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In this paper, the mean-field transition temperature of the Peierls transition is obtained for a

quasi-one-dimensional binary substitutional alloy A„B& „as a function of the rel itive concentra-

tion x. The Peierls state is assumed to result from a soft-mode structural instability driven by

the one-dimensional electronic system coupled to the intrarnolecular vibrational mode, We con-

sider only diagonal disorder arising from fluctuations in the intrasite electron potential and

electron-intramolecular vibrational-mode interaction. Its effect on the Peierls phase is ev &luated

using the coherent potential approximation for single dimers. The use of suitable approxima-

tions resulted in an analytic expression for the transition temperature. The transition ternpera-

ture of a half-filled conduction-band system diluted with a substitutional impurity of a different

valency is also studied.

I. INTRODUCTION

Considerable effort has been devoted to detailed
examinations of the physical properties of pure
quasi-one-dimensional systt'. ms' such as TTF-
TCNQ (tetrathiofulvalene-tetracyanoquinodimethane)
and KCP [K2Pt(CN)4Br030'3H201. The existence of a
charge-density-wave ground state following a Peierls
instability has been established experimentally in ma-

terials of low dimension' by a considerable number
of experiments, e.g. , experimental studies of the dc'
and microwave conductivity, optical, ' electronic„'
magnetic, ' and elastic properties of such systems. In
this paper, we investigate the effect of substitutional
disorder on the mean-field Peierls transition tempera-
ture.

Adopting the mean-field approximation, the Peierls
instability is viewed as a soft-mode structural transi-
tion resulting from a condensation of 2kF phonons
driven by the one-dimensional electronic system,
where k& is the Fermi momentum. The lattice phase
transition, regarded as a condensation of electron-
hole pairs with momenta kF and —kF, is then
shown'0 to occur at T, where the electron spectrum
acquires a gap through a second-order phase transi-
tion analogous to the BCS phase transition. Going
beyond the mean-field approximation, the one-dimen-
sional (1D) fluctuations shift the phase transition to
T =0 K in the absence of interchain interaction. Lee
et af. ,

" allowing for fluctuations in the lattice dynam-
ics, evaluated their influence, within the framework

of the Ginzburg-Landau static approximation, on the
Peierls transition. They showed, that strictly speak-
ing, there should be no long-range order for the
purely one-dimensional system, but that for
T & —T, , the correlation length becomes very large
so that we can assume that a Peierls superlattice ap-
pears in the system with the resulting distortion giv-
ing rise to diffuse x-ray scattering. " The above dis-
cussion of the Peierls transition, ignored the interac-
tion between displacements of atoms on neighboring
chains. This interaction is due to the Coulomb forces
between electrons and to the electrons transitions
between the chains as a result of the overlap of the
electrons wave functions. Allowance of these in-

teractions permits the order parameter of the Peierls
transition to become three dimensional. tq is defined
to be the resonance integral between neighboring
chains (ri (( ks T, for typical quasi-one-dimensional
crystals) and t is the equivalent quantity for intra-
chain nearest neighbors. Let (((—t/TP ) be the
characteristic correlation length of the Peierls state
along a chain expressed in intrachain lattice spacing.
Treating the above interactions" in the static
Ginzburg-Landau approximation, two different re-
gimes for the quasi-one-dimensional system are dis-
cussed. First for gtq» TP, the total interaction
between the chains is much larger than the mean-
field temperature and the fluctuations are important
only in a very narrow temperature range near T, .
The mean-field theory results are applicable almost
everywhere giving rise to a three-dimensionally or-

2495 O1980 The American Physical Society



2496 C. TANNOUS, A. CAILLE, AND M. J. ZUCKERMANN 22

dered Peierls state. Second, for (tq & To, the fluc-
tuations are important even far below T, and the
physical properties of the quasi-one-dimensional sys-
tem follow from the fluctuating regime studied by
Lee et al. " for the purely one-dimensional system.
Our study of the mean-field Peierls transition tem-
perature is justified for both of the above regimes
where, however, in the second case (gtq & To), To is

only a temperature scale below which the electrons
and the 2kF phonons are strongly coupled.

Attempts have been made to prepare chemical iso-
morphs of TTF-TCNQ'4 and KCP'4 "with a view to
gain better understanding of the important physical
mechanisms taking place in the pure materials from
the effect of alloying and controlled disorder on the
physical properties and phase transition parameters
(To) of such materials. For example, Schultz and
Craven' have made an experimental study of the
series (TSeF)„(TTF)t „TCNQ. These alloys are
isostructural to TTF-TCNQ with the TTF molecules
which contain sulfur, replaced by TSeF molecules.
They examined the behavior of the lattice parame-
ters, the dc conductivity, the thermoelectric power,
the spin susceptibility, the EPR linewidth, g shift and
the diffuse x-ray scattering for these materials as a
function of relative concentration. Chiang et al. " in-

