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Broken-symmetry states in solids with multiple bands
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Calcul rtions are presented which show that an interacting i/-electron system can exhibit more

general ground st ates than predicted by a simple Stoner theory of ferromagnetism, which usu &1-

ly neglects effects of i/-band degeneracy. The existence of five i/ subb &nds leads to ~ situ &tion

where the interaction first changes the popul ~tion of subbands without destroying spin degenera-

cy, and thus produces a less metallic but still param ~gnetic state. Ferrom &gnetism occurs for

larger values of the interaction. Numerically the c~lcul rtions are performed for the canonic;tl i/

bands of face-centered- ~nd body-centered-cubic structures.

I. INTRODUCTION

Transition metals are difficult to understand be-
cause of their strongly correlated, narrow d bands. A

particularly intriguing example is manganese' which

occurs in several crystal structures. It has very small
electronic transport coefficients compared to its neigh-
bors in the periodic system, chromium and iron. At
room temperature, for example o. (Mn)/a-(Cr) =0.09
and a. (Mn)/o. (Fe) =0.07. This suggests that only a
small number of electrons, possibly only s electrons,
contribute in the conduction process. The role of the
it electrons has not been clearly established, On the
one hand as early as 1935 Mott has suggested' that
the d-band states act as traps into which the s elec-
trons may. be scattered and lost from the electrical
current. In this case a high density of d states results
in a low conductivity.

Mott's theory completely neglects the contribution
of the d electrons themselves to the conductivity, i.e, ,
it assumes that for all practical purposes the d elec-
trons are localized, However, this hypothesis re-

quires a justification of its own in terms of electron
correlations, e.g. , the existence of Hubbard-like ef-
fects. In fact, it has been proposed' that the d band
in Mn shows a Hubbard splitting due to d-electron in-

teraction. In principle this could lead to small con-
ductivities if the number of holes in the lower part of
the split band is small. However, this kind of "Hub-
bard splitting" requires a ratio U/W ) l, where U

and H'are the interaction strength of d electrons and
their bandwidths, respectively. But it seems that
U/ W = 0.6 is a more representative value for the
3d-transition series. We show that one can obtain a
reduction of the d-electron density of states at the
Fermi level and hence a reduction of conductivities
in a more natural way, already for values of U/ W

which are much smaller than 1. The important point
is to develop a model which includes the fivefold de-
generacy of d states explicitly and study the effect of
an intra-atomic d-electron interaction on the occupa-

tion of the five orbital it subbands.
It is an established fact that this inter tction

between the electrons of narrow„partly filled it band
can lead to a ferromagnetic ground state, as is the
case at the end of the 3d-transition series. The sim-
plest theory accounting for this phenomenon is the
Stoner (Hartree-Fock) theory of itinerant ferromagne-
tism. In its traditional form however it neglects the
effect of orbital it-band degeneracy by replacing it
with an s-like single band. In this case one can show
that if the interaction strength exceeds a certain limit,
which is given by the Stoner criterion, the electronic
system can lower its total energy by removing the
spin degeneracy of band occupation, thus lowering
the Coulomb correlation energy at the expense of the
one-electron band energy. Such a simple behavior
however, is due to the total neglect of orbital degen-
eracy in the it band. If we explicitly include the ex-
istence of five orbital subbands (i.e. , ten spinb ~nds),
the Coulomb correlation energy of d electrons direct-
ly depends on the occupation of each of the ten spin™
bands, (See Ref. 6, denoted as I in the rest of this
paper). This means, however, that the d electrons
can change their total energy by rearranging the occu-
pation of ten spinbands (subject to one constraint)
instead of the occupation of only two spinbands as in

