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Conductivity of a mixture of conducting and insulating grains: Dimensionality effects
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The percolation behavior of films of thickness c/composed of a compact mixture of conduct-
ing (concentration p) and insulating (concentration 1 —p) beads is studied by measuring their
conductivity o (d, p ). A theoretical model based on a renormalization operation to the thickness
of the film leads to predictions on the threshold p, (d), the crossover values between two- and

three-dimensional behavior p+(d), and the amplitude of the conductivity above threshold.
The experiments are analyzed in terms of the model and lead to the determination of several
critical exponents.

I. IN TROD UCTION

A mixture composed of conducting (with a concen-
tration p) and insulating but otherwise identical grains
(concentration I —p) undergoes a percolation' transi-
tion around a threshold p, . The system is an insula-
tor for p ( p, . Conductivity sets in at p, and its vari-
ation above p, is characterized by the expression,
valid close enough to p„

a ~(p —p, )' .

The exponent t has been obtained for various two-
and three-dimensional (D) systems'

t2 = 1.14 + 0.05, (3 = 1.73 + 0.10

Our results on macroscopic three-dimensional mix-
tures of packed coated spheres or smaller powders
are consistent with the latter value. Thresholds are
not expected to display such a universal (lattice-
independent) behavior. However experiments on
various packed powders lead to a threshold value

p, =0.27 + 0.05

fairly independent of the nature of the convex ob-
jects. An interpretation of this result was given in

Ref. 3 using the Scher and Zallen4 invariant for
bond-percolation problems zp, = 1.5; the number of
"electrically good" contacts between one object and its

neighbors, the coordination number, should be of the
order of 6. The value can be shown geometrically' to
be a good estimate for random loose packing. '

An experimental problem connected with the
above simulations relates to the finite dimension of
the system. We consider here a film of thickness d,
made from a compact mixture of grains of diameter
a. The film can be considered as infinite (with
respect to the size of the individual elements) in the

two other directions. The effect of finite thickness is
assumed to be equivalent to the introduction of two
parallel limiting planes in a material having the struc-
ture of the bulk assembly. In particular we will not
consider the modifications of the structure which are
caused by the plane boundary limits, which may be-
come important in the case of the thinnest films, and
those related to the possible anisotropy introduced in
the packing.

The finite dimensions of the sample result in a
two-dimensional behavior near the threshold and a
thickness-dependent shift in the critical density analo-
gous to that in 2D thermodynamic examples. " We
discuss the crossover points, shift of threshold, and
variation of conductivity o (p) in Sec. II. Section III
presents the experimental techniques. In Sec. IV we
present the experimental results and compare them
to predictions from other sources.

II. THEORY

e /a =A3 (P3 —P) ', 0(P (P3,
(+I&+ '43+(p pe3) pc3 + p + I

(4)

Because of the finite thickness of our samples, one
expects two-dimensional behavior near the percola-
tion threshold and three-dimensional behavior for
sufficiently high (+) and low ( —) concentrations.
The crossover should occur when the correlation
length (g) is comparable to the layer thickness.
Moreover, the correlation lengths of the two- and
three-dimensional regions have to coincide at the
crossover points. Except for numerical constants, this
is sufficient to predict the behavior of the percolation
problem.

One has for the 3D regime:
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(p )=-/3 d-4+(-p+) =/3+4 (6)

where v3 is the critical index for the three-
dimensional correlation length on both sides of p, 3.

The a+ are constants comparable to the particle di-

mensions. The ratio of the constants (A2 /A2+) is

expected to be universal (as is v, ) and can be used to
define. a critical density p,'3. We choose the a so that

+V3 V3
A3 =P,3', A3~=(1 —p, 2)

[one can check that p, 2 is obtained from p, 3 from the
renormalization operation Eq. (10) defined below].

Crossover between 2D and 3D behavior occurs at
two densities p and p+ such that

(3D) conductivity is

~2= ~0(P -P.» ' (14)

where, for convenience, o-2 is an equivalent three-
dimerisional conductivity which would result in the
relevant 2D conductivity for a layer of thickness d.

The constant o-0 is determined by the requirement
that

and does not depend on d.

In the expression (14) the conductivity ao is a con-

stant obtained from the conductivity of the individual

element. Similarly for the 2D regime one can write

rr2 o=o[p.—p, (d) ] ',

/3 =/3+ = I- (7)

where P+ are constants (of order unity), reflecting
the fact that the crossover points are only defined by
extrapolation. In the following we assume, for sim-

plicity, that

~2(p+) = ~2(p+)

This leads to

~o ——~o(a/d) ' ' ' (1 —p,"2) '/(1 —p,'2) ' .

