. ) Throughout this paper, a, b, and e

are always independent of T.
We now rewrite Eqs. (2.5) in terms of infinite

sums. It is convenient to manipulate Eq. (2.5) in this
way for reasons which become clear later in a discus-
sion of the saturation property of the e„($). Specifi-
cally, we take the exp[e„($)/T] out of the ln terms
on the right-hand side (RHS) of Eq. (2.5) and even-
tually solve the resulting equations treating the non-
linear parts as known functions. The equations
remain exact at this point.

ei(ib) =sinh(4)gi(ib)+ Jl g, ($ —$')rii($')dqh'+ —X&I r},($')d$'
l~2

oo

+ X '

[g/ i(4 -0')—+g+i(4 —0') 2]~—(0')d4' . (2.9)

The last term of Eq. (2.9) is S2, uniformly in Q. Hence,

y' T
e( ib)i= sinh(4)gi($) + „g2(ib —di')7}i($')d$' + —X J r}i($')d$' + s&

lT /~2
(2.10a)

The surviving infinite sum is the term which causes difficulty and which we subseqently must estimate.
Similarly for n ~2

7e„(Q) =sinh(4)g„(ib) + J [g„+,(ib —ib') +g„,($—@') —2]r},($')d$'

T fm
+ X(&+n —

I&
—» I

—Si,.) J~ q((P')d$'+S2,
277 7~]

—1F
(2.10b)

where S, is uniformly good in $ and n The term. s
appearing as the infinite sums in Eqs. (2.10) will

henceforth be denoted the 0„ terms; i.e.,

oo

m 2

(2.11a)

oo

n. = X(&+» —
I &

—ii I' —si,.) gi(@')d@',2' I 1

(2.11b)
n A1

Bounding the e„(@)with Ising solutions, we can
show for fixed n, that the 0„ terms are exponentially
small in T. Therefore, for fixed n, e„(ib)
= sinh(4)g„($) + S(a ), n ~ I, a ) 0. In previous
work, when the external magnetic field Hp was not
zero, 37 the 0„sums converged quite rapidly because
the e„($) contained a term nHO Now, for large n . it

appears that the e„(@)saturate, as discussed above,
and one might naively conclude that the 0„' sums do
not converge. The correct picture, however, is that
one must estimate the 0„sums for small T and all n

(uniformly in n) We find for .T small, but fixed,
that as n ~ the 0„sums do diverge, which implies
that the e„($) do not saturate. In fact, for large n

and small, but fixed, T, e„(di) = 2T ln(n) + correc-
tions. This allows the 0„ terms to exist for fixed n.

O„ /2

e„=T ln[(e +n —no) —I], n ) no (2.12)

where D„=in[1+ exp(e„' /T ) ].
In 0~ we drop the sum from I =2 to np 1 with an

error S2. Since e„($)= e„"+S2, n ~ no, we can ap-

I

Finally, in previous work with H p ~ 0 it was found
that 0& was bounded by 82 and could be neglected.
This is again the result of the nHO term in e„(ib).
For H p

= 0 we can no longer neglect 0 ~, and it is not
immediately clear what is the order in T of 0].
Hence, the main problem we now face is to estimate
0~. The details will be quite complicated since obvi-
ously a careful analysis of error terms is necessary.
The reader interested mainly in our principal results
may wish to skip to Eq. (2.17) towards the end of
this subsection.

We choose an no of order 0 (mine3($)/4T) and
define e„'=sinh4+0„. We define ed such that, at
)7 = np, 6„=6„,and for n ) np the e„are Ising solu-

tions to the e„($) equations. That is, the e„are the
same as the e„' in subsection II A with the 0 term so
chosen that „' = „=e„', the e„are a specific e„'.

Using the Ising upper and lower bounds, we can
show that e„'=e„+52, n ~ no, and e„($)=e„'+Sq, n

~ np. We know the e„exactly:
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proximate the rest of O~ to obtain

e((@)= sinh(C )g(((t )

y' +1K

+, „g (~-~')~((@'»~'

d/T
+2T X ln(1+e ' )+52

I no

The sum can be performed to yield

., (@)=sinh(e)g, (@)

(2.1 3)

To find D„, we take e„' = sinh4+ A„with n = fIO and

analyze the infinite sum 0„ in the same way as we"0
have just treated 0 ~. %e obtain

-O„ /2

e„' =sinh(I)+2npTln(1+e p )+8(a)+5(, (2.15)

c /T
a & TD„ /2. By definition D„=e„'/T+ln(l+e p )."0 "0 "0
Therefore,

I+1l

+
2

g2($ —(t)')g(((t)')d(t)'

—O„ /2

+2T ln(1+e P ) +82 (2.14)

e' =sinh&b+2npTe """'~'/" '+5(a)+8,

a ) —,sinh+. Hence,

(2.16)

y
fa8' —~)(@ )/Te(($) =sinh(4)g(((i))+ — „g,((t) —(t') ln(1+e ' )d$'

+ 2 Te
—sinh(+)/(2r) +. 8 + 82 + 8 0 (e-sinh(4)/(2r) ) + 8(a ) (2.17)

where eP(((t)) =sinh(4)g((Q) and a =sinh4. From
Eq. (2.2)

F(T) = ~ Dn($)g(( t))d((t)

Dn((t() ln(1+e ' )d(t( . (2.18)

neighborhood of HO=0, b, =1, we have

F ( T, a ) —a H() = —
( H p'/4 + T' exp [—(6' —1) ' '/ T ] [

( '

T ~ —(4+Ho—cosq )/T
dqe + 0 ~ ~

2~ ~o

(2.21)

%'e now substitute Eq. (2.17) into Eq. (2.18) to ob-
tain

F ( T) — Te-s(»h(P')/(»)

(2.19)

where a )min[-sinh4, sinh(4)g((sr) ). If we de-
r&

fine q = J~ g((st(')dQ'+ sr, then

F(T) = —Te (a2 ')(/2/('r)

p2%

d e
—(a—co s)/T+s8(a)

2m
(2.20)

where a ) min[(h~ —1)' /2, 6 —ll and 4 & 1. 6 is
fixed as T 0. This is our zero-field result.