the simple Stoner model.
Full d-band calculations have been carried out for

ferromagnetic transition metals by including spin-
polarized effects. ' " This is accomplished either by
means of a spin-dependent local-density approach or
by the use of the unrestricted Hartree-Fock approxi-
mation; In addition more sophisticated Stoner-like
criteria for ferromagnetism have been developed for
d-like materials, again within the context of local-
density theory. " " However, systematic calculations
based on band occupation and on the relative
strengths of d-band width and intra-atomic (local)
repulsion have not included the multiple bands in de-
tail. ' Specifically one could suggest that because of
the existence of five spinband pairs the it electrons
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might find a state of lowest energy by changing the
occupation of spinbands in pairs, without breaking
spin degeneracy and hence avoid ferromagnetic order.
Such a rearrangement should have a pronounced ef-
fect on the density of states at the Fermi level and
thus change primarily the conductive properties in-
stead of the magnetic ones. Therefore we should ex-
pect that the orbital degeneracy in d bands, and hence
the greater variety of possible spinband occupations,
might allow for more types of ground states than the
simple Stoner model would predict.

To show that these ideas are correct, we have per-
formed calculations with a model system already used
in I. We take again the canonical d bands of Ander-
sen" ' as a starting point and assume that the
Coulomb interaction between the d electrons is of
purely intra-atomic nature. Hybridization with s
bands is neglected in all our discussions, its main ef-
fect is accounted for by allowing a nonintegral occu-
pation of the d bands. These basic ingredients of our
calculations, which are performed for bcc and fcc
structures, are described in Sec. II. To develop a
feeling for the effects of degeneracy, Sec. III
describes a modified Stoner model which already ex-
plicitly includes the ten spinbands but still is restrict-
ed to ground states which only account for the possi-
ble removal of spin degeneracy as in the simple Ston-
er model. Section IV is the main part of the present
paper and explicitly discusses the ideas outlined
above. Section V finally gives the conclusions.

bandwidth)

Eb(EF') = XEb"(Ebo)

pE~
0

Eb" (EP) = J~ D„(E)EdE

(2.1)

Ev

4-

0-

—8-

The center of gravity of the complete 1 band has
been set to 0. The Eb" functions give the band energy
of each spinband v. This is shown in Fig. 1 for the
bcc and fcc structures. One can see that the five
twofold-degenerate Eb" functions are separated in two
groups. The lower group corresponds to the e2g-type
subbands, the upper group to the t2g-type bands. '
The sum of these individual subband energies gives

II. CANONICAL BANDS, BAND ENERGY,
AND CORRELATION ENERGY 8- bcc

As a starting point for our calculations we assume
that the d-electron states are well described by
Andersen's canonical bands" ' which are equivalent
to one-parameter tight-binding bands (see 1 for more
details). The canonical d band consists of five spin-
band pairs (1,2), (3,4), . . . ; (9.10) which are or-
dered according to their energies, i.e.,

E( 2(k) E34(k) ~ ~E9 (o(k)

4-

0-

—4-

for every k vector of the Brillouin zone. All we need
for our calculations are D„(E) the partial densities of
states (PDOS), and n„(E) the partial number of oc-
cupied states (PNOS) for each of the spinbands
E„(k) where v=1, 2, . . . , 10. These functions are
shown in I.

A. Band energy

From the PDOS one can calculate the band energy
in the one particle, noninteracting ground state of
the d electrons (EFO is the Fermi level, W the

—8-

—20 —10
I

10

FIG. 1. Lower diagram: integrated subband energies for
the bcc canonical bands, where v = (1, 2), . . . , (9, 10) is the
spinband index. The order is according to increasing energy
for totally filled bands. Upper diagram: the same for the fcc
canonical bands. The abscissas are the structure constant Sd
which are related to the Fermi energy by the linear transfor-
mation EI: = Sd( N /28. 5) for bcc and EI; = Sd( W/27. 6) for
fcc. Similarly the ordinates are in units of ( W/28. 5) for
bcc, and ( H'/27. 6) for fcc.
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19. Iter, as already shown in Ref.the total band energy, as a
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center of gravity of the whole band.

