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Micromagneties of twisted amorphous ribbons
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Solutions of the micromagnetic equations for a twisted ribbon are given on the assumption of
isotropic magnetostriction and lack of crystalline anisotropy. This is the case of amorphous
magnetic materials. Both exchange forces and tension-induced anisotropy are considered to-

gether with the torsion effects, showing the small influence of the exchange term in most practi-
cal cases. Results agree with remanence and Matteucci-effect measurements in annealed sam-

ples of Metglas 2826.

I. INTRODUCTION

Torsion in a thin ribbon produces an inhomogene-
ous distribution of shearing stresses which varies
linearly along the thickness (x axis in Fig. I); see
Sec. II A). In a twisted magnetostrictive material,
this stress distribution will give rise to an inhomo-
geneous magnetoelastic anisotropy. If the magnetos-
triction is not isotropic and crystalline anisotropy is

present, the equilibrium position of the atomic mo-
ments is difficult to determine. Amorphous materials
exhibit no crystalline anisotropy, and their magneto-
striction is fully isotropic, so that the easy directions
will lie along the tension or compression lines into
which the shear stress can be decomposed, depending
upon the sign of the magnetostriction constant h„.
However, at x =0, exchange forces will tend to
smooth the transition between the two easy direc-

1

tions, which make an angle of —, 7r rad at this point

(see Sec. II).
For this reason, determination of the arrangement

of the atomic moments in a twisted amorphous rib-
bon requires a micromagnetic calculation, similar to
that of a wail between ferromagnetic domains, in

which both exchange and anisotropy are involved.
This distribution being known, it is easy to calculate
the longitudinal remanence as well as the transverse
or "circular" one. ' These quantities can be experi-
mentally checked by measuring the usual magnetiza-
tion curves and the Matteucci effect, respectively. '

Because experimental arrangements usually involve
some tension stress in order to keep the sample in a

fixed position during the application of torsion, such
a situation has been also considered in the present
work.

II. THEORETIC AL MODEL

A. Exchange-force contribution

I
I

1

I

FIG. 1. Orientation of a ribbon of thickness 2a and width

2b with respect to the xyz axis. Torsion is applied about the
z axIS.

In a first step of calculation, only exchange forces
together with torsion-induced anisotropy are taken
into account. If the ribbon is assumed to be infinite-
ly wide, i.e., b/a » I, the complicated stress distri-
bution caused by torsion' is reduced to a single com-
ponent

0yz 2p /ax rx

where p, is the shear modulus of the material, g is
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the torsion angle per unit length, and x is measured
in units of the half thickness a, so that v is the max-
imum value of the stress occurring at the ribbon sur-
face.

The magnetoelastic energy density can now be
found by introducing the value of o-„, in the general
expression

r

C d0'
+3k.,vx cos 28 =0

0 dx
(6)

Adequate boundary conditions are'

Minimization of this energy leads to the following
Euler equation:

Wrrm =
2

h. torr ( (rg cx r + 0 y cx 2 + rrg A 3 )3 2 2 2

—3 Xt t t(rr~at txg + Oy, cxpcl3 + 0'zg&3Qt) (2)
or

8(0) =0, ()'( +1) =0 (7a)

valid for a cubic crystal and setting A. ~pp= A, t~~ = A.,
for isotropic magnetostriction in our case. This mag-
netoelastic term is favorable for the magnetization to
lie in the yz plane, as is the demagnetizing factor
along the x direction. So if the magnetization vector
M, makes an angle 8 with the z axis at a point x (see
Fig. 2), we can write

W, = —(—))r.,rx sin283 (3)

C dH

2a dx
(4)

C being the exchange constant. The energy per unit
area due to the magnetization distribution can be
found by integrating the total energy density along
the thickness

tl
F. =2a J ( W, + W,„)dx

z )l

which implies that the easy directions are at + 45' to
the z axis. The exchange term is now

r r r

T'=3),ra'/C (g)

are shown in Fig. 3 for 0 (x ( l. As a consequence
of the symmetry of the problem, the magnetization
distribution on the —l & x ( 0 part of the ribbon
will be the same but inverted, so that a kind of 90'
wall centered at the plane xy is formed by the effect
of torsion.

When a magnetic field sufficiently high to saturate
the sample is applied along the z axis and then re-
moved, the remanence can be calculated as

1 1

M, =M, „cosHdxS Jp (9)

opposite directions being equivalent under the influ-
ence of stress. Equations (7a) and (7b) give the
same results with a shift of m- rad. The possibility
that 8(0) = —,m or , n will no—t be taken into account,

1 3

o~ing to the demagnetizing factor along the y axis
which is much greater than in the z direction.

Equation (6) has been solved by the finite differ-
ence method using a constant grid interval of 0.02
for x. A limiting value of 10 ' for 8'(1) was im-

posed. No significant difference was found by in-

creasing the number of points in the calculation nor
by lowering the final value of t)'(1).