vestigated the effect of controlled disorder on the
electrical conductivity of TTF-TCNQ by irradiating
the sample with a deuteron beam. They found that
the temperature of the conductivity maximum in-

creases with defect concentration, whereas the associ-
ated disorder shifts the transition temperatures T~

and T2 downward with initial slopes dT, /dc = 150
K/(percent defects) and dT2/dc = 200 K/(percent de-
fects). T~ =52.3 K and T2=38 K in pure samples.
Moreover it is now widely accepted that, in KCP,
only 50% of the sites available to K and 60% avail-
able to Br are occupied. " The position of both ions
are random according to x-ray' structure data.
Hence, the electrons moving along the Pt chains ex-
perience a random potential due to the random distri-
bution of the Br and K ions. Further the random
orientation of the water molecules, ' which corre-
spond to randomly oriented dipoles, has an important
effect" on the charge-density-wave state along the Pt
chains.

The effects of disorder and impurities on the
Peierls transition have been examined by many au-
thors having in mind the widely accepted hypothesis
that the Peierls phase transition could be suppressed
by impurities and hence the appearance of supercon-
ductivity being favored. The basis for the hypothesis
was the result that nonmagnetic impurities have no
appreciable effect on the superconducting transition
in three-dimensional conductors. ' However it was
soon realized" that impurities in quasi-one-
dimensional conductors suppress not only the metal-
insulator transition but also the superconducting tran-

sition. Schuster' and Ono" showed that, within the
Born approximation, dilute nonmagnetic impurities
influence the transition temperature and the energy
gap' of the Peierls phase in the same way that mag-
netic impurities' modify the corresponding quantities
in a BCS superconductor. Sham and Patton, "using
a functional integral formalism, showed that a ran-
dom distribution of impurities destroys the long-
range order of the charge-density-wave state. Their
calculation is based on a mapping of the chain onto a
1D spin system in which the action of the impurities
is simulated by a random magnetic field. Bulaevskii
and Sadovskii' considered the effect of disorder on
the Peierls transition by using disorder models which
allow an exact determination of the density of states.
They considered the Lloyd and fragment models and
obtained an expression for the transition temperature
in the presence of disorder. The result obtained with
the Lloyd model demonstrates quite clearly the analo-

gy between the influence of the lattice disorder on
the Peierls transition and the influence of magnetic
impurities on the superconducting transition. Sen
and Varma' calculated the reduction in the transition
temperature due to the presence of impurities by
working from the high-temperature phase. They ob-
tained an expression for the ensemble averaged elec-
tronic polarizability at the nesting wave vector in the
framework of the coherent potential approximation.
This is equivalent to a coherent-potential-
approximation (CPA) average of a product of two
single-particle Green's functions. "

In this paper, we investigate the effect of disorder
on the mean-field Peierls transition temperature from
a different point of view. ' The electrons are as-
sumed to belong to a single half-filled tight-binding
conduction band in a one-dimensional conductor.
Furthermore they do not interact with each other but
are coupled to the host lattice via the intramolecular
vibrational mode of the molecules occupying the lat-
tice sites. For tight-binding organic metals with a
narrow bandwidth, this source of modulation of the
electronic energies, where the various molecular
bond lengths change with the addition of an extra
electron, is more important than the interaction with
intermolecular lattice phonons. For the pure system,
it can then be shown' that an energy gap opens up at
the Peierls transition temperature T, and that the lat-
tice exhibits a corresponding distortion with a wave
number Q =2kt. The magnitude of the distortion
increases as T decreases below T, and for the half-
filled band, the distortion is commensurate with the
now dimerized lattice. ' Even though Peierls transi-
tion existed in a non-half-filled conduction band
and, that it may be described by a bond scheme, "we
will be concerned in this paper only with a half-filled
band and the site description of the Peierls transition.
Hence, we used a microscopic theory based on a
representation which takes into account the symmetry
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of the low-temperature dimerized state of the chain.
Next the scattering due to impurities is treated in this
representation by using mean-field theory and the
CPA. We will call the resultant approximation the
single-dimer coherent-potential approximation
(SDCPA). This approximation is different from the
cluster" CPA and gives new results which compare
well with previous theories. The Hamiltonian of the
system and the formalism of the SDCPA are
described in Sec. II. The expression for the mean-
field transition temperature T, of the Peierls transi-
tion for an impure 1D chain is obtained and analyzed
in Sec. III ~ Numerical results are presented in Sec.
IV, which contains a concluding discussion.

II. HAMILTONIAN AND FORMALISM

The Frohlich Hamiltonian for the coupled electron
intramolecular vibration-mode system in a one-
dimensional conductor with a single conduction band
may be written as follows:

X=ge; c c; +X/;, c CJ +dX JId(b, 'b, + —,')
Ja

+ X gJcJ cJ (bJ~ + bJ )

c; and c; are electron creation and annihilation
operators and b; and b; are intramolecular
vibrational-mode creation and annihilation operators

for the ith site, o- is the electron spin and n is a
phonon branch, e; is the local electron pseudopo-
tential of the ith site and t;, = t (R; —R, ) is the reso-
nance integral between sites i and j which is assumed
to be translationally invariant for simplicity.