B Intra-atomic correlation energy

r to erform the investigations outlined in
the Introduction we have to choose a s
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Hubbard interaction
i I
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(2.2)
IVV
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k

(2.3)

ln Eq. (2.2) several ap-and its Herrnitian conjugate. n q.
s have been made: (i) only on-site in-

(i)of d electrons are inc u e; ii

i
'

en
' b't

1 have beeninteractions betweenen different or i a s
11 within that they are sma wineglected by assuming

(iii) thet Coulomb interaction; iiirespect to the d

interaction between di erendirect Coulomb interac
onstant U„ indepen-nier orbitals is assumed to be a constant „ in

t e of orbital involved.

n b the expectation value of V, wit
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'

1U to a constant this energy
lation energy " W' e"intra-atomic corre a

'

maintain ith s nomenclature here. e av
that this energy is given by

1 —» (E")E, (EP) = —,
'

U

Qadi,

(E~) [I —»„(E,) (2.4)

a denote the creation and destruction
e ten v =, . . . , 10)W'annier orbitals

i. They are connecte to eat a given site i.
s c —,c '- via the transforma-operaerators of band states c „-„,cv k via e

tion

C. Total energy, relative stability
of bcc and fcc structures

The total energy of the interac gractin d electrons is
given by

Er(») = E, (ii) + E, (») (2.5)
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III. SPIN-POLARIZED CALCULATIONS,
STONER MODEL FOR MULTIPLE BANDS

A. Review of the one-band Stoner model

Vc = U Xat;at(a!;a (3.1)

In the case of a single band the possibility of mag-
netic ordering due to electronic correlation has been
extensively discussed. For several reviews, see Ref.
21. The conventional Stoner model starts with the
assumption that effects due to the existence of five
orbital d subbands can be neglected and introduces an
interaction (Hubbard interaction)

model to the fivefold degenerate d bands using the
interaction V,', however, has a serious drawback. Ac-
cording to Eq. (3.1) the model assumes that any two
electrons with parallel spins do not interact. If there
is only one orbital state, this is certainly true because
of the Pauli principle. However if there are five orbi-
tal states it seems much more reasonable to assume
that electrons with parallel spins but in different orbi-
tals have about the same interaction strength as those
with antiparallel spins. In fact this is the basic ap-
proximation in our interaction Hamiltonian Eq. (2.2)
which therefore should be a more reasonable starting
point for considering the magnetic properties of a
fivefold degenerate d band.

where (7; ((r is the spin index) is assumed to create
any d state, irrespective of which subband it belongs
to. With Eq. (3.1) the total energy of the system is

given by

Er(I(t, l(t) =E(, ((77, ((t) + U(ll(1 (3.2)

where nt and n~ are the partial occupations of the
two spinbands, constrained by Ilt+II~= I?. From Eq.
(3.2), it is obvious that for large enough U the d
electrons prefer a ferromagnetic ground state. The
critical condition for onset of magnetic ordering, ob-
tained from calculating the local minimum of
Er(I(t, ((t) is exPressed by the well-known "Stoner cri-
terion"

B. Stoner model for the degenerate case

El((ll,

Ill�)

= E-b(Ill, (ll) + E, (Ill, (1l)

E((( ll 1, Il
1 ) = ED (E) dE + ED (E) dE

(3.6)

Again p, l, p, l have to satisfy Eq. (3.5). Furthermore

To find out which magnetic state characterized by

(»l, »l) is stable for a given (n, U) we consider again
the total energy El(lit, (71)„U'and look for the
minimum as a function of nt, n~. Now

U, D ( EFO ) = 1 (3.3)
E, (((t, ((t) = —, U $»((p~) [1 —(7((p~) ] (3.7)

For U larger than the value determined from Eq.
(3.3), a magnetic moment develops due to different
occupation of spinbands, i.e. , Ill + II~. One can
describe this in two ways: In the "quasiparticle pic-
ture" the quasiparticle energies e„(k) derived from
Eq. (3.2) depend on spin direction according to

e„(k ) = E„(k ) + U(7 t, v odd

e„(k)= E„(k)+ U»t, v even
(3.4)

f P~
» = J D(E) dE, »1+»1=» (3.5)

