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A classical mean-field model, incorporating quadrupolar and bilinear exchange coupling 'ind a

strong but finite cubic crystal field, is developed here for DySb at temperatures above the Neel

point, Paramagnetic equations of state are derived in simple form for a small magnetic field ap-

plied along various principal crystallographic directions. Quantitative comparisons are m ide with

exact crystal-field calculations and with a recent quantum-mechanic il mean-field analysis of quad-

rupolar exchange in DySb. The classical model gives very reasonable overall agreement and

shows explicitly how the two cubic components of the quadrupolar exchange are manifested

very differently in the magnetic properties for thermal energies small compared to the crystal-

field energy.

I. INTRODUCTION

A wealth of experimental information has accumu-
lated on the magnetic and related properties of the
cubic (NaCl-structured) rare-earth pnictides. One of
the most thoroughly explored of these compounds is

DySb. Of particular interest has been its first-order
Neel-point transition (at T~-—9.5 K) and its field-
induced quadrature-spin state, in which the sublattice
moments are oriented along two orthogonal (100)-
type easy directions closest to the applied field direc-
tion„similar to the ferrimagnetic structure of HoP in

zero field. ' Both of these and many other unusual
features of the magnetic phase diagrams of DySb are
well documented by magnetic and neutron diffraction
measurements' and have been attributed to strong
quadrupolar interactions. " The existence of such in-

teractions, of magnetoelastic and intrinsic exchange
origin, has been shown to explain the elastic-constant
softening observed ultrasonically in this compound as
its temperature is lowered to Tv. ' " Recently, our
detailed analysis of magnetization data for DySb
above T~ has also disclosed the significant presence
of quadrupolar interactions. "' However, unlike the
elastic-constant results which were fitted with
temperature-independent quadrupolar coupling coef-
ficients, our magnetization results indicated that
these coefficients vary drastically (even changing in

sign) as the temperature approaches very close to T~
This possible discrepancy, as well as a general need

for clearer understanding, has motivated us to exam-
ine the basis of our data analysis, Essentially, this
analysis' ' consisted of a comparison of the mea-
sured isotherms of magnetization M vs H (the field

applied along a principal crystallographic direction,
corrected for demagnetization) with the correspond-
ing isotherms of M vs H, rr (the total effective field in

the same direction) which were calculated from an
experimental knowledge of the crystal-field states of
DySb. ' The difference H, ff

—H at the same M was
taken as the net exchange field H, „,,h on each Dy'+
ion. The dependence of H, „,.h on M was found to
contain not only a linear term, which is isotropic,
temperature independent, and readily ascribable to a
bilinear exchange coupling, but also a substantial M'
term (plus terms of still higher order) which is highly
anisotropic and variable with temperature. This cubic
term was fitted successfully at each temperature and
field direction by incorporating a mean-field
quadrupole-quadrupole coupling of cubic symmetry
into the model calculations. The results of these fits
showed that'the two quadrupolar coupling coefficients
are very different from each other in magnitude, as
well as highly temperature dependent near T~, as
mentioned earlier.

At all stages of this analysis, we implicitly assumed
that a paramagnetic DySb crystal remains structurally
cubic even when subjected to a magnetic field. Thus,
any magnetoelastic effects, which could provide an
additional mechanism for quadrupolar coupling, were
not explicitly included. However, even without these
effects, the computer calculations involving the
crystal-field states of cubic DySb were quite compli-
cated, and the introduction of additional processes
would be difficult. For this reason, we considered it
advantageous to develop a simplified crystal-field
model for cubic paramagnetic DySb, which would in-
clude bilinear and higher-order exchange interactions
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and for which the later inclusion of various magne-
toelastic effects should be relatively easy to achieve.

With suitable modification, the model that lends it-

self readily to this purpose is the so-called "cubic
model, " as applied to rare-earth pnictides with strong
cubic crystal fields. " According to this model, the
crystal. -field states of paramagnetic DySb would be
considered to have sixfold degeneracy in zero field,
corresponding to projections of the magnetic mo-
ments along the six (100)-type easy directions of
magnetization. Effectively, the small ( —9 K)
separation between the lowest lying I 6 doublet and I 8

quartet of the actual crystal-field levels of DySb'
would be neglected. As a further simplification, since
the total angular momentum number J of Dy'+ is al-

ready very high (—, ), we will take this model to the

classical limit while allowing the cubic anisotropy to
be finite but large compared to the thermal energy.
Bilinear and higher-order exchange interactions will

be included within the mean-field approximation. In
Sec. II, this model will be used in deriving, in explicit
form, the paramagnetic equations of state of a DySb
crystal in an external field parallel to various principal
directions. In Sec. III, these equations will be applied
to our experimental M(H, T) data, and the numerical
results for the interaction coefficients will be com-
pared to those obtained previously by exact computer
calculation.