C. Extension to sma11 finite field and h & 1

The work just presented can be generalized to
small, but finite, Ho. The generalization is straight-
forward, but even more lengthy, and, hence, we shall
just present results. For 0 ~ H p (0 ( T(), f & 0 and
independent of T, but excluding a small 0 ( TP)

where the ellipses represent correction terms. 0- is
the magnetization per spin. The corrections are such
that one can treat the two terms on the RHS of Eq.
(2.21) as an exact expression for any number of T
derivatives (including zero) and up to and including
two Ho derivatives. The error in the answer will be
exponentially smaller (higher order) in T than the
leading order; i.e., the error is 8(a), a & 0, times the
leading-order term. For Hp & 0(Tt), ( & 0, replace
the first term on the RHS of Eq. (2.21) by —Hp/2.
The correction is exponentially higher order in T than
the integral. This result for Hp) 0(Tt) merges
smoothly onto the Hp ( 0 (T&) result and contains
no interesting structure. Therefore, for the
remainder of the paper we restrict I & 1 and
0» Hp ( 0(Tt), g & 0. (() and j are always fixed as
T 0. Thus, we now have a complete study of the
low-temperature thermodynamics of the ferromagnet-
ic Ising-Heisenberg model with the exception of a
small 0 ( TP) neighborhood of H p

= 0, 5 = 1.
Low-temperature expansions have been done by

Takahashi ' on the Ho = 0 XYZ model. These calcu-
lations are easier in that contributions from only a
finite number of e„((ts) are required. Therefore, as
Takahashi notes, his analysis is not valid when the
XYZ Hamiltonian is specialized to Eq. (2.1) with
HO=0. It is interesting that, if one, nevertheless, ex-
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amines the Takahashi low-temperature thermo-
dynamics in this limit, the answer is the same as our
Eq. (2.20). Therefore, we now have a complete pic-
ture of the Hp= JYZ model at low-temperature, ex-
cept for the neighborhood of 5 = I (Heisenberg limit)
and possibly for the Heisenberg- JY line, 1 & 6 & 0.
However, the field-dependent free energy and sus-
ceptibility equations cannot be obtained from
Takahashi's work since the Hp ~ 0 XYZ model has
not been solved.

D. Simplified approach

In order to illustrate some of the physics of our
result, we present a simple spin-wave type of argu-
ment. The calculation is good for 0» H„& 0(T&),
(&0, with 5&1.

For T = 0 the elementary excitations are given by

E„(P)= nHp+ sinh(I) [ cosh(n d)) —cosP ]/sinh(n d))

(2.22)

where n =1,. 2, 3, . . . , and 0 ~ P ~ 2m. "" The

P's are distributed uniformly between 0 and 2m and,
for a given n, obey a Fermi-like exclusion principle.

,The energies of the first excited states are E)(q)
= Hp+2 —cosq. There are N such states with

q = 2rrn/N, 0» q» 2'. The states we first sum up
are these N states, the —,N(N —I) states with ener-

gies E((q)) +E)(q2), . . . , the N!/[I!N —I)!]states
with energies E((q) ) + E((qq) + + E((q(), etc.
These are all the n =1 excitations with no higher n

excitations. They provide a contribution to F(T, o. )
(Ref. 37) of

7 +2~ —( Hp+h —cosq )/TF(T, (r) =(rHp — dqe P . (2.23)
2m 40

We now sum out the high-n excitations. Intuition
suggests that these excitations could be important for
small Hp since for Hp=0 the E„(P) saturate to a
constant for large n For .large n, E„(P) llHp
+sinhd); i.e., E„(P) is independent of P In fact, .
these energies are just those of a one-dimensional Is-
ing model whose exchange constant J = sinh4. Ac-
cordingly, we add to Eq. (2.23) the Ising free ener-

gy for this J. We obtain

T ~ —(H 0+d —cosq )/TF ( T, o ) = (rH p
— dqe

2m

—T ln [ cosh(Hp/2T) + [ cosh'(Hp/2T) —2e """(~)" 'sinh( si nh(P/2T)]'/' I (2.24)

If we expand Eq. (2.24) for low T, we obtain Eq.
(2.21). Thus we have learned that the two principal
contributions to the low-temperature thermodynamics
are from the n = 1 excitations and the high-n, Ising-
like, excitations.