Application of this conventional one-band Stoner

Different occupation of spin-up (odd) and -down
(even) bands in this picture is due to shifted quasi-
particle densities which arise from occupations of
states e„(k) ( EF, with a common Fermi level EF
In view of our objectives, however, we prefer an
equivalent but more convenient picture, We stay
with the noninteracting, i.e.„nonsplit particle spec-
trum and label the states by the band energies
E„(k). The interaction thus leads to different Fermi
levels, p, l

for spin-up (odd) bands and p, l for spin-
down (even) bands if U ) U, . This in turn gives dif-
ferent occupation of spinbands according to

where I = I, . . . , S denotes the orbital subbands and
o. = [, [ the spin direction, i.e., v = (I, o.). To find
the minimum of El (Ill,

Ill�)

we calculate its deriva-
tives with respect to l1 t, I1) or, equivalently, with
respect to p, t, p, ~. Because of nt + n~ = n, the vari-
ables are not independent and it is more convenient
to calculate (()Er/Bh)„, where 6 = p, l

—pl is the "ex-
change splitting. "

By means of the relation

t)pt D (pl)
()pl „D(pl) (3.8)

1 = —$ d((17, /), ) I»(((7, 6)U

I

(3.9)

where

[D((p,l) + D((p, t) l
d(((1, 6) =

[D (p, , ) + D(p, , ) ]

l(1((ll, 6) = 17((Pt)»l (Pl )

lll = $(77(, D(p, ) = QD((p )
I I

one can easily compute (BEr/8/( )„, and equating this
expression to 0 one obtains the general condition for
the existence of a ferromagnetic state:
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This, together with Eq. (3.5) determine h

omagnetic solution. Here we only discuss the
limiting cases: (i)

1.0

U/W

0.8-

»i 0+ (i.e. , 5 0+, Pl=Pl=P)
Because nti (n5), /5 D ( ) E (3.9)i p, , q. . simplifies to

0.6-

1 = U $D('( p, )/D ( p, )
I

(3.10) 0.4-

(3.3) i

This is the equivalent of the Ste oner criterion Eq.
. 'fin the single-band case. In fac ft or one band

d
q. . reduces to Eq. (3.3). Equation (3.10)
etermines the boundary betw he ween t e paramagnetic

and ferromagnetic phase in th ( U, )e, n plane„(ii)

0«» «5
in =

10—», 5 «» «10

0.2

0
1.0

U/W

0.8 -:

In this case eithe
(I = 1) band an

either p,
&

is at the bottom of the f'

an and therefore D (p, t) =0 for 0~ n ~ 5,
o e irst

or p, t is at the top of the uppermost (I = 5)
us p, t) =0 for 5 ~ a ~ 10. In either case E

(3.9) reduces to

0.6-

04-

U DI(~)1=—$»I(p)
where

(3.11) 0.2-

bcc

10

and

0«» «5
5 «» «10

0«» «5
5 «» «10

l l(i. 3. Lower di;i r;im:; gr;im: st able regions for tot1lly ol;pr-

ized ferrom'magnetic (d irk h d' ), ';&ri
rom&gnetic (li ht h d'

s & ing, pirti ill ol;&ri

p«m magnetic (white) c inon-ig s & ing), ind;ir;&
ic;«;in s for bcc structure. Upper di~ rim:'g '

HereE, E d enote the bottom and top of the I b

and in is the me maximum possible magnetization for a d
band with» electrons. Therefore Eq. (3, 11)
describes the boundary between th

' " tro
ferromagnetism " i.e.

e region of "stro" trong

the re i

i.e., complete magnetization dan

than
'
g'on of partial magnetization whw ere in is smaller

an its maximum possible value.
The cor ing to Eqs,e p ase boundaries calculated ac d'

an .11) for canonical d bands in bcc and fcc
structures are shown in Fi . 3 Aig. . s expected the criti-
cal values depend stron 1g y on the d-band occupation

On the average, the transition from the parama-
netic to a ferromagnetic state tak

paramag-

0 /' —0.25—0.3. F
es place for values

or bcc the narrow region
around» ——4 in which th e cf electrons stay parama-
netic for values up to U/ W = 1 is due to a