II. CUBIC MODEL ANALYSIS

A. General considerations

For a rare-earth pnictide such as DySb with total
angular momentum J and Lande factor g per rare-
earth ion, with a cubic crystal field (coefficients:
84, 86), isotropic bilinear exchange (coefficient: I),
and cubic quadrupolar exchange (coefficients: K, L),
in an external field H, the mean-field magnetic Ham-
iltonian may be written'

H =B404+8606—gp, gH J

—l(J) J —K((02 )02 +3(02 )02 )

—3L ((P )P + (P, ) P, + (P )P ), (1)

where the quadrupolar operators, 02 =3J,' —J',
02 = J„'—J~', and P &=J~J~+ J~J~. The crystal-field
operators can be expressed in a cubic representation
as follows':

04=04 +504 =20R4+const

06 = 06 —2106

= 616R6 —280(3J' —7)R4+ const,

where R„=J„"+J~ +J,". In the classical limit, the
operators in Eq. (1) all commute, and we have for
the magnetic energy (within an additive constant):

E = —(o4/P') (P'+Py'+P')
—(D6/p') (p.'+ py'+ p') Hp-
—) (P) 7 —) I((p')P'+ (Py')Py'+ (P*')P')

2~2( (Pxpy ) Pxpy + (P yP z ) PyPz + (PzPx & P zP'x )

(2)

where p, ( = g p, s J ) is the rare-earth ionic moment,
D4= —20J4[84 —14(3J2 —7)86], D6= —616J686,
h. =I/g'pa', X)=6K/g4ps4, and A2=6L/g4ps4.
Note that if h. ~

= Xq (i.e. , K = L) the quadrupolar
exchange terms in Eq. (2), taken together, form the
mean-field version of an isotropic biquadratic exchange
term.

In determining the various thermal-average quanti-
ties, such as (p,,'), we will ultimately consider that
the crystal-field energy dominates over the thermal
energy (kT) and that the latter dominates over the
Zeeman and exchange energies. In this regime of ap-
proximation, which corresponds to the physical situa-
tion of our magnetization measurements on DySb
above the Neel point, the states of any appreciable
thermal population are. those for which the rare-earth
moments are oriented closely parallel to the six
cube-edge easy directions (+x, +y, + z). For the
case where p,„=+ p„we obtain from Eq. (2) to
second order in p~ and p,„

E ( + x) = —D4 —D6+ (D/p') (p»2+ pz') + (Hx+ ~ (p„) ) [p, —(py + p, ,')/2p ]

- (II, + ) (p„& )p,,- «, + )t (p. ) )p., - ', [(p.'& (p.
' py' p.') + (p y') p-y'+ (-p.'& p,']

2~2[ —(PxPy)PPy+ (PyPz)PyPz —(PzPx)PPz]

(3)

where D =2D4+3D6= —SJ4[584+7(3J'+70)86]. Permutation of xy, z in this equation gives E (+y) and
E (+z), corresponding to p» = + p, and p, , = + p„respectively. For convenience, we define the related quantity,

W(+ g) = —[E ( + g) + Lip, (p,, ) +D4+D6] (4)
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where g =x, y, or z. Thus, for a typical thermal aver-
age, we have

(q) = [ Y„(q) + Y, (q) + Y, (q) ](Z„+Z, + Z, ) ', (5)

where we have defined, for P = 1/kT,

Y (q) =, , q (ega'(+ )x+ep&(-x) ) d

(eP))'(+x) + eP))'( —x) ) d

and similar1y by permutation of x,y, z. In general, we
can write

p W (+x) = Co+ C) py/p, + C3pz/p, + C3jlly pz/p'

+ C,p, '/p, '+ Csp, ,'/p, ' —)8D (p,,'+ p,')/p'

po=PP(&+)t(p) ) .

p) = , P~I—p'(p' 3(p—,')

» = 2»'3p'(py p, ),
P3=2P)(3P (PxPy)