In this calculation, we treat the effect of the spa-
tially fluctuating intramolecular electron potentials in-

troduced by alloying with isostructural substitutional
impurities. However, it is to be realized that substi-
tutional alloying could also introduce important struc-
tural changes which will be the source of randomly
fluctuating intrachain resonance integrals and inter-
chain interaction potentials. Even though the latter
may turn out to be important' in certain cases, they
are not treated in the present study. cuJ represents
the phonon frequency of the nth branch and g; is the
electron intramolecular vibrational-mode coupling
constant at the ith site. For an impure one-

. dimensional conductor, e;, ~J „and g; are site
dependent and therefore not translationally invariant.
The Hamiltonian described in Eq. (1) was used by
Rice et al. ' in a study of the optical properties of K-

TCNQ.
Next the chain is divided into a set of nearest-

neighbor pairs of atoms in anticipation of the dimeri-
zation state. This requires a revised notation for all

the operators and variables of the Hamiltonian of Eq.
(1). i will now become a dimer index and therefore
the subscripts (/, 1; i, 2) will refer to the atoms 1 and
2 of the ith dimer. The new Hamiltonian in the
mean-field approximation can now be written

$6/ IC/ IC/ I+ X'f/ 2C/ 2C/ 2+ Q'/0/ I(5/~I +
2

) + QQI/2(k/ 2+
2

)

t
$g/, ~ 'II i,/l i, I+2 +gi 2~ 2C/ /2ci 2+ X/(Ci ICi2+Ci 2ci+I, I+C/, 2C/, I i+I, IC/2) (2)

5; ~
and 5; ~ are the distortions of atoms 1 and 2 in

the ith dimer and must be calculated self-

consistently. They are given as follows:

b'i, I (gi, I/Id l, I ) ( Ci, I ci, I ) d

~/2( gi. 2/Idi, 2), (Ci2ci2) d, ,

(4)

where ( )„ is a thermodynamic average over an en-

semble in the deformed state described by3.'~ of Eq.
(2).

The dynamics of the system for fixed values of e;,
/0;, and 5; (a = 1, 2) is now described in terms of a

configuration dependent matrix propagator which can

be written as follows in the dimer representation:

9;,"I(z) 9;,2(z )
G/J (z) =

g 2I ( ) g 22(

where

Su (z) = ((c;,CJp)),

Here ((AB)), is th, e Fourier transform in frequency
space z of a double-time temperature Green's func-
tion (see Zubarev"),

The equation of motion for the propagator in Eq.
(4) may be obtained in the standard manner from the
Hamiltonian X I of Eq. (2). We refer the reader to
Ref. 37 for details of the method. The resultant
equation of motion for the t2,JS may then be written
in matrix form as follows:

A(z) E
C( )

G(z) =1
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with

G (z) = [G;„(z) ]

A (z) = [ jk( )]= [(z ek, 1+ gk, 1~k, 1)haik]

c (z) =. [cy, (z)1= [(z —ek q
—2gk 2&k 2) 8;k], (5)

E = [F,k] = [—r (gk; +8k;, ) 1

equation for (G (z ) ),,„ is written as follows:

2 (z) E
(G(z)),, „=1

with

A (z) = [A k(z) ] = [[z —e, (z) +2gfk/(z)]B/kl

c (z) = [ c,„(z)l = ilz —.,(z) —2g,s, (z)]g„l
(6)

D = [D,.kl = [—r (gk; +8k;~, )]

The next step is to apply the coherent-potential ap-
proximation (CPA) to the equations of motion of Eq.
(5). The single-dimer coherent-potential approxima-
tion (SDCPA), derived in the framework of the
multiple-scattering theory, corresponds to the deter-
mination of a translationally invariant effective medi-
um such that the average scattering from a single di-

mer is equal to zero. CPA is a mean-field theory
where the effective medium is determined self-
consistently and we argue that treating the effect of
impurities in the CPA approximation is consistent
with the mean-field treatment of the Peierls phase
transition. %e follow the method of Weinkauf and
Zittarz" as applied to the properties of superconduct-
ing alloys. The results of their theory have been con-
firmed experimentally and have been extended by
Dubovskii in order to take into account off-diagonal
disorder. In particular, Dubovskii was able to make
an excellent fit to the data for the composition
dependence of the superconducting transition tem-
perature of the V-Ta system using his extended CPA
theory. The use of the CPA requ'res the definition
of a propagator (G (z) ),. „, which is the average of
G (z) over the ensemble of atomic configurations of
the impure 1D chain. (G(z))„defines an effective
translationally invariant medium and the matrix