(16)

(17)

Expressing the conditions (6) in Eq. (4) leads to
values for the crossover probabilities

P (d) =P, 2
—(a/d) 'P,;

p~(d) =p, 2+ (a/d ) '( I —p,'3 )

The resulting behavior of o. is described in Fig. 1(b).
We note that Eq. (17) involves the additional as-

sumption that the description of the conductivity
problem does not require the introduction of a new

This assumes [besides Eq. (7)] that d is large enough
so that the renormalized expressions (4) are valid.

To describe the crossover, it is convenient to
change to a new scale d and to choose a f'enormalized

density p":

p —p (d)
p+(d) —p (d)

I

[

(a)

such that

p'(p (d)) =0, p+ (pp(d)) = I

In the range

(10)
0 I2(d) I2„ I2(d)

0& pd'&1,

the samples behave as a two-dimensional system with

a 2D correlation length which takes the values
CJ P-0

$2(P+) =d

P (d) P 3 (P 2 P 3)(a/d) (13)

We can now predict the behavior of the conductivi-
ty. In the three-dimensional regime [p )p+(d)] the

at the crossover concentrations. In particular, perco-
lation occurs at a universal density p" =p,'2 defined
analogously to p, 3. From the definition of p', this
leads to a threshold p, (d) shifted from the bulk value

p, 3 by l. lG. 1. (a) Schematic description of the behavior of the
correlation length for a sample of thickness d. The dashed
lines are the extrapolated curves for an infinite sample.
Dotted lines indicate the extrapolation implied in the defini-
tion of the crossover densities. (b) Schematic description of
the conductivity assuming the same crossover point as in (a).
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length different from (. This is generally believed to
hold. s 9 If an additional length ((' & () dominates
the conducting skeleton, the crossover for o- will oc-
cur at a higher density and 0-0 would not be given by

Eq. (17).

III. EXPERIMENTAL TECHNIQUES

We have used a mixture of conducting and insulat-

ing spheres (diameter 20 p, m, dispersion —30%).
The insulating objects are glass beads. The beads
have been silver coated to obtain the conducting
phase. The Ag thickness is small enough to intro-
duce no appreciable density difference. The statistical
homogeneity of the mixture was checked with a

stereomicroscope. In order to favor the homogeneity
and the compactness of the mixture, the particles
were initially put in suspension in alcohol. The
suspension was then mixed thoroughly with a mag-
netic agitator. This method of preparation avoids the
formation of clusters which can appear due to elec-
trostatic forces as well as to the presence of intersti-
tial water between the pores.

The suspension is then spread onto a glass plate
using a Desaga apparatus' which is used to produce
thin chromatographic plates. The operation of the
"spreader" is described in Fig. 2. The film is pro-
duced by moving the container backwards. The
adjustable thickness d is defined by the distance
between the glass substrate and an adjustable blade
parallel to the glass plate moving with the container.
(The same concentration of the suspension has been
used in all experiments in order to ensure reproduci-
ble thickness and compactness results. ) The layer is

then baked in an oven around 100'C. Once the film

has been formed, its edges are trimmed to a well-

defined 20 && 6 cm' rectangular geometry. The 'thick-

ness value and its homogeneity have been controlled
using a dial comparator with an accuracy of + 10 p, m.

The conductivity measurement is done using four
parallel conducting indium probes, which had been
deposited on the glass surface prior to the splaying.
Constant current measurements (I = 10 ' + 10 ' A)

are used. The resistance varies typically from 10 0
for an insulating system to 10 ' 0 for a conducting
one. The doping in conducting spheres was varied
from 1 to 0.28, by jumps of 0.05 far from the thresh-
old and 0.025 near the threshold. The values plotted
for the conductivity for each p and each d are ob-
tained as an average of five independent experiments
with a dispersion of about 10%.

IV. EXPERIMENTAL RESULTS

We present two types of results: (A} those related
to the variation of the percolation threshold p, (d)
with thickness which lead to a determination of v3,
(B) those obtained from the conductivity above

p, (d).

.A. Threshold

The threshold p, is the value of dopage p from
which the conductivity a- becomes different from
zero. The variation of p, (d) as a function of the in-

verse thickness d is given in Fig. 3. Error bars are
indicated for several data points. The value

p, (~) =0.287 + 0.05 has been obtained by an extra-
polation described belo~ of the results for thick

p(d)

0.5 .