Results for different values of the parameter
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FIG. 2. Equilibrium position of the magnetization vector
M, . 2a is the ribbon thickness and e the easy direction aris-
ing from torsion,

FIG 3. Variation of the angle between the magnetization
vector and the ribbon axis for different values of the
torsion-to-exchange ratio T.
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giving a value of 0.77M, for T =100. Considering
the experimentally obtained value of the shear
modulus of about 4 & 10' Nm ', a saturation magne-
tostriction constant of about 10 ' (Ref. 9) and taking
the exchange constant of the iron C = 2 x 10 " Jm ',
the mentioned value of T = 100 corresponds to a

twist of about 1' in a sample 10 cm long and 50 p, m

thick such as those used in the measurements (see
Sec. III). It is experimentally found that such a small

twist does not produce appreciable change in the
magnetization, so that another mechanism must be
responsible for the observed behavior.
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B. InAuence of the tension-induced

anisotropy

As mentioned above, the usual arrangements used
in torsion experiments include also a tension stress.
On the other hand, in amorphous materials any kind
of anisotropy must be stress-induced, so that we shall
always write an energy term of the form:

, = ——X, crcos 8
3 2 (10)

S = —, X, o.a'/C (12)

and T has the same value as in the preceding section.
The boundary conditions are those given in expres-
sion (7).

Numerical solutions of Eq. (11) can be introduced
in expression (9) to get the longitudinal remanence,
which is found to increase quickly with S, for a given
value of T. Nevertheless, the relative influence of

As deduced from Eq. (2) when 8 is the angle
between the magnetization vector and the direction
of the applied stress o-.

For a material of positive rnagnetostriction and
with an applied tension along its axis, the angle 8
coincides with that appearing in Fig. 2. The equilibri-
um position of the atomic moments in the ribbon can
be found by the same procedure used in Sec. II A,
and leads to the following equation:

1

d 8 =S sin 28 —Tx cos28
dx

t !

Here S is the ratio between the tension-induced an-

isotropy and the exchange term

FIG. 4. Remanence of the longitudinal magnetization vs

reduced torsion t (see the text), for different values of' the

tension to exchange ratio S. The lowest curve, represented
with a thick line, corresponds to a zero-exchange term and

is given by expression (15).

the exchange and tension terms can be emphasized

by taking as a constant the ratio between the tension
and torsion stresses. This is done in Fig. 4, where
curves for different values of S are plotted as a func-
tion of parameter t which expresses the torsion stress
in units of the applied tension:

t = T/S = 2r/a- (13)

8= —,
'

tan '(tx) (14)

Now an analytical expression for the remanence in

the z direction can be found by performing the in-

tegration in Eq. (9). This gives

For increasing values of S, the remanence curves
tend to a situation at which exchange contribution

can be disregarded. Although this will be the case
only for S = ~, in practice, this situation is reached
for a value as low as 100 for S, corresponding to a

weight of 1 g attached at the end of a sample 1.2 mm

wide and 50 IM, m thick, with the values of X, and C
previously used.

If, as seen, exchange forces are not important to

explain the magnetization distribution in a twisted

ribbon, they can be dr'opped out from Eq. (11), and

then the equilibrium angle 8 for the magnetization
vector is given by

M, = ' ([I +t' —(1+t')' ']' ' ——ln {2(1+t')'t'—2[1+t' —(I +t')' ']'t' —I}) (15)

represented as a thick curve in Fig. 4. In turn the expression

M, 'i sin edx = —' ([I +t +(I +t )'t ]'t —ln {[I+(1+t )'t ]'t +(I +t )'t }—0 533)M,
' &o J2t
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will account for an averaged transverse magnetization
at the remanence. This corresponds to the circular
magnetization in ferromagnetic wires and its variation
produces an emf appearing at the ends of the sample,
known as the Matteucci effect, which allows its mea-
surement.

0.9—

III. EXPERIMENTAL RESULTS

Measurements of both longitudinal and circular
remanence have been performed in annealed samples
of Metglas 2826. They were ribbons 10 cm long, 1.2
mm wide, and 0.05 mm thick. As received, some an-
isotropy is present in the samples as a result of the
fabrication procedure. ' ' After annealing 30 min at
320'C in a high-purity argon atmosphere, most of
this anisotropy disappeared, and saturation occurs at
fields lo~er than 250 Am ', in contrast with the
5 & 10 Am ' fields which were needed without the
annealing. Samples were shown still to be amor-
phous after heating, by x-ray diffraction.

During measurement the samples were kept at a
consta'nt tension and the earth's field was accurately
compensated. The torsion mechanism was able to
detect 1' of torsion. The applied field was supplied
by a Helmholtz system operating at 50 Hz, and the
longitudinal magnetization measured by means of a
secondary coil of 500 turns connected in opposition
with a compensating coil of the same characteristics.
For measuring the Matteucci effect, the emf appear-
ing at the ends of the ribbon was used. In both cases
the signal was integrated by means of an electronic
fluxmeter and displayed on an oscilloscope. For high
torsion, hysteresis 1oops are fully squared both in
longitudinal magnetization and Matteucci effect; how-
ever, for low torsion the shape effect is important,
owing to the high permeability of the samples, and
remanence was taken as the extrapolation to zero
field of the apparent saturation zone in the observed

14, 15

Results for three values of the applied tension are
plotted in Fig. 5. They show good agreement with
the predictions of Eqs. (15) and (16). Fitting of the
experimental data, however, needs minor changes in
the strength of the nominally applied tension when a
shear modulus of 3.7 &10' Nm was used in the
formula. This value was experimentally obtained, by
means of a torsion pendulum, ' so that discrepancies
must be due to some remaining anisotropy in the an-
nealed samples.