A(z) —A (z)
W= (G),. „' —G

0

c (, ) -c(.)
We note that W in Eq. (8) is diagonal in the dimer

representation but not in the site representation. "
The CPA approximation is given by the requirement
that the configurational average of the diagonal ele-
ment T,, which describes the excess multiple scatter-

ing of the electrons at a single-dimer site i is zero;
i.e, ,

(9)

Use of Eqs. (5) to (9) results in the following self-
consistent equations:

Here e~(z) and ez(z) are self-energies corresponding
to e; ~

and k; z, A~(z) and 52(z) are self-consistent

gap functions corresponding to the distortions 5; [

and 6; 2, and g [ and g2 are the effective electron in-

tramolecular vibration-mode coupling constants. The
matrices F. and D of Eq. (5) remain unchanged since
only diagonal disorder is taken into account in Eqs.
(5) and (6).

Use of Eqs. (5) and (6) enables us to write down

the following expression for the t matrix due to ex-
cess scattering of the electrons over the average con-
tained in (G (z) ) „. „:

T= W(1 —(G),. „W) ', T=[TJ]

where

((e;, —e, (z) +2[g,h, (z) —g;,5;, ] }/d, (z)),. „=0

( (; z
—g(z) —2[gzhz(z) —g; 2A; ~] }/d (z) ),,= 0

([~l I E, ( )+22(g&5&(Z) gl &5; l)] [el 2 k2(z) 2(gp52(z) g; pA; 2)]/d (z)),„=0

(10a)

(10b)

(10c)

d;(z) is written as follows:

d;(z) =1 —F2(z) [C(z) —C 1;; —F~(z) [A (z) —A ];;+[F&(z)F2(z) —Z'(z) ] [A (z) —A ];;[C(z)—C];; . (11)

F[, F2, and Z are given by

F~(z) = [z kz(z) 2g2hz(z)]4(z), F2(z) = [z —e~(z)+2g~h~(z)]4(z)

z(.) =—' X
r (1+e '"")

[z —k, (z) +2g, h, (z)][z —kz(z) —2g25, (z)] —k (k)

4(z) = —$l 1

[z —k~(z)+2g~h~(z)][z e2(z) 2g26, (z)] —e'(k)

(12)
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g ll(z )e~n
Pii, l/3 z

g 2 yg22( )
PPi 2/3 g

n

(13)

z„=(2n+1)i2r/p, n C 8, 5=0+

where N is the number of dimers. The sum over
crystal momentum k is taken over the first Brillouin
zone of the effective dimerized crystal whose lattice
parameter is 2a. e(k) is the kinetic energy of an
electron in a one-dimensional tight-binding band' for
a crystal with lattice parameter a, i.e., e(k)
=2r coska. Equations (10) to (12) are the basic
equations of the SDCPA, from which the functions
e (z) and d (z) (pi= I, 2) are calculable, in terms of
the local distortions 5; ~ and 5; 2. The equations for
0, , and 5; 2 in terms of t2p~(z) are given by

lowing useful expression:

[gl2), l(z) +g252(z) ]@(z)

where @(z)= (1/d, (z)).„.
The numerical analysis of the SDCPA equations is

a formidable task. However the formalism may be
simplified without loss of generality by assuming that
there is no distinction between sublattices in the ef-
fective medium, i.e., we take

+i, l ~;2 gl g2 g &l( ) =&2( ) =&(Z)

(I 5)
Moreover we assume: el(z) = e2(z) = e(z) for simpli-

city. The SDCPA is used in the next section to ob-
tain an expression for the Peierls transition tempera-
ture of an impure 1D conductor.

where i8' = I/ka T, T is the absolute temperature in K,
and ks is Boltzmann's constant. Q;; (z„) is the ana-
lytic continuation of Q;; (z) onto the imaginary z axis
at the point z = z„(the thermodynamic Green's func-
tion in the Matsubara representation). Equations
(10) to (13) form a set of self-consistent equations.
The addition of Eqs. (10a) and (10b) and the subse-
quent substitution of Eq. (13) for 5; gives the fol-

III. PEIERLS TRANSITION TEMPERATURE

The average distortions 5; ] and b„2 and the related
gap function A(z) are small for temperatures below,
but close to the Peierls transition temperature. In
consequence Eq, (14) will be linearized with respect
to 6; (n = I, 2) and A(z ). The resultant equation
for A(z) is given by

2 2

&(z g(z) = ", X, [x'(z„)[z„e(z„)—1' —Z'(z„) —x(z„) }a(z„).. . (16a)

with

x(z) = —g pp(e)de0

Ã k [z —e(z)] —e (k) " [z —e(z)] —e
(16b)

and where 5; is given by

g l 2Z'(z„) —Fi'(z„) —F2 (z„)
Pii. lP

d;P(z) is the linearized function d;(z) with respect to the gaps and is given by

d; (z) = I —2[z —e(z) ][e,—e(z) ]X(z) + (X (z) [z —e(z) ] —Z (z) }[a, —e(z) ]

(16c)

(16d)

Further pp(e) is the density of states of the conduc-
tion band for the pure conductor.