1 of t}1o e e2g- and t2g-type subbands as can b
'g. I. There are mainly two regions for

both bcc and fcc d band (d k hs ar s ading in Fig. 3)
where strong ferromagnetismism, i.e., no minority spins,

is predicted. The first region h 1

'
n as on y a small

number of d electrons ii & 2 th
» &7. Fo

e second one lips at
or occupation in between 2 &» & 7

g etism is clearly disfavored. u

this is in a r

re . ua itatively
agreement with the situation in 3'' tr

metals where
in c transition

ere 'strong) ferromagnetism is onl b-

served at tha he end of the series for Fe(» ——7.1),
is ony ob-

Co(» =8.4), and Ni(» =9.4). How
omagnetism at the lower end of the series as

predicted in this simple theor . Th' d'

e ue to two efe t facts. First, because of extended d-

wave functions the ratio U/ W' f
smaller than at the u er

or small » must bust be
a e upper end of the series. Second,

or a small number of 3d electrons th ffs ee ectofa 4»

an cannot properly be neglected. In this
sys em can decrease its total energy by fill-

ing up the wide and weakly correlated s band in
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IV. GENERAL THEORY OR REARRANGEMENT
IN d-BAND OCCUPATIONS DUE TO

d-ELECTRON INTERACTION

X /1(n(P/~) = ll (4.1)

where now the different i11 are no longer restricted
to having common Fermi levels p, t, p, ~

but rather
they are allowed arbitrary values by associating an in-

dividual Fermi level p, 1 with every spinband. Then,
in the most general case, for a given U/ W, we have
to look for the minimum of the total energy
Er( [nl ) ) as a function of ten parameters (nl },
subject to Eq. (4.1)

In the case of noninteracting d electrons the
knowledge of the Fermi level EF or equivalently the
d-band occupation» determines the ten spinband oc-
cupations n( (EF ) uniquely. We have seen in Sec.
III that in the presence of an intra-atomic d-electron
interaction a rearrangement of spinband occupations
can lead to a lower total energy and therefore to a

more stable electronic state. The rearrangement for a
Stoner-like ferromagnet happens in such a way that
each of the five subband occupations n(t(pl), ///t(pl)
is determined by a single parameter, the Fermi level

(pt or p, l, respectively). As already mentioned in the
Introduction, this is a very restricted type of rear-
rangement.

It is the main topic of this paper to show that in a d
band with its fivefold orbital degeneracy there exist
more general rearrangements of spinband occupations
which lead to a lower energy but which do not -neces-

sarily produce a Stoner ferromagnetic state. The idea
is simply to consider the total energy of the interact-
ing d electrons as a function of nine parmeters, i.e, ,
the ten occupation numbers nl (pl) subj, ect to the
constraint.

9Ey- = p,„—p,„—U(n„—n„)
$11„

(4.3)

where v = (Ia ), (I'o. ), and vo is an arbitrary but
fixed spinband which is partly filled.

Altogether under the above conditions the varia-

tions which preserve spin degeneracy should lead to a

state of lower energy than the first type of variation
which produces a magnetic state. In other words,
there should be situations where the interacting d-

electron system prefers to empty some spinband pairs
and fill others rather than splitting them to produce a

magnetic moment. This type of rearrangement with

pairwise change of subband occupation should have a

drastic effect on the density of states at the Fermi
level, given by

argument why in general, for relatively large (U/ W')

one should not expect that the lowest-energy state is
always the one whose magnetic symmetry is broken,
i.e., flat A»1~. Rather, one can have a situation where
pairwise rearrangement, preserving spin degeneracy,
can lead to a more stable state. Assume that for a

certain n only two orbitals, l and l', are partly filled so
that »1 & 0.5, »j ( 0.5. Consider first a variation

of occupation numbers where spin degeneracy is des-
troyed, i.e., 5n1t, 5», ) 0 and 5n», Sn, (0. Then,

according to Eq. (4.2) the band energy increases,
correlation energies decrease for the (I [) and (I'[)
spinbands and increase for (I[) and (I'[). Thus the
contributions to the variation of E, tend to compen-
sate. On the other hand, considering a variation

1/ 5 / 1/ ) 0 6]1] 511
(
( 0 w h ich p rese r ves sp i n

degeneracy, we see that the contributions to E, of all

four (la ), (I'a ) spinbands decrease; the kinetic en-

ergy increases as before. More formally, this can be
seen by considering the gradient of Eq. (4.2).