0»Hp & 0(Tt), $ & 0, with 5 & 1,

Cn= (2n T') )/'(6+Hp I)'e—
+ (Z& —1)e—(a )) /r(H /2+ T2e —(a -» /r )0

E. Discussion of X and C&

-(h+H 0-cosq )/T+ (2' T) '
~ dqe ' +, (2.25)Jp

where the ellipses again represent correction terms.
The corrections are exponentially higher order in T
than the larger of the two terms displayed in Eq.
(2.25). The integral can be expanded to give

x=T'e ' " '[4(H'/4+T'e ' " )''] '

+ (2~T) )/'e ' -+

Similarly, for the specific heat, again for

(2.26)

Equation (2.21) may be differentiated to yield the
specific heat, CII, and the susceptibility, X. The sus-
ceptibility for 0» H p & 0 ( Tt), ( & 0, with 6 & I is
given by

T2 —(a2 —)) /T [4(II2/4+ T2e —(a —1) /T )3/2] —)
0

x [4T(H /4+ 7' e '(a ) /T) / ] )+
0

(2.27)
The ellipses again represent corrections. The correc-
tions to X are exponentially higher order in T than
the first term of X and 0 ( T) higher order than the
second term (order T times the second term). The
corrections to C// are 0( T) higher order than the
larger of the two terms of CH.

Let us discuss X, It is convenient to change vari-
ables from H p to o. so that H p

= e . The dominant
behavior of X varies in different regions of a —b,

space, as shown in Fig. 3(a). For a & ap = —[5—1

—(5' —I)'/'], the second term of expression (2.25)
for )( (the spin-wave term) dominates the first term
(the bound-state term). For a & ab the bound states
dominate X. The bound-state region, however, sub-
divides into two qualitatively different regions. For

a, = —
2

(~ —I ) ', the —H p2 term (n t

denominator can be dropped, to exponential accura-
cy, i.e., the error is exponentially higher order in T,
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5 & 3, the spin-waves dominate, while for P ( /3b,

b, & —,, the bound-states dominate. As in the case of
the susceptibility, the bound-state region subdivides.
For P (P, = —(b2 —1)' 2/2, the Ho terms of C„
[Eq. (2.27)] can be dropped to give

= (g2 —1)e—~~ —'&&&»&(4T2)-' (2.30)

The corrections are 0 (T) higher order. At P =P, we

pass through a crossover region in which the whole
second term of Eq. (2.27) must be used. For
P~ & P & P, we can approximate CH as

C =(6'- —l)e '~ " (TH ) ' (2.31)

l

-I [/3

B-S

I

-7/3

s-w

.-- ~p
C

6 —S

I

—5/3 /e

/ —[/3

——2/3

s-w --«3
——5/3

with corrections O(T) higher order.
Thus, for the ferromagnetic Ising-Heisenberg

model, we have a rather complicated picture in the
neighborhood of zero field. There are several regions
in Ho —5 parameter space which have qualitatively
different low-temperature thermodynamics with
crossover behavior between regions. The types of
excitation that give rise to the low-temperature
behavior change from region to region. Further, we
note with interest that the qualitative picture for the
susceptibility is not the same as for the specific heat.

to obtain

(4T)—le(k —1) /(2T) (2.28)

This gives X in the neighborhood of the Ho=0 peak.
The region in the neighborhood of u = n, is a cross-
over region in Ho, where one cannot simplify the
first term of Eq. (2.25). However, for ab & a & a,
we can again simplify the expression for X to obtain

(2.29)

This expression, again, is exponentially accurate in T.
For CII we proceed in a similar manner by defining

Ho= e~ . Again, different types of behavior dom-
inate in the P —b plane, as sketched in Fig. 3(b).
For 5 (

3
and all P(HO), the first term of Eq. (2.27)

dominates; i.e., the specific heat is completely deter-
mined by the spin-wave states. For b, & —,, however,

we have a spin-wave-dominated region and a bound
state [second term of Eq. (2.27) j dominated region.
Specifically, for p & p~ = LL —1 —(5' —1)' ' and

FIG. 3. (a) Nature of the various regions and correspond-
ing crossover boundaries which determine the low-

temperature behavior of the susceptibility as a function of
field o, (= T lnHO) and anisotropy 55. 8= —1 in this figure,
and 5 & 1 is our region of interest. (b) Corresponding fig-
ure for the low-tempera)ure specific heat. {P= T lnHO, )

III. NUMERICAL STUDIES FOR ZERO FIELD

A. Effective gap: Rings versus chains

In this subsection we shall compare the spectral
properties of finite linear magnetic systems with
periodic (rings) and free-ended (chains) boundary
conditions. In the Ising limit, which is easily accessi-
ble, we shall discuss an interesting feature of the en-
ergy spectrum which differs in the two cases. This
feature is fairly well known (at least in the Ising lim-
it). Our reason for emphasizing it here is that con-
clusions based on it appear to have validity also for
the zero-field (Ho = 0) Ising-Heisenberg problem
(I&l &1).

At the Ising limit the chain levels form a signifi-
cantly different pattern from the rings; i.e., levels ap-
pear at E =0, I J I, 2IJ I, 3 Jl, . . . , (N —1) IJ I, rath-
er than just for F. = 0, 2

IJ, 4IJ I, . . . , as for rings.
The first excited ferromagnetic Ising level for chains
at I J I contains 4(N/2 —1) + 2 = 2N —2 states, which
may be regarded as having split off the ring level at
2IJ I under the influence of a perturbation arising
from the change of boundary conditions. The degen-
eracy of the second excited chain level is then
N (N —, 1) —2(N —1), i.e. , is still O(N'). Since this
dissimilarity persists to the limit N = ~, it might ap-
pear that finite rings and chains predict different lim-
iting behavior for the spectrum; in particular, for the
effective energy gap AE between the ground and ex-
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cited states. To understand why this does not occur,
we look at the exact solution for the partition func-
tion Z„ for finite rings and chains, respectively,

I

(2e a ) [cosh (J/2k sT p)

ZN + sinh~(J/2ks Tp) ]

, (2e s ) [c osh(J/2k sT p)]~ '.