Next we introduce the function FP(z) where

FP(z) = [z —e(z)]X(z)

Equation (18) shows that Fp(z) is the Hilbert
transform ' of the electronic density of states pp(6).

We now require an approximate functional form
for pp(e) in order to proceed. It is convenient to
choose a Lorentzian behavior for p0(e), i,e.,

From a symmetric density of states pp(6) = pp( —~),
Fp(z) may be written as follows: l D

pp(~) =-
(I + D2&2)

(19)

pp(e)deF' z)= i

z —e(z) —e
(18)

where D =2ril/(0) is the density of states per spin at
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the Fermi level. The Lorentzian is useful in the
sense that it enables us to proceed further analytically
besides it does not alter drastically the nature of the
Peierls transition. This is due to the fact that all the
states contribute in providing us with the value of the
transition temperature. Unfortunately, the Lorentzi-
an density of states approximation breaks down in
the case we are interested in calculating physical
quantities to which we assign a fine mesh of states
around the Fermi energy for instance or in the case
where the density of states profile is crucial for the
determination of a physical property. Use of Eqs.

11(z ) = Sgn [ Im [z —e(z ) ] ] (20)

Let eFp(= 2t) and T, be the half-width of the conduc-
tion band of the pure chain and the Peierls transition
temperature, respectively. Then substitution of F (z)
as given in Eq. (20) into the gap equation (16) in
conjunction with the approximation e& &) k&T, gives
the following equation for b, (z):

(18) and (19) gives the following expression for Fp(z):

F'(z ) = I/[z —e(z ) +i q (z )/D ]

where

(I +8;)Dp1; 1Pd; (z) „[z„+iq(z„)/D —e;] [z„—e(z„) ]

We next make the standard approximation4'

~( )
—21g, ', ~ g(z„)a(z„)

( I + 8; ) D cu; 1pd (z)
'" „[z„+iq (z„)/D —e;]'[z„—e(z„)]

Use of the relationship $(z) = I then gives

—2ig, ', q (z„)[F"(z„)]'A(z„)
(I+8, )Dp), ,Pd; (z) ' „z„—e(z„)

The symmetry relationships for the self-energy e(z) and the gap function h(z) are

e(z) =e'(z"), A(z) =5'(z')

(21)

(22)

(23)

(24)

Then from Eqs. (23) and (24) the linearized equation for the gap function becomes

A(z) = 4g;,
' '~ 11(z,)[F'(z„)]'

( I + 8, )D p), 1PdP(z )
'«™„p z„—e (z„) (25)

Since A(z) is a complex function of z, Eq. (25) is
equivalent to two equations for Red(z) and Imik(z),
respectively. Since both equations are linear in these
functions, the resulting equation for the Peierls tran-
sition temperature T, is a 2 x 2 determinant. Howev-
er Eq. (25) may be approximated directly without the
necessity of analyzing the determinant. In the limit
er )) ks T„d, (z ), F'(z), and e(z ) may be replaced
by their values at z =i 0 in Eq. (25) and 8; may be
neglected as shown in Appendix A. Then the gap
equation becomes

I = Re([4g;,'1Fz/D p1;, 1p,d; (i 0)]),„x,(26)
~~0 T~+ V

where F =ImF (1'0), v=1m&(i0), and
1„=(2n + 1)1rp, ; p, = I/ka T, . ThiS iS equiValent tO

expanding the right-hand side of the gap equation to
first order in Db/a where

(27)

The ratio Db/a is in general small since the sign of e,
alternates due to the conditions imposed on the Fer-
mi level (see below).

The first step is to show that Eq. (26) reduces to
the results of Rice and Strassler' in the limit of a
pure quasi-one-dimensional conductor with a single
half-filled conduction band. In this limit dp(i0) = I,
v=0, F'=D', and b =0. Then Eq. (26) reduces to
the following equation:

