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The thermal and magnetic properties of the simple cubic Ising model with random, quenched,
site impurities have been determined by Monte Carlo calculations. The transition appears to
remain sharp, and the critical temperature decreases monotonically towards zero as the impurity
concentration is increased towards the percolation limit. No clear evidence is found for any
change in the critical exponents away from the pure lattice values. These results are discussed
in terms of Harris's predictions for the critical behavior of impure systems.

I. INTRODUCTION

Substantial interest in the effects of impurities on
phase transitions has existed for many years. It is
now known that the critical behavior of systems with
annealed (mobile) impurities is related to the corre-
sponding pure lattice behavior through a set of renor-
malized critical exponents.""? The behavior of sys-
tems with quenched (fixed) impurities is both more
varied and less well understood. Early series expan-
sion studies®™ yielded estimates for the dependence
of T, on impurity concentration but did not shed any
light on possible alteration of critical exponents.
McCoy and Wu® showed that the transition in an Is-
ing square lattice with random bonds between succes-
sive rows is smeared out. Later work on the square
lattice with quenched, periodic impurities showed’
that the transition was shifted in temperature but that
critical exponents were essentially unchanged. Using
general arguments Harris suggested® that the sharp-
ness of the phase transition in a system with random,
quenched impurities is unchanged if the specific-heat
exponent « of the system is negative. If « is positive
the asymptotic critical behavior is expected to change
as the critical temperature is approached. The prob-
lem of an m-component continuous-spin model with
random, quenched impurities has been studied using
renormalization-group theory.’™"® These calculations
are quite complex and show that for positive a a new
"random" fixed point is stable. The critical exponents
may then change, however, e-expansion results'!~!3
are available only up to O (e€) and it is thus unclear if
the exponent estimates are reliable. Monte Carlo
simulations'®~'® for two-dimensional Ising models
find no evidence for changes in critical behavior.
However, for these models a« =0 and it is unclear if
any change should be expected. We have previously
reported preliminary results'® for the simple cubic Is-
ing model (for which @ =0.12) with small impurity
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concentrations. Ono and Matsuoka?® estimated the
variation of 7, with concentration from computer
simulations but did not study the critical behavior. In
Sec. Il we shall describe the details and our simula-
tions, and shall present results in Sec. I1I. In Sec. IV
we shall analyze the critical behavior obtained for a
wide range of impurity concentrations. Section V will
summarize our conclusions.

II. MODEL AND METHOD

We have studied L X L x L simple cubic Ising lat-
tices containing random, quenched, nonmagnetic site
impurities. The Hamiltonian for this model is

H=—J3 o0, . (1)
NN

where o;, 0;=*1 and &, =1 if site / is occupied by a
magnetic ion and &, =0 if site / is occupied by a non-
magnetic impurity. Systems with ferromagnetic
nearest-neighbor (NN) coupling J (J/ > 0) and
periodic boundary conditions were studied for

6 <L =30. Uptox={(£&)=0.8 of noninteracting
impurities were distributed in the lattices at random,
and for each value of x, data were obtained for at
least two different distributions of impurities. We
used an importance sampling Monte Carlo method
which has already been described elsewhere.?' =23
Between 500 and 5000 MCS (Monte Carlo
steps/spins) were kept for each data point; averages
were usually obtained over data from at least two dif-
ferent starting configurations. Final values for each
value of L and 7 were then determined by averaging
over all data taken with different impurity distribu-
tions and from different starting configurations.
Simulations were performed for several values of
purity p =1 — x above the percolation limit** p, ~ 0.31
as well as one value, p =0.2, which shows no long-
range order.
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III. RESULTS
A. Thermal properties

The data obtained were qualitatively similar to
those found for the pure simple cubic lattice.”2 The
specific heat is shown for several concentrations in
Fig. 1. Note that these data as well as those shown
in the following figures are plotted per lattice site and
not per magnetic site. For comparison we also show
some of the pure lattice data taken from Ref. 22.