(3.1)

(3.2)

One may see from a series expansion of Eqs. (3.1)
and (3.2) that there is an "accidental" canceling of the
odd powers of exp ( J/k&TP)—in accordance with the
description of the spectrum of rings. The canceling is
due to the effect of the sinh~(J/2ksTp) term which,
however, is completely negligible in the thermo-
dynamic limit N ~. This means that the low-

temperature behavior is not determined just by the
low-lying states but may be governed by all the ener-

gy levels, especially when the level degeneracies vary
as high powers of N. This important point of statisti-
cal mechanics is, of course, ignored in spin-wave
theory, which bases an account of the finite tempera-
ture properties of a system on the lowest-lying excita-
tions.

One must therefore exercise some discretion in in-

terpreting energy gaps in connection with low-

temperature thermodynamic behavior, and we shall
see in the following subsection concerned with per-
turbation studies that the lowest-lying excitations of
the Ising-Heisenberg system do not, in fact, deter-
mine an effective energy gap. This result is in accor-
dance with the analytic results. From the preceding
Ising example we may deduce some useful rules of
thumb. If the degeneracy of the first excited level is
0 (N), then the primary excitation gap is the same

gap that determines the initial behavior of the ther-
mal properties in the limit. On the other hand, if the
levels are 0 (N'), as for the Ising rings, the effective
gap is half the finite N primary gap. [In general, if
the levels are 0(N'), we may presume that the ef-

fective gap equals r ' times the primary gap. ] If the
levels are only 0(l), the apparent primary gap has no
relation to the effective limiting gap; this situation ac-
tually occurs for the Ising-Heisenberg linear fer-
romagnet.

One important point that emerges from the above
considerations is that chains are likely to exhibit the
effective energy gap whereas the rings exhibit the
double gap. Hence, although periodic boundary con-
ditions represent the-standard approach, they also
present a trap to the unwary, since the appropriate
degeneracies necessary to estimate the effective gap,
which may differ from the apparent gap, may be dif-
ficult to find in practice. Open-ended chains are thus
seen to play a valuable independent role. This has
now been observed to be the case in the linear Ising-
Heisenberg anti ferromagnet where the effective ther-
mal gap has been estimated numerically, and conse-
quently demonstrated analytically, " to be half the gap
calculated using periodic boundary conditions.

B. Solution for one reversed spin

E =2J(1 —cos8) (3.3)

The boundary conditions imposed by the end levels
give the following condition on 8:

sinNH= 0, i.e., 8 =rrr/N, r=0, 1, 2, . . . , N —1

(3.4)

In terms of an Ising-type set of basis vectors
l~ ) = I[[, . . . , I]I, . . . , I] ), where the ith spin,
is reversed (i = 1, 2, . . . , N), the relevant sub-
block of the total Hamiltonian matrix for an N spin
system is shown in Fig. 4".

In the Heisenberg limit y=1, the tridiagonal,
Toeplitz-type matrix of Fig. 4 is easily solved in
terms of the eigenvector of Fig. 4(b). The matrix 4(a)
operating on the trial eigenvector 4(b) for the internal
states gives rise to the eigenvalue equation

(o) (b) (c)

JX
-7 2 -y 0

0

-y 2 -7

-V 2 -y

COS 8J'2

COS 38/2

I

I

I o (2&'-)8]I
2

I

cos (N- -)8
2

cos (N--)8I

2

COS(N—I'8' 2

o
(—'"8

I

2

cos ("—'-t)sl

I

cos —8IN-&)
2

cos —8( N- I)
2

(N-I)8"2
(N-S)8SIN—

I
I

i SIN(—l)si-
I

I

-SIN —8(N-s)
2

—S IN —8(N-I )
2

g ~I, 2, ---, N g = I) 2,--,N 4 =I, 2, ---,N

FIG. 4. (a) One overturned-spin matrix for an anisotropic Ising-Heisenberg linear chain with free-end boundary conditions.
(b), (c), and (d) various eigenvectors for matrix (a). (See text. )
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The solution, characterized by the wave vector
q, = 8 = r m/N, thus consists of a band of states
between the energy limits 0 ~ E ~ 4J. Let us com-
pare the chain solution with the corresponding solu-
tion for rings, which is the well-known single-spin-
wave solution. The matrix 4(a) now has simple cyclic
form, and the eigenvalue equation is the same as Eq.
(3.3). However, the corresponding wave vector for
rings is given by

5J

q, =2rrr/N, r =0, 1, 2, . . . , N —1 (3.5)

there are only half as many allowed energies with
twice the energy interval. " In Fig. 5 the single-spin-
wave dispersion curve as a function of wave vector q
is shown as the dashed curve A for the finite system,
N = 8. (Numerical calculations on rings up to N = 12
are now available, but the spectra are too complicated
for simple display. ) The open circles are the ring
solutions and the solid circles, half of which coincide
with the open circles, are the chain solutions.

For y & 1 the solution for rings is modified only
slightly. Equation (3.3) becomes

2J

Q IS

0
I

m/4
I

m/2

!

37r/4

E = 2J (1 —y cosq, )

7J

(3.6)

FIG. 6. Companion to Fig. 5, corresponding to anisotropy
y =0.8. A is the single-spin-wave dispersion branch, C is the
two-spin-wave continuum, and the triangles are bound states
of 4, 3, 2 overturned spins in order of increasing energy.