4goD ~ I
cop „p (2)1 + 1)7f

(28)

where go and coo are the coupling constant of the
electron-intramolecular vibration-mode interaction
ahd the intramolecular vibration-mode frequency,
respectively, of the pure conductor. Since the sum
on the right-hand side of Eq. (28) diverges, a cutoff
of the BCS type must be introduced. We take this to
be 2eF so that the sum over n in Eq. (28) is restricted
to values of v„such that v„~ 2~I.-. Use of this cutoff
in conjunction with Eq. (28) yields the result of Rice
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/3 &F
0 0

ln
7r

1

Pc&F=v In2. 7T

vP.—
Q

—+
2 2'

and Strassler' for the Peierls transition temperature
T, of the pure conductor with exactly the same nu-
merical, coefficient, i.e.,

ks T, = (4e'eF/~) exp[ (t)o/2goN (0)], (29)

where c(=0.577) is Euler's constant.
The equation for the Peierls transition temperature

of an impure quasi-one-dimensional conductor
A„B, „ is obtained using the cutoff 2eF in Eq. (26),
eF being the half-bandwidth of the conduction band
of the alloy, The resultant equation for T, is

to be unity. Moreover, they considered a site in-
dependent order parameter 6 in the limit of weak
disorder. This kind of treatment leads to an underes-
timation" of the mean-field alloy transition tempera-
ture with respect to ours where we take into account
the site dependence of the order parameter 5;,

The final step is to show how the dependence of
the critical temperature T, may be obtained as a func-
tion of concentration x of A atoms in an A„B[ „al-
loy. Let the number of valence electrons per A and
8 atoms be (I +n„) and I, respectively, and let the
Fermi level of the alloy be fixed at zero energy. The
equation which fixes the chemical potential at zero
energy is

(30)
fo

( I +xn„)/2 = J do) p(cu) (34)

where $(x) is the logarithmic derivative~3 of the
gamma function and v and v are quantities, respec-
tively, given by

p(cv) = —(I/a ) ImF (o&+ i0) is the density of elec-
tron states in the alloy and is given in terms of the
Lorentzian distribution by

g '/g ' ( I —D'~')
V=

~ /~o(I +D2a2)2

De;2

D e +I ~D e'+I

(31)
p((») = 1 X 1 —x

rrD (r» —e„)'+ I/D' (cu —es)'+ I /D'

(35)

g;, r»;, and e; (i =A, B) are the electron intramolecular
vibration-mode coupling constant, the phonon fre-
quency, and the electron pseudopotential, respective-
ly, for the pure A or B crystals, Po = I/ks To is the in-

verse transition temperature of the pure 8 material
(x =0). Clearly, the quantity v which contains the
lattice alloy parameters reduces in the dilute limit
(x &( I ) to

v=I+0(x) (32)

whereas v which corresponds to the inverse lifetime
of the electrons that are scattered by the site static
fluctuations of the intramolecular potential goes in

the dilute (x (& 1) and weak scattering limits
(Dl~„—e, l « I) to

v = xmN (0) (e„—es) (33)

Equation (33) for v is identical to that obtained by
Abrikosov and Gorkov' for the impurity scattering
of the electrons treated in the Born approximation for
a site g-function potential strength (e„—ea) and a

density of states at the Fermi surface equal to N (0).
In the above limit [see Eqs. (32) and (33)], Eq. (30)
reduces to the result obtained by Bulaevskii and Sa-
dovskii and Schuster where it was shown that
nonmagnetic impurities influence the transition tem-
perature of the Peierls phase transition in the same
way as magnetic impurities change the critical tem-
perature of a superconductor (see Appendix B for an
analytical comparison). Note that the above two
references did not treat the changes in the lattice
upon alloying such that the quantity v was then taken

Z; = 2N (0)g /o); (i = A, B ) (37)

and the related half-bandwidths eF; are known. The
parameters and the half-bandwidths eF; of the alloy
are related as follows in the simplest approximation:

aF xeFg +(I x)tFs (38)

In the next section T, (x) will be calculated for fixed
values of 5=D ~es —eq ~. We note that the quantity
D (e& + es) must be determined using Eq. (34)
which fixes the chemical potential at zero energy,

IV, RESULTS AND DISCUSSIONS

The behavior of the alloy critical temperature T, as
a function of x at fixed 5 is shown in Fig. 1. In the
isoelectronic case, i.e., n& =0, one sees quite clearly
that for small 8, i.e. , small site energies difference,
T, (x) changes linearly with x. As we increase 5 the
curves T, (x) start to bend downwards and for large
g, T, (x) even reaches zero at critical concentrations.
Moreover one notes that a symmetry in the behavior
of T, (x) as x is close to 0 or 1 since for these limits
we have nearly the pure B or A materials. However,

Equations (34) and (35) then lead to the following
relationship between x, 6g g, and n„:

x =tan 'es/(tan 'as —tan 'e„—mn„/2) . (36)

Equations (30) and (36) enable us to calculate T, as
a function of x provided that the normalized coupling
constants A. ; given by
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FIG. 1. Normalized transition temperature Dk&T, as a

function of the concentration x of 3 species for fixed values
«& = D

l ea eg l in the isoeiectronic case; i.e. , n„=0. The
normalized coupling constants are A.„=0.4 and A.q =0.33 for
the pure A and 8 materials. The normalized half-band-
widths are Del;& =0.9, and D~I; & =1.0. The curves (a),
(b), (c), (d), (e), and (f) correspond to values of 5 equal,
respectively, to 0.1, 0.2, 0.3, 0.4, 0.5, and 0.7.