The general characteristics are the same for p > 0.4.
A relatively sharp specific-heat peak appears but it is
shifted to lower temperature as the impurity concen-
tration increases. In all cases the effect of decreasing
the lattice size is to depress the peak. For a given
value of L the peak value decreases quite rapidly with
increasing impurity content. For p =0.2 we find a
very small, broad specific-heat peak with absolutely
no sign of any sharp peak. Since p =0.2 is below the
percolation limit, no long-range order can occur.
Even all completely ordered clusters are too small to
span the entire lattice. For p =0.4 the specific heat is
quite rounded, even for L =20 but the presence of a
very shallow peak is still consistent with the data. In-
terpretation of these data becomes difficult since vari-
ations between different impurity distributions (see
Fig. 2) become pronounced.

The internal-energy data shown in Fig. 3 also re-
flect the changes due to the addition of impurities.
As the impurity concentration increases, the inflec-
tion points (corresponding to the peaks in the specific
heat) shift to lower temperature and the ground-state
internal energy approaches zero. The ground-state
energy depends upon the number of "broken" bonds
and hence both the distribution and number of im-
purities play a role. Finite-size effects are significant
only very close to 7.(p).
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FIG. I. Temperature dependence of the specific heat for
various concentrations p of magnetic sites. Data are shown
only for (0) L =6, L =10, and (00) L =20. Data for p =1
are from Ref. 22.
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FIG. 2. Temperature dependence of: (a) specific heat:
(b) spontaneous magnetization, for three different impurity
distributions with p =0.4 and L = 10.
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FIG. 3. Temperature dependence of the internal energy
for various concentrations p of magnetic sites. Only results
for (A) L =10, and (0) L =20 are shown. The dashed
line is the L = oo curve (see Refs. 22 and 32).
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FIG. 4. Temperature dependence of the spontaneous
magnetization for various concentrations p of magnetic sites.
Data for p =1 are from Ref. 22.

B. Magnetic properties

The behavior of the order parameter (spontaneous
magnetization) is shown in Fig. 4 for several purity
values. In all cases the order parameter shows a ra-
pid decrease near the location of the specific-heat
peak and finite-size "tails" at higher temperatures.
The shapes of the curves are very much the same ex-
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FIG. 5. Temperature dependence of the susceptibility for
various concentrations p of magnetic sites. Only results for
(A) L =10, and (0O) L =20 are shown. The data for p =1
are from Ref. 22.

cept they tend to p rather than to | at absolute zero.
For p =0.2 only a small, weakly temperature-
dependent value of M ( ~0.05) was observed. Since
p =0.2 is below the percolation limit M =0 for an in-
finite lattice, the observed value of M must then be a
finite-size effect.

The susceptibility showed sharp peaks for all im- -
purity concentrations with p > p.. The data shown in
Fig. 5 indicate that finite-size effects are important
and that the location of the peak shifts to lower tem-
perature with increasing impurity content. The finite
lattice-peak values appear to be surprisingly insensi-
tive to the impurity content (at least for p =0.6).
For p = 0.4 quite noticeable differences appear
between results for different impurity distributions
and the effects of finite size alone are pronounced
over a wide temperature range. For p =0.2 the sus-
ceptibility continues to increase as 7 — 0 and shows
no peak.