5J
7J—

3J
5J

2J

~ ~
0O~

m. /4 1r/2 3m/4

FIG. 5. Low-lying dispersion curves for the Heisenberg
ferromagnet of 8 spins. Curve A is the single-spin-wave
branch showing states corresponding to periodic {open cir-
cles) and free-end {filled circles) boundary conditions. The
triangles denote bound states of total spin 0, 1, 2 in order of
increasing energy, The shaded area C is the two-spin-wave
continuum.

0ii
0

I

vr/4 vr/2 3 n./4

FIG. 7. Companion to Fig. 6, showing the distribution of
spin wave and bound states for large anisotropy, y =0.4.
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where the q„are distributed as in Eq. (3.5) and the
band limits are now

y tan(N —1)—8 sin8
y cos0 —1 =

—y cos(N —1)—8 sing.
2

(3.8)

(3.9)

2J(1 —y) ~E ~2J(l+y) . (3.7)
In the case of chains the problem is still solvable

by standard techniques, although the eigenvectors
have a more complex form thanthat shown in Fig.
4(b). In fact, there are two classes of solution corre-
sponding to eigenvectors 4(c) and 4(d). The overall
solution shows a striking change from the Heisenberg
limit solution [and also the periodic (ring) solution
for all y] in that two states (bound states) are now
split off the band. " The remaining (N —2) states
have the band solution of Eq. (3.6), although the 8
distribution is more complicated than for y =1. The
allowed solutions for 0 now divide into two classes, A

and B, corresponding to eigenvectors 4(c) and 4(d),
respectively:

A and B [Eqs. (3.8) and (3.9)] each yield a single
bound state in the limit N ~ with the eigenvalue
E„s=J (1 —y'). Hence, perturbation theory gives
the exact solution for all y in the limit N

Therefore, taking account of the + S' degeneracy, a
total of four bound states split off the single-spin-
wave continuum, as shown in Fig. 8. For 0~y (1
they are the lowest-lying excitations of the Ising-
Heisenberg linear chain.

C. Perturbation studies for two

and more reversed spins

For two and more reversed spins an exact solution
is no longer possible for free-end boundary condi-
tions; thus we shall use perturbation theory. All
Hamiltonian submatrices for two and more over-
turned spins have the simplified form shown in Fig.
9." Second-order perturbation theory for the end
levels of block (u),which form the lowest-lying fer-
romagnetic levels of the problem, gives

E =J(1—y2) (3.10)

Letting 8 i $, it is easy to show that solution classes

In Figs. 6 and 7 the single spin-wave dispersion
curves are again shown as curve A, and again the
open circles are the periodic and the dark circles are
the free-ended chain states. Notice that, as y de-
creases, the chain states are increasingly displaced to-
wards lower q with reference to their y =1 locations.

For the two bound states, arising from the end lev-
els of matrix 4(a)„simple perturbation theory gives the
result

E =J(1 ——y2) (3.11)

Since we must consider states of positive and nega-
tive S', there will be 2(N —3) such special, end-
level, bound states, which are degenerate in second-
order perturbation theory with energy J(1 ——,y').
Numerical studies show that the degeneracy of the
2(N —3) levels is split slightly for finite N and y
near 1. However, it can be shown that the levels be-
come degenerate in the Heisenberg limit as N
[since the energy spread is O(1/N')]. Therefore,
since they are degenerate in the Ising limit and in the

4J

3J

J X
2

block
0 ~

2

-7
-7-7

-7-7

0
-7-7

2J

-7-7

0 '-~-r
-7

-7

0
—7-7

4 0 ":„"„0

0
0

Ising
0.2 0.4 0.8 I.O

Heisenberg

-7-7

0
-7

4 0

4

FIG. 8. Exact one overturned-spin solution for free-end
chains. Four bound states are split off (lie below} the band
because of the free-end perturbation.

FIG. 9. Hamiltonian matrix for free-end chain systems
for general anisotropy and two overturned spins (schematic).
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Heisenberg limit as N ~, it is very plausible that
for N ~ the levels remain degenerate for all y. '4

In Fig. 10 the dashed curve (a) is the N ~ ex-
trapolation of the chain bound-state levels for two
and more overturned spins; also shown are the finite
N curves for N = 4, 6, and 8 from which the extrapo-
lation was made. It may be noted that dashed curve
(d) corresponds to the four degenerate chain bound
states for one overturned spin, discussed in subsec-
tion III B. Although curve (d) lies lower than curve
(a), it contains only four states as opposed to 0 (N)
states, and the states of curve (d) are, therefore,
thermodynamically insignificant in comparison with
those of curve (a); according to the arguments of
subsection III A.

For two and more overturned spins bound states
appear in the ring solutions as well as in the chain
solutions. Ring bound states are illustrated as open
triangles in Figs. 5, 6, and 7. It is notable in Fig. 7

(y =0.4) that the bound states for each value of q
are almost degenerate and the energy spread of the
bound-state band is very small. Hence, in the
N ~ limit we expect O(N') bound states in a very
narrow band. The N ~ bound-state curve for
rings is shown as curve (b) in Fig. 10. Within the ac-
curacy of extrapolation, curve (b) is just twice curve
(a) for chains. However, since there are O(N')
states in curve (b) compared with O(N) for curve
(a), the effective gap for the bound states of curve (b)
is identical with curve (a), in accordance with the ar-
guments of subsection III A. This, of course, simply
implies that chains and rings are equivalent in terms

2J

E J

of limiting, N ~, spectral excitations, as we would
expect.