FIG. 3. These are curves of the transition temperature vs
x at fixed 5(= 0.3) for different values of nz. The parame-
ters of the pure material are the same as in Figs. 1 and 2 .
Curves (a), (b), (d), (e), (f), and (g) are for»„equal,
respectively, to 0.0, 0.1, 0,2, 0.3, 0.4, and 0.5. The curve {c)
corresponding to»„=0.15 is the borderline separating the
curves belonging to a definite sign of concavity. .

in the case where the valences are not equal, i.e.,
n& W 0 the situation is quite different. We considered
three cases of interest (see Figs. 2, 3, and 4). Firstly,
for small 5, Fig. 2 shows that as we increase n&, the
quasilinear behavior of T, (x) obtained for n„=O, is

strongly altered. The resulting T, (x) curves are

» eTc

bending progressively downwards as we increase f1g.
Nevertheless one should keep in mind that our
results for T, (x) are considered to be valid for re-
gions where x is near zero since at large values of x
(x = 1), one approaches the pure 3 material having
a valence of (1+n„) where a commensurate-
incommensurate phase transition occurs for increas-
ing values of n&. This possibility, which is left out of
our formalism, limits the validity of our calculation
of the reduced critical temperature T, (x) to small
values of x, the maximum value of x decreasing with
increasing value of n&.

Qs

0 kBTc

O. IOO 0.150

Qs

0,050 0.100

0.5 I.O X

0.050

FIG. 2, Behavior of the normalized transition ternpera-
ture Dk& T, vs x for different values of »z. The pure B ma-

terial has valence 1 whereas 3 has valence (1+»„). The
curves are plotted for the same value of 5 which is 0.1. Be-
sides A.& =0.4, A.z =0.33, DeF „=0.9, and D~F 8 =1.0 as in

Fig. 1. The curves (a), (b), (c), (d), (e), (f), and (g) are
calculated for»„equal, respectively, to 0.0, 0.1, 0.2, 0.3,
0.4, 0.5, and 0.6.

0.5 I.O X

FIG. 4. Curves Dk&T, (x) at fixed 5(=0.5) for different
values of »z. The parameters used are the same as in Figs.
1 —3. Curves (a), (b), {c), (d), and {e) are for»z equal to
0.0, 0.05, 0.1, 0.2, and 0.3, respectively.
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Leung and Ono" studied separately the Peierls
transition in a non-half-filled tight-binding band and
have obtained expressions for the transition tempera-
ture reduction with the filling. In Fig. 5 we plotted
the transition temperature obtained for the pure A

material as a function of n&. This was done by taking
the limit x 1 of the transition temperature of the
alloy A„B~ „. For comparison we show in the same
figure the trend of the transition temperature as cal-
culated for the same material in the framework of
Leung ' formalism. From this one concludes the
SDCPA overestimates the transition temperature
from the normal to the commensurate phase. Furth-
ermore, Leung and Ono" predict the transition to the
incommensurate phase to occur at n„=0.04 (for the
parameters of Fig. 5). This means that the SDCPA
should be restricted to values of n& (( 1. Now let us

get back to discuss further the results of the SDCPA.
In Fig. 3, we considered an intermediary value for 5.
The characteristic feature happening in this case is

the change of the sign of the concavity of the curve

T, (x) as we increase n„. This is not observed in the
isoelectronic case (n„=0) where, all the curves have
positive concavity. A supplementary feature happens
for large values of 5 (Fig. 4) where T, (x) resumes
increasing its value with x after falling down to zero
at a lower critical concentration. This has been ob-
served already in the isoelectronic case (Fig. 1). The
observed depression of the transition temperature in

the isoelectronic case (Fig. 1) stems from the addi-

tional scattering of electron-hole pairs by the poten-
tials arising from disorder in the electronic states and
electron intramolecular vibrational-mode coupled
states. The presence of these two independent types

1.0 n—

of disorder calls for the determination of two effec-
tive potentials e(z) and h(z). The electron-hole
pairs hopping through the lattice are forced into dif-
ferent binding situations on sites occupied by dif-
ferent atoms with the accompanied pair breaking situ-
ation.

In this paper, we have evaluated the effect of alloy-

ing on the mean-field Peierls transition temperature
T, An o. verall depression of T, (x) for intermediate
concentration is predicted for alloying half-filled
conduction-band system. with impurities having a sin-

gle electron. The depression is enlarged for larger
deviations 5 of the single-site intramolecular poten-
tials. The additional effect of alloying with molecules
having a valency larger than one (n„)0), is to pro-

duce additional reduction of T, for x close to unity

(x & 1) and an overall suppression of the mean-field
Peierls state for large enough deviation of the valency
from unity. Sen and Varrna' have already obtained
this kind of depression for the transition tempera-
ture, however it is difficult to make a direct compari-

son of our results with theirs: they treated the —-
filled one-dimensional band, moreover they worked
from the high-temperature uniform phase, i.e. , for
zero-order parameters 4;. Even though we worked
from the low temperature phase considering site
dependent 5; our results must be equivalent, at the
same filling, to those of Sen and Varma' since our
definition of the alloying transition is where all the
effective order parameters are zero. A definite com-
parison fo T, (x) with the experimental results (like
those of Schultz and Craven'6) which are related to
the establishment of three-dimensional long-range or-

der may only proceed at a qualitative level since

T, (x) is a scale temperature as indicated in the Intro-
duction. Nevertheless, the results obtained above are
in good agreement with the few experimental
results' coming out on this subject.