&/-( (»/ ) ) = X D/(E) E dE
I0.

D(EF) = QD((p/ ) (4.4)

+ —, U X»( (p, , ) [1 —n( (p, )],
(4.2)

lt is not really necessary to minimize Eq. (4.2) with

respect to all occupation numbers but rather one has

to vary only those corresponding to spinbands which

are partially filled for U =0. This is so because one
requires a minimum thereshold (energy gap) to gain

in total energy by starting to occupy completely emp-

ty spinbands or to empty completely filled spinbands.
In Figs. 1 and 2 of I it can be seen that at most six
spinbands (three orbital subbands) can be partially

filled for a given occupation» in the paramagnetic
normal state. Thus, considering Eq. (4.1) we have
initially to minimize the total energy with respect to
five parameters at most. Before going into discussing
numerical calculations we want to bring an intuitive

where E~ denotes the true Fermi level in the quasi-
particle picture. Under conditions discussed above
one would expect a decrease in D(EF). Thus,
roughly speaking one could say that rather than exhi-
biting a paramagnetic-ferromagnetic phase transition
at a certain critical value of U/ W described by Eq.
(3.10), the d-electron system prefers first to lower its

D(EF) —in other words, to become less metallic —in

such a way that it remains paramagnetic but with dif-

ferent subband occupation for a sizable range of U

values. At still higher values of U, a transition to a

partially ferromagnetic state takes place which in-

volves the polarization of the only spinband pair

which is still partially occupied.
Before we discuss the numerical calculations it is

necessary to comment on the meaning of our gen-
eralized variational procedure in terms of the quasi-
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particle picture. In this picture, the variation of occu-
pation numbers iiI corresponds to a rigid shifting of
subband energies and subband densities of states ac-
cording to

0.6

0.5

e„(k)=E„(k)+U $ n,
/

v Wv

(v=l, rr) (4.5) 0.4

o(ErI
0.3

CC

n =1.75

A rigid shifting of subbands neglects the fact that
P DOS which are over lapping for U = 0 exchange
some of their spectral weight when shifted according
to Eq. (4.5). This can be easily seen by recalling that
in our context subbands are defined according to in-
creasing energy at every k point (cf. Sec. 11). This
means that during shifting„described by Eq. (4.5) the
subbands do not stay rigid but rather change their
shape in their respective overlapping energy range,
However in a first approximation we neglect this ef-
fect and assume that the PDOS functions are shifted
rigidly. In our picture this means that we look for a
minimum of total energy by simply varying occupa-
tion numbers ni (pi ) without changing their func-
tional dependence on the Fermi levels p, I .

We now discuss numerical calculations for several
typical d-band occupations using the bcc and fcc
canonical d bands. The configuration t n, ) which
minimizes the total energy is found in the following
way: we know the solution for U =0 which is given
by nl =n& (Er), p, i =EF. We take this as a starting
point and follow the course of the minimum numeri-
cally as U gradually increases, allowing all pi (ni )
for partially filled bands to vary and satisfying the
constraint Eq. (4.1). The reliable accuracy of the
determined set of ~ n, ) which minimizes the total
energy is about two percent. In the following we dis-
cuss the behavior of spinband occupation numbers as
a function of increasing U.

0.2—

0.1—

0
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I I

I I
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0.4—

0.2

0
0 0.1

I I I

0.2 0.3 0.4 0.5 0.6
U/W

1=IG. 4. Body-centered cubic, /~ =1.75. Lower diagram
(b): occupation numbers for the spinbands v = ( 1, 2) (occu-
pation more than 0.5) and v = (3, 4) (occupation less than
0.5) as functions of the inter &ction strength. Upper diagr (m
(a): density of states ~t the l errni level. A sm &ll kink ~t

(U/W) =0.53, due to the m magnetic splitting, has been omit-
ted because it is within numerical ~ccuracy.