Having established that the dominant bound-state
excitations are given by curve (a) of Fig. 10 and that
the corresponding effective energy gap is the differ-
ence between curve (a) and the ferromagnetic
ground-state energy (E/J =0 for all y), we must
now consider other types of excitation. In Fig. 10 we
show the lower edge of the single-spin-wave continu-
um as a function of y [curve (c)]. For y & 0.6 the
spin-wave continuum is appreciably higher in energy
than the dominant bound-state curve (a). Therefore,
we expect the dominant spectral excitations to corre-
spond to bound states, and the spectral energy gap to
be given by d E =J (1 ——y2) in second-order pertur-

bation theory. Although this perturbation expression
differs from the exact result, b E =J (1 —y') 't', actu-
al numerical differences are slight in the range
0 ~ y & 0.6." At this point it might also be informa-
tive to compare our bound-state gap extrapolations
[curve (a) of Fig. 10] with the exact results. This is
done in Fig. 11 and the agreement is gratifying. In
Fig. 11 we show also the exact result"' for the antifer-
romagnet energy gap.

Let us now consider the other end of the anisotro-
py range, approaching y=1. The lower edge of the
single-spin-wave continuum [curve (c) in Fig. 10]
crosses the extrapolated bound-state curve (a) in the
vicinity of y =0.6, and for 0.6 & y & 1 the spin-wave
continuum states lie lower than the bound states. It
seems persuasive to argue that the anisotropic energy
gap is therefore dominated by the spin-wave states,
but we must be careful that there are enough such
states. The single-spin-wave band contains 0 (N)
states spread over the whole energy range 2J (1 + y),
i.e., over lLE= 4Jy, in comparison with O(N) states
in the bound-state curve (a) of Fig. 10. In Fig. 5 a
two-spin-wave continuum is shown as the shaded
area C for the Heisenberg limit. In this limit each
state in the continuum (shown as an open square for
N =8) is a multiplet of total spin S =N/2 —2 and

0.5J

p I I I I I

0 O. I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
V

FIG, 10. Low-lying excitations for the Ising-Heisenberg
ferromagnet as a function of anisotropy y. (a) is the extra-
polated bound-state curve for chains. Curves from which
the extrapolation was performed are shown for 1V =4, 6,
and 8. Curve (b) is the extrapolated bound-state curve for
rings. (c) is the lower edge of the single-spin-wave band.
(d) is a curve containing 4 one overturned-spin bound
states, and has negligible weight in the thermodynamic limit.

0
0

FIG. 11. Comparison of exact result and finite W extrapo-
lations for the anisotropic, Ising-Heisenberg, ferromagnetic,
bound-state energy gap. The exact result for the antifer-
romagnetic energy gap is shown for comparison.
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Bound Stotes

Crossover
Heisenberg

zE—0.5
I JI

0
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FIG. 12. Comparison to Fig. 11, sho~ing the crossover of
bound-state-dominated and spin-wave-dominated regions at

&=O.6 (a= —,).5

degeneracy 2(N/2 —2) + 1 = N —3. The continuum
is bounded by the curves 4J(l + cos —,q) (Ref. 56)

and, therefore, has an energy range 4E = 8Jcos—,q.
1

It encloses the single-spin-wave continuum, curve A,
and is evidently codominant with it in terms of spec-
tral excitations. In Fig. 6, for y =0.8, the role of the
two-spin-wave continuum C is not so clear. For
0 ~ y ~ 1 the continuum is bounded by the curves
4J (1 + y cos

2 q ) with an energy spread of
b, E =8yJ cos—,q. The single-spin-wave curve A no

longer lies wholly inside C. In particular, in the
lowest-energy region at small q, the single-spin-wave
curve is lower in energy (by a factor of —). Howev-

er, there are 0 (N') states in continuum C as op-
posed to 0 (N) states in curve A, and, hence, both
classes of spin-wave states remain codominant, even
for q 0. In fact, by the arguments of subsection
III A the C states are always codominant with the sin-
gle-spin-wave A states for all y. In the case of Fig.
7, corresponding to y = 0.4, the single-spin-wave con-
tinuum lies entirely below the two-spin-wave continu-
um. However, in this anisotropy region both are
dominated by the bound states.

We therefore have an explanation of the analytic
result that at y =0.6 the character of the thermal,

ferromagnetic, excitation energy gap changes. For
y & 0.6 the spin-wave states dominate the bound
states, giving an effective energy gap AE =J(1'—y)
in accordance with the analytic result. This effect is
illustrated in Fig. 12, which again includes the anti-
ferromagnetic energy gap for comparison.

To summarize, the various competing classes of
states are shown schematically in Fig. 13 as a func-
tion of y. The lowest-lying curve of all, curve (a),
represents the four one overturned-spin bound
states, and, therefore, this curve is not significant in
the thermodynamic limit. The region B comprises
the bound states of 2, 3, . . . , N/2 overturned spins.
The 0 (N2) degeneracy of the states in this region

6J

5J

4J

Two
spin- wove
continuum

E 5J Single
spin-wove
states

Bound
stotes

0
0
I

I.IG. 13. Overall display of the spectral excitations of the
anisotropic Ising-Heisenberg ferromagnet as a function of
anisotropy in zero field, (See text. )