(6)

where (p, ) is the average moment in the direction of
H. Since all these quantities are taken to be much
smaller than /3D, then for p» and p, , small compared
to I[L,

and similar expressions for )B W( —x), P W(+y),
etc. , in each of which the C's depend on the direction
of the applied field H and can be expressed in terms
of the following dimensionless quantities:

er) «+x) = e o[ 1 + C)py/p + C3pz/p + (C3+ C) C3)py pz/p

+ (C, + —,C) )p, /p, + (C3+ —,Cj ) p, , /p ] exp [ —/3D (Py + P* )/P ]

and similarly for the other exponentials in the above
integrals. Furthermore, since the limits of integra-
tion can be safely extended to + ~, the integrals take
on a readily determinable form,

In what follows, H will be considered parallel to
each of the principal cubic directions. In each case,
expressions will be given for P W(+ (z), where
(=x, y, or z, and for the various thermal-average
quantities as they emerge interrelated from the in-
tegrations. An equation of state will then be derived
in the form of an expansion for small H.

B. Field parallel to (100)

I

above, and defining n = (2pD) ', we find

(p, ) = pZ '( [ 1 —n(l —2p) —p3) ] sinhp()

—npo cosll po+ 2npoe

(p, ,') = p, 'Z '{ [1—n(2 —2p) —P33)]coshp()

—
p() sinhp()+ 2ne" ],

(p.Py ) = p Z '(2n p3e '),

(pyp, , ) = p, 'Z '(2np3coshp())

where

(7a)

(7b)

(7c)

(7d)

We first consider the case of H = zH, for which

—(p, ,') ), and (pyp, , ) = (p,,p,„),from symmetry.

From Eqs. (3) and (4), we obtain

/3«+x) p' =P)p'+ P3ppy+ (Po+ P3)pp,

+P3PyPz P)Pz PD(Py+Pz),

P W(+y) p,
' =P W(+ x) p,

z

with p~ replaced by p,„,

pW(+z)p'= +PoP +P3P(P +py)+P3P Py

+ (+ —,Po+ P) —/3D) (Px + Py )

where the p's are defined as given in Eq. (6). Per-
forming the appropriate integrations, as described

Z = [1 + n(2p) + pz3) ] coshpo —
po sinhpo

+ [2 —n(2p) —p(') —
p3

—p3) ]

The averaged quantities, being contained in the p's,
can be determined self-consistently from these equa-
tions. In fact, since p3 and p2 are proportional
respectively to (p,„py) and (pyp. , ), it follows im-
mediately from Eqs. (7c) and (7d) that
(p,„py) = (pyp, , ) =0. Hence„ in the rest of these
equations, we set p2 = p3 = 0. Moreover, we expand
the hyperbolics and exponentials for small po and p],
and let p) =/»po From Eq. (7b), it .follows that:

b = ——p](1+—p] —6n)1 2

to second order in p] = —,Pk]p, . We then let

(r = (p)/p, =a)po+a3po+ in Eq. (7a), determine
a, and a3, and find from the inversion of this o.(po)
series that

po=3o. +2(9n 3g) 2g)z +36g)n)(»3
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which, written out explicitly, is the equation of state,

H= 3, —Z(p)kT

p

r z

Z' 49kTkT3gl 1+ lp6kT()3
p4 D 3kT D

which similarly is valid for small (p, ) and
A. ]p,

4 &( kT &( D. Note that for the other quadru-
pole moments,

(p.») = (»p*) = (p.p. ) =0

The fact that the latter are all zero is related, of
course, to the fact that P 2 does not appear in the
equation of state.

valid for small magnetization (p, ) and for the condi-

tion, A. ]p,"((kT (&D.
From p~ = b po = 9b a-' and the expression for b, we

also obtain the average quadrupole moment,

(p,,') —
—,
'

p,
' = (1+—,'gi —6a) p, 'o'

= (1+X', p4/3kT —3kT/D) (p, )~, (9a)

C. Field parallel to (110)

We now consider the case of A = (x +y ) H/J2, for
which (p,„)= (py) = (p)/J2, (p,, ) =0, and as in

the previous case, (p,„') = (py) = —, (p, ' —(p, ,') ) and

(p, p, , ) = (p,,p,„), from symmetry. Following the
same procedure as before, we obtain:

p W(+x) p, = + Pop +Pip + (Po + P3) p py + Ppppz +Pppypz P~pz + (+
& po

—PD) (py + pz ),

P W(+y) p,
~ =P W(+ x)p,

~

with p~ replaced by p.„,
/3 &(+z) p' = (po+ p~) p( p. +») +P3p.»+ (» —~D) (&'+» )

where po= po/J2. And from the integrations, we

find

(p, ) = %2p, Z '
[ [ 1 —

) a(2+ 2P) —2p3 —po —
pq

—p3) ]