0.4-

+
&(d~ll

0 » d'(mm)

FIG. 2. Schematic of the Desaga spreader: 5 suspension
of spheres, G glass plate substrate on which indium elec-
trodes I have been laid; F film of thickness d adjusted by the
blade 8,

FIG. 3. Percolation threshold p, (i/). The limit p+, below

which the film can never be conducting„ is associated with

the finite spacing of electrodes; the 3D value p, 3 is given by

a fit described in the text. The two stars represent
crossover-doping calculated values.
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films. In fact it is found that the film is insulating
below a value p,+ corresponding to a thickness d+;
the actual experimental curve does not extend con-
tinuously to 1/d =0. The limit is connected with the
finite spacing (= 6 cm) of the electrodes in the plane
of the layer. Even for an infinitely thick film the
current lines only span a finite thickness (measured
by d+) proportional to the spacing between elec-
trodes. The threshold p, (~) is slightly larger than
the value obtained for 3D pressed powders. This
may be an indication of the more compact structure
in the latter case.

In the opposite limit of thin films we expect p, (d)
to saturate to a two-dimensional threshold. Unfor-
tunately we have not been able, in independent at-
tempts, to obtain good percolation experiments with
two-dimensional assemblies of spheres comparable to
our 3D work of Ref. 3 because it is difficult to apply
the pressure needed to establish the electrical con-
tacts in such a plane geometry. Moreover it might
well be that for the thinnest films (the value I/O = 16
mm ' in Fig. 3, would correspond to three times the
diameter of a sphere) the packing of spheres is dif-
ferent from the bulk case due to the strong aligning
influence of the glass plate. " However a value of p, &

of the order of 0.5 to 0.6 is reasonable for two-
dimensional lattices with a coordination number
around 3 to 4 (Ref. 4).

The value of p, (~) and the best choice of the ex-
ponent v3 associated with the variation of form (3)
are obtained by a classical procedure: We plot p, (d)

-1/v3
as a function of (d) 3 for different values of the
exponent and we look for the best linear variation.
The set of values p, (~) =0.287 and v=0.85+0.1

are obtained in Fig. 4 if the first four data points are
used. The value of v3 is consistent with published

TABLE I. Comparison of critical exponents l (conductivi-
ty) and v (correlation length) in 2D and 3D, as obtained in

our measurements with those given by Straley (Ref. 2).

Straley Our work

lp

l3

V3

Vp

1.1 + 0.05
1.725 + 0.01

0.82;0.9 + 0.05
1.34;1 ~ 33 + 0.04

1.25 + 0.10
1.85 + 0.10
0.85 + 0. 1

results in three dimensions. ' In Table I, we compare
our results with those given by Straley. '

B. Conductivity

Figures 5 and 6 give the variation of conductivity
for a thin (d =0.06 mm) and a thick (d = 2 mm)
film above their respective thresholds p, (d). In the
former case, we find a linear variation over two de-
cades of conductivity from which we obtain a critical
exponent t = 1.25 + 0.10. The value is consistent
with the two-dimensional exponent t~ determined
from numerical and simulation experiments. On the
other hand, in the case of the thicker films, the vari-
ation indicates a marked cusp. The linear variation
near p, (d) can again be fitted with a linear variation
leading to an exponent t = 1.28+0.12 consistent with
the two-dimensional exponent t&. However, the vari-
ation becomes faster for a larger distance from
threshold as might be anticipated from the crossover
to a three-dimensional problem with an exponent
r3=1.73 (larger than rq).

It seems reasonable (although not completely obvi-

0.35-

0.3 0

. v,=0.90

o v «0.75

«v, m.80

In (p —0.49)

0.2 5

r .&
rj

0 0.5

FIG. 4. Corresponds to the data points near I/O =0 on
-1/V

Fig. 3, in units d vs p for different values of v3. The
best linear variation is used to get v3 as well as the extrapo-
)a ted value p, ( ~ ) [see form (3)).

FIG. 5. Log-log plot of the conductivity vs p —p, (d) for a
thin film, cI =0.06 mm, showing the slope t =1.25+0.10
characteristic of the thin-film behavior.
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FIG. 7. Determination of the ratio (t3 —t2)/v3 defined in

the model of Sec. II was made by comparing the conduc-
tances X2 of films of various thicknesses &12 to a reference
film d~ of conductance X~.