A. Body-centered cubic, n = 1.75

For this n only the lowest four spinbands (two or-
bital subbands) are partially occupied, all others are
empty. Denoting spinbands again with
v = 1, 2, . . . , 9, 10 according to increasing energy, the
pair (1,2) is more than half filled, (3,4) less than half
filled. This corresponds to the situation discussed
qualitatively above. There are altogether three varia-
tional parameters for the energy minimization. Fig-
ure 4 shows that the behavior of spinband occupa-
tions for the lowest-energy state confirms our qualita-
tive expectations. For 0 ~ (U/14') & 0.4 the (3,4)
spinband pair is emptied, whereas (1,2) are filled to-
gether at the same time thereby strongly reducing the
correlation energy. No splitting of spin-up and -down
bands is observed. For 0.4 & (U/14') & 0.5 the upper
bands (3,4} are already completely empty and noth-
ing changes with respect to (1,2) whose occupation

numbers are both 0.875. Only if (U/ W) ) 0.53 it is

energetically more favorable to destroy spin degen-
eracy and split (1,2} so that finally /~& =1, n&=0.75
which describes a partially polarized ferromagnetic
state which only involves bands 1 and 2. The top
part of Fig. 4 shows the behavior of the density of
states D(Er) in the same range of (U/14'). We see
that as long as the occupations of bands (1,2) and
(3,4) are changed in pairs, D (F&) decreases drastical-
ly because the individual Fermi levels p, „(v= /a-}
approach the bottom or top. of the subbands. Then
D (EI-. ) slowly approaches a constant which is deter-
mined by the density of states of the only remaining
subband partially filled (n~ = 0.75).
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B. Face-centered cubic, n =1.75 1.0

This case, shown in Fig. 5, exhibits the same quali-
tative features as in Sec. IV A, only the characteristic
values of U are somewhat smaller. Again, due to the
emptying and fil1ing of spinbands pairs, the density of
states D (Eq) decreases with increasing U. The struc-
ture in D (Eq) at (U/lI') =0.4 is caused by the mag-
netic transition.

0.8

0.6

0.4

bcc
n=6

C. Body-centered cubic, n 6 0.2

Again, as can be checked by looking at Fig. 1 in I,
this is a case where only four spinbands (5,6) and

(7,8) are partially filled. The lower e,g pairs (1,2)
and (3,4) are already full and therefore of no con-
cern. Figure 6 shows the behavior of n(5 (, ) and 11(7 8)
as functions of U. No magnetic splitting develops.
Instead, already at (U/W) =0.15, the pair (5,6) is

full and (7,8) empty. Correspondingly D (Eq) shows
Av
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FIG. 6. Body-centered cubic, » =6. Lower part (b): oc-

cupation numbers for spinbands v = (5, 6) (upper curve)
and (7,8) (lower curve). Upper part (a): behavior of
D (EI; ) as a function of interaction strength.

0
1.0

0.8

a steep drop at zero. Thus in this simple case the
intra-atomic d-electron interaction produces a

paramagnetic insulator rather than an itinerant fer-
romagnet as would be the case according to the modi-
fied Stoner theory of Sec. III (see Fig. 3, bottom).

0.6— (b)
D. Body-centered cubic, n = 7

04—

0.2—

0.1

l

0.2 0.3
U/W

Q.4

I

0.5

FIG. 5. Face-centered cubic, » = 1.75. Lower part (b):
occupation numbers for spinbands v = (l. 2) (upper curves)
Ind v = (3.4) (lower curve). Upper part (a): corresponding

density of states at the Fermi level.