IV. ANALYSIS AND DISCUSSION
A. Critical temperatures

The determination of the critical temperature 7.(p)
for an impure system is nontrivial. Real-space
renormalization-group studies?® of several bond-
impure models as well as experimental results?® on a
physical site diluted pseudo-XY model on a simple
cubic lattice suggest that the specific-heat anomaly as-
sociated with long-range order may become very nar-
row and be superimposed on the low-temperature
shoulder of a larger, broad peak produced by short-
range order. A comparison of our specific-heat data
with the susceptibility and order-parameter results
leads us to believe that the observed specific-heat
peaks locate the critical point within experimental er-
ror. We cannot exclude the possibility that two peaks
exist and that we simply do not have sufficient reso-
lution to separate the two. Analogous details in the
critical behavior of the order parameter and suscepti-
bility might also be unresolved. However, experi-
mental measurements?’ on Co,Zn,_,Cs;Cls, which
rather closely approximates a diluted, S = % simple
cubic antiferromagnet, also show no indication of two
peaks in the specific heat. (The results certainly sug-
gest differences in the behavior of the impure-XY
and Ising models.) We shall therefore proceed to
analyze our data using the specific-heat peaks to lo-
cate 7,. Finite-size scaling theory?® predicts that the
infinite-lattice critical temperature 7.(p) is related to
the finite-lattice pseudocritical temperature T(p) by

T.(p)=TL(p) +aL™'" . (2)

We can use Eq. (2) to extrapolate our results to
L = oo although additional error is of course intro-
duced due to the uncertainty in v for impure lattices.
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We shall see in the next section that there is no evi-
dence for any impurity dependence of exponents.
We therefore believe that the added error is less than
the uncertainty due to scatter in the data and differ-
ences for different impurity distributions. Our final
estimates for 7,(p) are shown in Fig. 6. These
values lie systematically slightly below those obtained
by Ono and Matsuoka?® particularly for p < 0.7.

The observed variation of the critical temperature
with impurity concentration x =1 — p could have
several origins. Any analysis, however, will be com-
plicated by the fact that x and T are not the proper
scaling axes since the critical curve does not approach
T.(x =0) along a path which is parallel to either x or
T axes. A set of axes such as that shown in Fig. 6
would be suitable since u, approaches 7,(x =0)
asymptotically tangent to the critical curve. In this
coordinate system we might expect that®

TR A 3)

where ¢ is a characteristic exponent. If the critical
behavior is unchanged by the presence of impurities,
we might expect the generalized form of the scaling
hypothesis of Fisher and Au-Yang’ to hold. In terms
of x this yields a variation of the critical temperature

8T, =[T,(x=0)—T.(x)1/T.(x=0)
=a;x +ta,x . 4

However, if the critical exponents do change, then
Eq. (3) must be used and ¢ becomes the crossover
exponent describing the approach to the pure lattice

FIG. 6. Concentration dependence of the critical tempera-
ture. Monte Carlo results are given by open circles, the ex-
perimental results (Ref. 27) for Co,Zn,_,Cs;Cls [in reduced
units 7,.(p)/T,(p =1)] are shown by filled circles. The solid
curve shows the variation of 7,.(p)/T,(p =1) obtained from
renormalization-group theory (Ref. 15). The estimate for
the percolation limit p, is obtained from Ref. 24. Optimum
scaling axes u and u, are shown by arrows.

behavior. Unfortunately the variation of 7, with x is
consistent with either Eq. (3) with a;=1.09 +0.02
and a,=0.14 £0.03 or Eq. (4) and an extremely wide
range of ¢. To further complicate matters we expect
that the large-x critical points will be affected by
crossover to the percolation transition® at 7 =0,

p > p.. Since we do not have sufficient data near p,
we do not know what portion of the critical curve is
dominated by this crossover and what portion can be
used to study the approach to 7.(x =0).

A real-space renormalization-group treatment of
this model has been reported recently.'> Although
the results in absolute units [i.e., k7.(p)/J ] are not
very good, the reduced estimates 7,.(p)/T.(p =1) lie
only slightly above our values (see Fig. 6).

B. Critical behavior

Harris® predicted that the addition of impurities to
systems which had an « > 0 in the pure case should
produce altered critical exponents. He also argued,
however, that the width of the "impure" critical re-
gion should vary as x'/*. We have therefore attempt--
ed to analyze the critical behavior over as wide a
range of x as possible.