FIG. 6. Log-log plot of o- vs p —p, (d) for d =2 mm

showing a slope I =1.28+ 0. 1 similar to Fig. 5 and close
enough to p, (d). The intercept is associated with the
crossover value p+=0.38. A similar sharp break with

practically the same value p+ was obtained by using the
value p, 3 instead of p, (c/) on the abscissa.

ous) to characterize the behavior far from p, by ex-
pressing the critical behavior in terms of the distance
to the three-dimensional threshold p, (~). By doing
so, we get a value of the exponent t =1.5+0.10
which agrees reasonably well with the value of t3, -

The variation of the conductivity o (p) for thick
films also leads to a determination of p+. The cross-
over value, obtained from the intercept of the two
linear variations on Fig. 6, appears to be sharply de-
fined, but this might be exaggerated by the construc-
tion. We have indicated in Fig. 3 values of p+ deter-
mined for two different film thicknesses. The varia-
tion reproduces roughly that of the threshold p, (d) as
expected from the discussion of Sec. II. In order to
establish a closer contact with the analysis of the con-
ductivity in Sec. II we normalize the value of 0- ob-
tained for different film thicknesses d2 to that of a
reference film (of thickness di = 1 mm), with choices
of p such that

(pi —p. (di) j=(p2 —p. (d2) 1=o 1

We suppose that on this interval the power law Eq.
(1) is valid near the threshold.

From Eq. (16), we expect

tp = (D —2)vp+tt, (19)

where 0 is the dimensionality of space. By compar-
ing data on 3D Al-Ge films and the 2D Pb-Ge films.
Deutscher and Rappaport show that p, should be of
the order of v3 in 3D, which is a reasonable
(although not justified) result but that it should be
smaller than v2 in 2D, which is impossible. This
means that Eq. (19) is no longer valid.

Our analysis of form (8) leads to a value of 0.70
for the exponent (t2 —t3)/v3 which can be written,
using Eq. (19), as

(t, —t, )/v, . This determination is compatible with

the values for the three exponents given in the Table I.
In a recent letter, Deutscher and Rappaport" have

shown that thin Pb-Ge composite films with a thick-
ness equal to four times the average grain size
showed a threshold and a conductivity exponent ap-
proaching two-dimensional results. U npublished"
results on the variation of threshold with thickness
by the same authors indicate a behavior qualitatively
similar to our result of Fig. 3. An interesting feature
of the work of Ref. 12, which uses the joint measure-
ment of the superconducting critical current, is that it
makes a prediction for the critical exponent p, giving
the divergence of the path length L = (p —p, ) v,

between two nodes of a superlattice of average mesh
size (.'4 The independent analyses of Skal and
Shklovskii and of de Gennes based on this superlat-
tice hypothesis lead to a scaling relation for the con-
ductivity exponent

(t3—t2)/v3
rr i/tr 2

= (d, /d i ) (18)
1 —«2- t3)/v3= (t 2 t3)/v3 . -

From a log-log plot of the two ratios given in Fig. 7
we get a value 0.70 for the slope to be compared with leading to a value of p, 2

—p, 3
= 0.26.
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V. CONCLUSIONS

The experiments above are a first attempt to simu-
late the dimensionality crossover in a percolation
problem, Such a discussion can have important prac-
tical applications as many random experimental sys-
tems to which percolation models are applied are
done with a finite geometry. Let us quote for exam-
ple the discussion of Kirkpatrick and Mayadas" deal-
ing with the role of limited geometry in the problem
of electrical conductivity of narrow heterogeneous
strips and some problems of limited penetration of
fluids into porous channels of narrow width, dis-
cussed in de Gennes and Guyon. '

Finally we would like to point out some analogies
between the dimensional crossover discussed here
due to finite thickness in the limit 1/d 0 and ef-
fects related to crossover met in thermodynamic sys-
tems. Size effects in films have been studied in

many experimental systems, With a proper con-
sideration of boundary effects, the shift of critical
threshold can be estimated by comparing the value of
the correlation length at threshold with d as is done
in the present study. '

The existence of anisotropy in a bulk system also
leads to a dimensionality crossover but with quite dif-
ferent characteristics: Harbus and Stanley" have
considered an anisotropic magnetic Ising problem
with a small value of the ratio R between the ex-
change energies for bonds perpendicular and parallel

to a reference plane, J~~/Jq= R. In this problem the
crossover is from 3D to 2D (the classical Ising prob-
lem) when R —0 instead of 2D to 3D when 1/d 0
as in the present case. Their analysis (for which they
coin the expression "double-power-law behavior")
leads to an expression for the susceptibility [from Eq.
(2a) of Ref. 17] which displays analogies with the
conductivity result (from Ref. 15). In both cases a

prediction is made for the amplitude as well as for
the critical exponent. This has been ~ade possible
because two asymptotic limits are considered in the
evaluation of the critical variable. An extension of
the anisotropy problem to anisotropic percolation
(with p~~/pq= R) has been considered recently by
Redner and Stanley' but appears to be more com-
plex than the present size-effect problem where a re-
normalization adjustment has been used. Anisotropy
effects can possibly play a role in the present experi-
ments. In order to analyze directly this effect we are
developing simulations on anisotropic bulk systems.
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