This is the first situation where the possible max-

imum of three spinband pairs is partially occupied.
Again the lower bands (1,2) and (3,4) are completely
filled. For U =0, (5,6) and (9,10) are already nearly

empty or nearly full, whereas (7,8) are half filled.
This would imply five variational parameters which is

numerically inconvenient. However, considering the
behavior of previous cases one can safely assume that

(5,6) and (9,10) will not split. Therefore in the
minimization procedure we allowed only for a split-

ting of the half filled (7,8) bands. That leaves us

again with three variational parameters. Figure 7
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curve}. Upper part (a}: corresponding density of states.
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cupation of the spinband pairs v = (5, 6), (7,8), 1nd (9, 10).
Upper part (a): behavior of O(E&-) 1s a function of interac-

tion strength.

shows that (5,6) and (9,10) are quickly filled or emp-
tied as (U/W) =0.1 whereas (7,8) stays approxi-
mately half filled. Correspondingly D(EF) drops to a
plateau at (U/W) =0.1. Only at (U/W) =0.16 a
transition to a ferromagnetic state takes place where
the (7,8) pair splits and its components become ei-
ther full or empty. Consequently D(EF) drops to
zero. Thus we finally obtain a ferromagnetic insulator.

E. Face-centered cubic, n =7.4

For U =0 the situation is similar to the previous
one, though less symmetric (Fig. 8). For the same
reason as before only the (7,8) pair is allowed to split
leaving us with three variational parameters. For
(U/W) (0.1 the (9,10) bands are quickly emptied
leading to an increased occupation of the lower (5,6)
and (7,8) pairs. Again a steep decrease in D(Er) is

the consequence. Further increase of (U/ W) leads
to a slow filling of the (5,6) pair. However since
(5,6) is already empty, the occupation of (7,8) has to
decrease again, producing a flat maximum in its oc-

cupation number and leading to a slight increase in

D(Er) For (U/W) =0.28., however, the spin de-

generacy of (7,8) is destroyed, leaving us with a fin-
ite D(EF). This means we end up with a metallic and
ferromagnetic ground state.

Altogether we can classify several types of ground
states f'or large (U/ W), depending on the d-band oc-
cupation»'.

/. Even integer n (case C): No ferromagnetic split-

ting occurs, with increasing U the bands are emptied
or filled in spin-degenerate pairs, finally producing a
nonmagnetic insulator.

2. Odd integet n (case D): First spinbands are emp-
tied in pairs leaving one half filled pair which finally
shows complete removal of spin degeneracy, leading
to an insulating ferromagnet.

IVoninteger n (cases 3, B, E): Again filling and

emptying of subbands occurs in spin-degenerate pairs
until one pair is left which is more than half or less
than half filled. Finally this pair shows ferromagnetic
splitting leaving one still partly occupied spinband and
therefore a finite density of states. This describes a
metallic ferromagnet.
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V. CONCLUSIONS

In our model calculations we have shown that in a
fivefold-degenerate d band the intra-atomic electron
interaction can lead to a more general ground state
than the (generalized) Stoner model would predict.
This is due to the possibility of independently chang-
ing the ten spinband occupation numbers in order to
minimize the total energy. The type of ground state
which develops for increasing (U/ W) depends in a
simple way on n, the total number of d electrons.
Specifically, our calculations have shown that for a
degenerate band the Hubbard interaction can lead to
a reduction of D (EF) already for small values of
(U/W); the resulting state is paramagnetic. This is

due to the expulsion of subbands crossing the Fermi
level. Such a mechanism could in principle explain
the low conductivity observed in manganese which

would be closely described by the case n =6 in our
discussions of Sec. IV. Of course in our model,
which does not allow for a possible breaking of the
unit cell symmetry, we cannot account for the ob-
served antiferromagnetic ground state of o-Mn which

anyway has a more complicated structure than body-
centered cubic. Even if we cannot make a direct
comparison with experimental data, our model calcu-

lations show clearly that the usual way of neglecting
d-band degeneracy in discussing itinerant magnetism
is a strong oversimplification.

In conclusion, we should emphasize that the intra-
atomic correlation energies may result in electronic
changes similar in principle to those found in metal-
insulator transitions. " Although some of the ef-
fects (those compatible with the originally assumed
crystal structure and electronic ground state sym-
metry) are automatically included in self-consistent
band-structure calculations, if the band shifting away
from the Fermi level requires a change in symmetry
the effects discussed here cannot be assimilated into
the normal band-structure methods. Manganese with
its complicated structures is once again the most sug-
gestive metal to use to explore these phenomena in

detail.
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