I

o = (p, )/p, =a,po+a3po3+ in Eq. (10a) and deter-
mining a ~ and a3, we obtain from the inversion of
this o (po) series that

po=3ry+
&

(
&

—9a 3g] 2g&
] 9

x e 'sinhpo+apo]

(p,,') = p, 'Z ' [2ae" coshpo+1

(loa)
+ 36g, a —18gpa') (r'

which, written out explicitly, is the equation of state,
—a(2 —2pt po p2) ] (lob)

(p,„py) = p, 'Z '[2ae '(posinhpo+ p3coshpo) ],(10c)
H= 3 —k(p, )

kT

p
2

(pyp, , ) = p, 'Z '(ap, )

where

(1od) z

9kT
1

kT
4p4 D

gt 4
3~ l+ 1I 6kT
4 ' 3kT D

Z =2[1— (a2p~ —po——
p~

—p3) le" coshpo

—2apoe ' sinhpo+ 1+a (2p I + po'+ p2)

Since p~ is proportional to (pyp, ,), it follows from
Eq. (10d) that (pyp, , ) =0. We then set p, =0 in the
rest of these equations and expand the hyperbolics
and exponentials for small po and p~. Letting

p3 cpo in Eq. (10c), we find that c = —gqa, to first

order in gq= 2Ph, qp, . Then, letting p~ =8 po, we find
from Eq. (10b) that

~ = 6gl( 13+gl
1 2

valid for small (p, ) and for X~p, , &qp,
" && kT && D

Regarding the average quadrupole moments, we
obtain from p] = b po = 9b o- and the expression for b,

(p') ——,
' p' = —

—,
' (1+—,gi —6a)p'a'

= ——,
' (1+)',p'/3kT —3kT/D) (p, )'

(12a)

and from p3=cpp=3&2&~,2 2

to second order in g~ = —Ph. ~p4. Finally, by letting (p,„py) = 3ap, 'o'= (3kT/2D) (p) ~ (i21)
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and as we have already shown,

(12c)

In this case, since (p„py) A 0, h. z does appear in the
equation of state, but only by virtue of kT/D being
nonzero.

III. COMPARISON %ITH EXPERIMENT

The three paramagnetic equations of state, Eqs.
(8), (11), and (14), have the general form,

H =
z)hkl ( T) M + r) hkl ( T) M (16)

D. Field parallel to (111)

x sinhpo'+ po coshpo'} (13a)

(p,„py) =pzZ '[2n(po' sinhpo'+ p3coshpo') ], (13b)

where

Z = 3 [1 + n (po' + p3) ] coshpo' —3apo' sinhpo'

Expanding the hyperbolics for small pp and letting

p, =cpo, we find from Eq. (13b) that c = —,g3fz, to
2

first order in g3=2p)i3P . Then, letting
o. = (p, )/p, = a Jpo+ a3po+ in Eq. (13a) and deter-
mining a

~ and a3, we obtain from the inversion of
this o.(po) series that

po= 3o. + 3(1- a4-4 gn3') fy

Finally, we consider the case of H = (x+y+z)HIJ3,
«r which (P ) = (P ) = (J .) = (J &/~3. (P') = (P ')
= (p 3) = —,

'
p, ', and ( p,„p,,) = (p, p, ) = ( P,,P„), from

symmetry. Again, following the same procedure, we

obtain:

/3 II (+x)P = + PoP + (po'+ p3) p (P, +P, )

+ p3py pz + (+ 3 po PD) (py +p,')

where po'= po/v 3, and permutation of x,y, z gives

P W(+y) p,
' and P II'(+ z) p, '. The integrations now

yield

(P ) ~~PZ [ [ I o( I 2P3 Po P3) ]

where M = (p, ), the magnetization per rare-earth ion
parallel to (Jlfkl ), the direction of the external mag-
netic field H. Taken together, they have two features
of note. The first and most obvious is that

rJJoo(T) +3rJJJJ(T) =49llo(T) (17b)

which presumably reflects the cubic symmetry as-
sumed for the crystal field and for the quadrupolar
exchange.