O

I-

APPENDIX A: EVALUATION OF 8;

O.S g, 'i 2Z'(z„) —F i' (z„)—F2' (z„)
~1', 1p n d (z„)

At T, and in the limit p, el.- )) 1 one may write

F, (z) = F, (z ) = F'(z)

O. I
I

O.05
I

O. I
n&

so that

FIG. 5. Variation of the transition temperature for the A

material vs nz. (a) is given with SDCPA by taking the limit

x 1 of the normal to commensurate transition tempera-
1

ture of the alloy A„B] „. The parameters used are A.z = 3,
De&& =1.0. (b) is given by Leung (Ref. 33) theory for the

same parameters.

2g,
X

[F (z)]'
cu; )P, „[1—[e; —e(z„)]F'(z„)}'

For a Lorentzian density of states one has

[F'(z)] '=z+ig(z)/D —e(z) (A3)
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where g(z) = sgn [Im[z —e(z) ] ). Hence,

g// g 12

~;, /P, „[z„+(i /D )g(z„) —e, ]'

The simplest approximation for nonmagnetic impuri-
ties in a quasi-1D conductor is given by the following
equalities:

One may now decompose this sum in two, for n & 0
and n ( 0, further in conjunction with the symmetry
properties of e(z) and q(z) one obtains

gi 1 gi2 g

&i, [=&i 2=&i ~=2gk
(82)

4g2 N
1g;= '

— XRe—,, (A4)
co; /P, „0 [e;+z„+(i/D)q(z„)]'

Then Eq. (Bl) can be written as follows using Eq.
(82):

where W is the usual cutoff N = p, eF/m. Hence,

4 2 N
gi, j 1

///; /P, „0 (e;+z„+(i/D)q(z„) ('
e;=0, i 6A I '6 B

(z +AT3)Gj/6j/+ T/ $ i/kGki + E/G/j
k

For an A, B alloy, e; may be written as follows:

(83)

(84)
1

/0; /p, „0 e,'+ [r„+v) (z„)/D ]'

Consequently

4 2 N( g//
X

1

~; /P. . 0 [r„+q (z„)/D 1'

The sum in Eq. (A6) is approximated by

4 2 N
g/ /

X D2
0///pc // 0, -

(AS)

(A6)

(A7)

The Fourier components of t& and G„" may be written:
I

1 iq (R,-R. ) i (qR.-q R. )
r, = —$"e e ' &, G;= —XG,e

w
q w

1 7]p 72/ 1 3 p 73' 72' (86)

(B5)

Then use of Eqs. (83) to (85) in conjunction with
the following rotation in pseudospin space

for g(z„) = + 1 and r„«1/D D= m N (0) —.I/eF
in one dimension. Equation (A7) yields gives the following equation for G

qq

4g;,'/ p.
i

pc&F
/ /

(AS) (z 0 73+5 r)/G 1=5 i+ $E ittG ig r, (87)q w w „w q q

which means that 5; may be safely neglected in the
limit p, eF )) 1.

where

1 iR (q —q )
eye„. a

(88)

APPENDIX B: RELATION TO THE THEORY OF
SUPERCONDUCTORS CONTAINING

MAGNETIC IMPURITIES

Fquation (5) for the electron propagator G„" in the
dimer representation can be written in the site nota-
tion as follows:

z —«;1+2g; )6; )

Gg
+i, 2 2gI, 2~!,2

=gu+r/ grkGk, (81)
k

The Pauli matrices v] and 73 are given by

0 1 1 0
7)

1 0 ~ 73

5 now is given by the self-consistent equation

r, $ (G;;(z„))„,
pcs

Equation (87) is the equation of motion for an elec-
tron propagator corresponding to Schuster's Hamil-
tonian [Ref. 24, Eq. (6)]. Hence, Eq. (87) is identi-
cal to the propagator equation for a BCS supercon-
ductor containing magnetic impurities following
Schuster's argument, provided that we take
S(S + I) = 1 when S is the effective impurity spin. It
is therefore not surprising that the equations for the
Peierls transition temperature for impure quasi-1D
conductors of Sec. III are so closely analogous to
those for the superconducting critical temperature of
a superconductor containing magnetic impurities.
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