Agreement between the theoretical and experimen-
tal Matteucci-effect remanence implies that the rib-
bon behaves as a coil of area 0.64al, a being the half
thickness and I the length of the sample. On the oth-
er hand, this proportionality factor between the emf
induced in the ribbon and the time derivative of the
average transverse or "circular" magnetization, can be
obtained by solving Maxwell's equations in some
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FKJ, 5. Remanence of the longitudinal magnetization
(upper), and Matteucci effect (lower) as a function of the
applied torsion, for different values of the tension stress.
(0) 8, (6}16, (D) 24 M mm 2. Full lines are given by ex-
pressions (15) and (16).

IV. CONCLUSIONS

It has been found that torsion in a ribbon induces
an inhomogeneous distribution of the anisotropy, so
that the magnetization varies continuously along the
thickness of the sample. In such a situation, the
magnetization process cannot be described in terms
of domain theory, solutions of micromagnetic equa-
tions being needed.

The macroscopic 90' wall formed in the sample is
determined by the stress-induced anisotropy, ex-
change forces being negligible for the usual dimen-
sions. For annealed samples, such as those studied,

simple cases. The fact that M„has opposite signs for
x )0 and x (0 can be taken into account by averag-
ing only in the half thickness of the ribbon. There-
fore, supposing A, (x) to be the only nonvanishing
component of the potential vector, the procedure
outlined in Ref. 1 gives for this factor

2
al when M~

is constant and
3

a/ for M~ increasing linearly along
the thickness. The experimental value is close to the
latter, as expected.
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only applied stresses must be taken into account in

order to explain the observed behavior. As prepared,
however, amorphous ferromagnets exhibit a compli-
cated distribution of stresses, and a deeper treatment
must be done in order to theorize their response to
torsion.

On the other hand, the influence of the exchange
term depends upon the square of the thickness, so
that the thinner the sample, the stronger the ex-
change contribution. In this way, a study performed
on samples of decreasing thickness down to thin
films should be of interest for determining the influ-

ence of the exchange interactions.
Although a simplified model has been recently pro-

posed' by the authors, further work on the dynamic
magnetization process is now being carried out on the
basis of the static magnetization distribution devel-
oped in this paper.

ACKNOWLEDGMENT

The authors wish to thank Professor S. Velayos for
his guidance.

Present address'. Department of Physics, Faculty of Chem-
istry, Alza, San Sebastian, Spain.

'A. Hernando and J. M. Barandiaran, J ~ Phys. D 11, 1539
(1978).

2R. Skorski, J. Appl. Phys. 35, 1213 (1964).
3A. Hernando and J, M. Barandiaran, J. Phys. D 8, 833

(1975).
4G. Cecci, A. Drigo, and F. Ronconi, J. Appl. Phys. 48, 369

(1977).
A. E. H. Love, The Mathe»latieal Theory of'Ela.stici1y

(Dover, New York, 1944), p. 311.
A. Herpin, Theotie iht Map»etistne (Universite de France,

Paris, 1968), p. 371.
L. Goursat, A Cout»e in Mathe»~atical Analysis (Dover, New

York, 1964), Vol. III, part 2, p. 253.
L. Collatz, The Nu»tet'ic'al Tt'eatinent of'Di fferential Equation»

(Springer-Verlag, Berlin, 1966), p. 141.
P. J. Flanders, C. D. Graham, and T. Egami, IEEE Trans.

Magn. MAG-11, 1323 (1975).
' T. Egami, P. J. Flanders, and C. D. Graham, Appl. Phys.

Lett. 26, 128 (1975).
"C. L. Chien and R. J. Hasegawa, J. Appl. Phys. 47, 2234

(1976).
'2H. Fujimori, Y. Obi, T. Masumoto, and H. Saito, Mater.

Sci. Eng. 23, 281 (1976).
' S. Tsukahara, T. Satoh, and T. Tsushima, IEEE Trans.

Magn. MAG-14, 1022 (1978).
' J, J. Becker, IEEE Trans. Magn. MAG-11, 1326 (1975),
'5J. M. Barandiaran, A. Hernando, and E. Ascasibar, J.

Phys. D 12, 1943 (1979).
'6S. Fairman and C. S. Cutshall, Mechanic» of Matetial»

(iley, New York, 1953), pp. 62 and 71,
'7A. Hernando, J. M. Barandiaran, M. Vazquez, V. Madur-

ga, and E. Ascasibar, J. Magn. M &gn. Mater. 15—18, 1537
(1980).