IV. CONCLUSION

Important analytic results have been obtained for
the linear Ising-Heisenberg model in a parameter
range which has hitherto resisted such calculations.
In particular, an expression has been obtained for the
zero-field thermal excitation energy gap for the
Ising-Heisenberg linear ferromagnet. This expression
is unusual in that it changes its form at an intermedi-
ate value of a variable anisotropy parameter. This
special value does not correspond to any symmetry
change in the Hamiltonian, but is associated with an
important change in the physical significance of the
results. For anisotropy greater than the special value,
the dominant excitations correspond to bound spin
complexes (localized magnons) of 2, 3, . . . , N/2
reversed spins. For anisotropy less than the special
value, the dominant excitations are spin waves.
However, it turns out that this effective excitation
gap applies only to thermal derivatives of the free en-
ergy, e.g, , the specific heat. The susceptibility is

gives rise to an effective bound-state dispersion curve
[curve (b)] lower in energy. This curve would be ob-
tained directly by using free end rather than periodic
boundary conditions. Region A contains 0(N) sin-
gle spin-wave states, which are codominant with the
two-spin-wave states of region C, Although region C
lies higher in energy than region A, the C states are
0 (N') and, therefore, effectively reinforce the states
of region A.
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governed by the magnetic excitation gap, correspond-
ing to the bound spin complexes for the whole anis-
tropy range 0 ~ y ( 1. Thermal and magnetic gaps
coincide for anisotropy less than the special value,
but they differ for anisotropy greater than the special
value.

Numerical studies show that the Ising-Heisenberg
ferromagnetic excitation spectrum is unusually com-
plicated with different classes of states competing for
dominance. A careful examination of finite-N linear
systems, however, supports the analytic results. The
numerical arguments developed should be valuable
for problems where an analytic result is not available.

The ferromagnetic limit, y = 1, is an especially dif-
ficult problem, which at present defies both intuition
and analytic attack. Previous work of %'ortis and oth-
ers ' has demonstrated the existence of low-lying
bound complexes in the linear Heisenberg ferromag-
net, and the validity of simple spin-wave theory is
again in considerable doubt. Finite-chain excitation
spectra show clearly the low-lying bound states of
Bethe' and mortis' and also higher excitations
which are not in the spin-wave class. These excita-
tions may be higher-order excited bound states or a
missed spin wave or bound type. They may be
numerous enough to influence at least some of the
thermodynamic properties. It is interesting to view
this situation in the light of our present knowledge of
the low-lying excitations in the Heisenberg-XY re-
gion. " No bound states occur for either the ferro- or
antiferromagnetic XY limit. Bound states of two and
more reversed spins develop successively as one ap-
proaches the ferromagnetic Heisenberg limit from the
XY direction. The ferromagnetic Heisenberg-X Y sys-
tem is known" to have no gap in the excitation spec-
trum. It is nevertheless tempting to speculate wheth-

er unusual effects may show up in the susceptibility
or specific heat at some intermediate point between
Heisenberg and XY limits when the bound states be-
come sufficiently numerous. In this connection we
recall Takahashi's work on the HO= OLYZ model, 48

previously discussed in subsection II C. For the XYZ
model in zero field, close to the ferromagnetic
Heisenberg-XY limit, a gap occurs in the excitation
spectrum which has similar crossover character to the
ferromagnetic Ising-Heisenberg gap. Takahashi does
not extend his complete analysis to the Heisenberg-
XY line, but the situation is suggestive that unusual
behavior may be observed in this limit and further
investigation would be interesting.

These results should have an important bearing on
the quantum soliton problem in the linear-chain fer-
romagnet. ' Now that the class of experimental fer-
romagnets has been enlarged, these results should be
susceptible to experimental examination.

ACKNOWLEDGMENTS

One of us (J.C.B.) would like to thank John F. Na-
gle for clarifying discussions on the significance of
level degeneracies and to acknowledge the early con-
tributions of Michael E. Fisher. J.C.B. would like to
thank Brookhaven National Laboratory for the hospi-
tality oII' its summer visitor's program, during which
some of this work was carried out. This worg was
supported in part by the U.S. Department of Energy,
Contracts No. %-7405-ENG-36 and No. EY-76-C-02-
0016, and the U.S. National Science Foundation,
Grant No. DMR77-24136. One of us (J.C.B.) would
like to acknowledge the support of the Bunting Insti-
tute, Radcliffe College, Cambridge, Massachusetts.

~J. C. Bonner, J. Appl. Phys. 49, 1299 (1978).
2C. K. Lai, Phys. Rev. A 8, 2567 (1973).
3M. Takahashi, Prog. Theor. Phys. 46, 1388 (1971).
4H. G. Vaidya and C. A. Tracy, Phys. Rev. Lett. 42, 3

(1979); 43, 1540 (1979); J. Math. Phys. 20, 2291 (1979).
5M. Takahashi, Prog. Theor. Phys. 43, 1619 (1970);

52, 103 (1974).
A. Luther and I. Peschel, Phys. Rev. B 12, 3908 (1975).

~D. C. Mattis and E. Lieb, J. Math. Phys. 6, 304 (1965).
H. Gutfreund and M. Schick, Phys. Rev. 168, 418 (1968).

9A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589
(1974).

' S.-T. Chui and P. A. Lee, Phys. Rev. Lett. 35, 315 (1975).
"V. J. Emery, A. Luther, and I. Peschel, Phys. Rev. B 13,

1272 (1976).
'2A. Luther, Phys. Rev. B 15, 403 (1977).
' V. J ~ Emery, in Highly Conducting One-Dimensional Solids,

edited by J. T. Devreese et al. (Plenum, New York; 1979),
Chap. 6.