Since the specific-heat data show only a very weak
peak it is not possible to do a direct analysis in terms
of a power-law divergence

C=At""+8B , (5)

where 1 =[T — T.(x)]/T.(x). Instead we have used
finite-size scaling theory?® to interpret the finite-
lattice data. The maximum value of the specific heat
C max 1S expected to vary as

(Cox—B) o L* (6)

as L — oo where B is a "background" term. Since we
have no independent information regarding the con-
centration dependence of B, we have simply plotted
the raw data, i.e., have set B =0 for all x, and show
the result in Fig. 7. The pure lattice data (taken from
Ref. 22) show that the asymptotic form is reached for
L > 20. For small impurity concentration the size
dependence is quite similar to that of the pure lattice
except that the amplitude is reduced. For p <0.6,
however, the peak values appear to increase more
slowly. Two very different explanations may be
given: (i) the critical exponents change with p; or (ii)
the asymptotic size dependence is reached only for
lattices which are larger than those studied here. (In
addition it is possible that the background term B
changes substantially.) Harris® predicted that the
specific-heat peak should become finite with a max-
imum value which varies as x~!. If we assume that
the peak is finite and choose reasonable maximum
values which are consistent with the large-L data
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FIG. 7. Size dependence of the maximum specific heat.
Data for p = 1.0 are from Ref. 22. The dashed line has
slope «/v =0.195.

shown in Fig. 7 (at least for p < 0.7) we obtain a
much faster variation with impurity content. Harris’s
prediction, however, was made for small x and may
not be valid for such large impurity content.

The order parameter M and high-temperature sus-
ceptibility x data were analyzed in terms of the usual
power laws:

M =Bi® | (7a)
XT=Ct'""r , (7b)

where t=[T.(x)—=T1/T,(x) and t'=[T - T, (x)l/T.
The data showed finite-size rounding near 7,(x) and
we therefore eliminated much of the small lattice
data from the log-log plots of the order parameter
(Fig. 8) and the high-temperature susceptibility (Fig.
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FIG. 8. Critical behavior of the spontaneous magnetiza-
tion for various concentrations p of magnetic sides. The
solid line shows the asymptotic pure lattice (p =1) behavior
(see Refs. 22 and 32).
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FIG. 9. Critical behavior of the high-temperature suscep-
tibility for various concentrations p of magnetic sides. The
solid line shows the asymptotic pure latice (p =1) behavior
(see Refs. 22 and 32).

9). To within experimental error all of the order-
parameter data are consistent with the pure lattice
value’! of 8=0.31. Only data for p =0.4 seem even
to suggest a different value but this may be due to
error in the choice of 7, and/or finite-size effects.
The concentration dependence of the critical ampli-
tude B is = p'?3. The analysis of the high-
temperature-susceptibility data is shown in Fig. 9.
The data for all values of p can be fitted by the pure
lattice exponent y =1.25. The critical amplitude C is
virtually independent of concentration. The concen-
tration dependence of the critical amplitudes may also
be affected by crossover®® to the percolation transi-
tion.

V. SUMMARY AND CONCLUSIONS

The results of our Monte Carlo study describe the
behavior of the quenched, site impure simple cubic
Ising model over a wide range of temperature and
impurity content. Two different types of "rounding"
are observed. First, the addition of impurities tends
to decrease the relative size of the peaks with respect
to the background; and second, finite-size effects
clearly round off peaks and produce high-temperature
finite-size tails in the order parameter. "Although ef-
fects due to the addition of impurities are clearly
seen, we find no clear evidence of a change in critical
behavior. Harris has estimated® that the width of the
"impure" critical region should vary as ~ x'/®, and for
the present model, since « is small, this would imply
that new critical behavior would be observable only
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near T.(p). Recent preliminary work by Novotny

and Landau®? on the Baxter-Wu model (a = %!) indi-

cates that the addition of impurities does alter the
critical behavior. Hence, it is probable that none of
our "unrounded" data have penetrated the "impure"

critical region. Prohibitively large lattices would prob-

ably be needed for us to penetrate closely enough to
T.(p) to see changes in critical behavior. The best
hope of observing "impure" critical behavior would
appear to lie in the investigation of other models with

larger values of a which should then lead to larger
"impure" critical regions.
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