' B. Sutherland, Phys. Rev, Lett. 35, 185 (1975); 34,

1083 (1975).
'58. Sutherland, Phys. Rev. B 12, 3795 (1975).
' V. J. Emery, Phys. Rev. B 14, 2989 (1976).
' M. Fowler, in Organic Conductors and Semiconductors:

Proceedings of the International Conference, edited by L. Pal
et al. (Springer-Verlag, Berlin, 1977), p. 51,

' M. Fowler, Phys. Rev. B 17, 2989 (1978).
' M. Fowler and M. W. Puga, Phys. Rev. B 18, 421 (1978).

M. Suzuki, Prog. Theor. Phys. 46, 1337 (1971).
' M. Suzuki, Prog, Theor. Phys, 56, 1454 (1976)~

22M. Barma and B. S. Shastry, Phys. Rev. B 18, 3351 (1978).
N. Ishimura and H. Shiba, Prog. Theor. Phys. 57, 1862
(1977).

M. W. Puga, Phys. Rev. Lett. 42, 405 (1979).
~5G. Muller, H. Beck, and J. C. Bonner, Phys. Rev. Lett.

43, 75 (1979).
M. Fowler and M. W. Puga, Phys. Rev. B 19, 5906 (1979).
H. Gutfreund and R. A. Klemm, Phys. Rev. B 14, 1073
(1976).

28V. J. Emery, Phys. Rev. Lett. 37, 107 (1976).



22 EXCITATION SPECTRUM AND LO%-TEMPERATURE. . . 265

H. Bergknoff and H. B. Thacker, Phys. Rev. Lett. 42, 135
(1979).

L. D. Fadeev (unpublished).
3'A. Luther, Phys. Rev. B 14, 2153 (1976).

B. Sutherland, Rocky Mount. J. Math. 8, 413 (1978).
H, A. Bethe, Z. Phys. 71, 205 (1931).

34L. Hulthen, Ark. Mat. Astron. Fys. 26A, 1 (1938).
35C. N. Yang and C. P. Yang, Phys. Rev. 150, 321 (1966);

150, 327 (1966); 151, 258 (1966).
3 M. Gaudin, Phys. Rev. Lett. 26, 1301 (1971).

J. D. Johnson and B. M. McCoy, Phys. Rev. A 6, 1613
(1972)~

J. D, Johnson, Phys. Rev. A 9, 1743 (1974).
J. C. Bonner and M. E. Fisher, Phys. Rev. 135, A640
(1964).

J. C. Bonner, Ph. D. thesis (University of London, 1968
unpublished).

4'J. D. Johnson, B. M. McCoy, and C. K. Lai, Phys. Lett. A

38, 143 (1972};M. Takahashi and M. Suzuki, Phys. Lett.
A 41, 81 (1972).

42At y =1 (isotropic Heisenberg limit) the gap vanishes and
the T =0 singularities are governed by power laws. This
result is not in conflict with smoothness universality be-
cause the symmetry of the Hamiltonian changes at this
special point.

J. des Cloizeaux and M. Gaudin, J. Math. Phys. 7, 1384
(1966). See corrected excitations in Ref. 37.

44J. B. Torrance, Jr. , and M. Tinkham, Phys. Rev. 187, 595
(1969),

45C. P. Landee and R. D. Willett, Phys. Rev. Lett. 43, 463
(1979)~

L. R. Walker, Phys. Rev. 116, 1089 (1959).
47Higher Transcendental Functions, edited by A. Erdelyi et al.

(McGraw-Hill, New York, 1953).
8M. Takahashi, Prog. Theor, Phys. 50, 1519 (1973).

K. Huang, Statistica/ Mechanics (Wiley, New York, 1963).
50Energies are defined relative to the (twofold degenerate,

all spins aligned) ferromagnetic Ising-Heisenberg ground
state. With the Hamiltonian defined as in Eq. (1.1), the
ground state is zero for all y.

'The situation is, of course, analogous to the case of vibrat-

ing linear systems with fixed and periodic boundary condi-
tions.

520ne bound state always occurs for any finite N and y. The
occurrence of the second bound state is determined by N

and y, and is favored by large N and y near 1. Two
bound states appear in the limit N ~ for all y ( 1.

The actual matrices are rather more complicated than is

suggested by Fig. 9, but give identical results as far as per-
turbations of the two lowest-lying end levels are con-
cerned.

540ur perturbation expression, Eq. (3.11), is equivalent to
that obtained by J. B. Torrance, Jr. , and M. Tinkham,
Phys. Rev. 187, 587 {1969}by an Ising basis function
method. See also Ref, 40.
Preliminary results have been presented in two talks, J. D.
Johnson and J. C. Bonner, J. Appl. Phys. 49, 1334
(197S); J. C. Bonner, H. W. J. Blote, and J. D. Johnson,
J. Phys, (Paris) 39, C6-710 {1978). However, in these
talks the exact result b, E =J (1 —y ) 'l was not present,

1
but instead the small-y expansion b, E = J(1——y ) was

given. The perturbation expansion is actually a very good
approximation to the exact result over the anisotropy
range of interest.
See discussion in Ref. 39.

57M, Wortis, Phys. Rev, 132, 85 (1963).
J. D. Johnson, S. Krinsky, and B. M. McCoy, Phys. Rev,
A 8 2526 (1973)

59P. P. Kulish and E. K. Sklyanin, Phys. Lett. A 70, 461
(1979). .