In order to compare our analytical equations of
state with the exact crystal-field calculations and the
paramagnetic data analysis for DySb described earlier,
we will consider that in Eq. (16) under fixed condi-
tions, the applied field is expressible as

H = H, f[
—H,„,h

where H, q[- is the total effective field in a crystal-
field-only analysis and H, „,h is the average exchange
field. Thus, Eq. (16) can be subdivided into the fol-
lowing two parts:

Huff Khkl ( T) M + Khkl ( T) M (18a)

gloo(T) = allo(T) =rJJJJ(T) =3kTlp —h. , (17a)

which expresses the fact that the initial susceptibility
()to= q ) is isotropic and obeys the Curie-Weiss law

with a paramagnetic Curie point proportional to A. ,
the isotropic bilinear exchange coefficient. Second,
the q' functions containing the quadrupolar exchange
coefficients () I, h. 3) are anisotropic but obey the sim-
ple relationship,

which, written out explicitly, is the equation of state, Hexch h'hkl( T)M + hhkl( T)M (18b)

H= 3, —)i (p)
kT
p,

According to the equations of state (8), (11), and
(14), the coefficients in Eq. (18a) are

f t

+ 3, 1 —2 —6h. z (p, )', (14)
p,

4
l l

valid for small (p, ) and for h. ,'p4 ((kT ((D
For the average quadrupole moments, we have

from the outset that

(ISa)

K[pp = K]]o= K[]]= 3kT/ p,
/ 2

Kloo= (9kTIP4)kTID

K'l lo = (9kT/4p, ) ( I kT/D)

Kill = (3kT/p, )(1 2kT/D)

and the coefficients in Eq. (18b) are

(19a)

whereas from p3 = c po = 2g2o. o-', we obtain

(p'py) =(pyp. ) = (p.p. & =«TID)(J &' .

which explain, respectively, the nonappearance of A. ]

and the appearance of A. 2 in the equation of state.

"[oo= ~[[o= ~[[[= ~

J~ Joo
= 3Ã

J ( I + 3 I P /3k T 6k TID)
i19b&

X'Jlo= —hI(l + hip /3kT —6kT/D. )+ —,)Jz(kTID)'

JiI J, = 6X', (kT/D)'
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The crystal-field calculations previously carried out
for Dy'+ (J = —, , g = —, ) in DySb were based on the

parameters, A, (r4)/k =60 K and A6(r6)/k =2 K, '6

and yielded values of M as a function of H, ff for dif-
ferent temperatures and field directions. " The calcu-
lated results, when examined at small M, are found
to give isotherms of H, rr/M vs M' that are linear and
which therefore conform to Eq. (18a). The values
thus determined for p Khaki and p Kr'kI (both in kOe
units, where p, =gJp, a=10p, a) are plotted versus
temperature, for hkl =100, 110, and 111, in Fig. 1.
The values of jxKi,ki, which are isotropic and labeled
simply as p, K, vary almost linearly with temperature.
For comparison, we have also plotted p~ =3kT/p„,
from the isotropic expression in Eq. (19a), as a
dashed line, and there clearly is close agreement. In
order to include in our comparison, values of p, 'Kl', ki

derived also from expressions in Eq. (19a), we must
first arrive at a suitable value for D, the cubic
crystal-field parameter. Referring back to our
analysis, we note that D = —8J4[5B4
+7(3J'+70)B6]. When we substitute into this ex-
pression, B4/k = —3.55 x 10 ' K and
B6/k = +2.07 x 10 K-(corresponding to the above
values for A4(r4) and A6(r6) ) and also J = —, , we

obtain D/k =362 K. With this value of D and the
expressions in Eq. (19a), we calculated p K/ki versus
temperature for different hkl, and the results are
represented in Fig. 1 by long-dashed curves. The
agreement with the exact crystal-field calculations is
very good in the (100) case, but less so in the (110)
and (111) cases, especially at temperatures above 20
K. As an alternative, we have chosen D/k =200 K
and again calculated JKKpkI versus temperature from
the expressions in Eq. (19a). These results are
represented by short-dashed curves in Fig. 1, and
now the agreement with the crystal-field calculations
is best in the (111) case and worst in the (100)
case. Clearly, a compromise value of about 280 K
for D/k would give optimal overall agreement at low

temperatures between the classical cubic model and
the exact crystal-field calculations for DySb.

With this approximate value for D, the cubic
crystal-field parameter of our classical model, we can
now use the expressions in Eq. (19b) to convert ex-
perimentally derived values for A. ]pp and A. ~~~ obtained

l50

100

{kOe}

50

0 10 20 30
T(x)

l

40

FIG. 1. Values of p, ~ (closed circles) and p, Khaki (open
circles), from exact crystal-field calculations for DySb, plot-
ted vs temperature. Dashed line for p, ~ vs temperature
derived from Eq. (19a). Long-dashed and short-dashed
curves for p, Kl',ki vs temperature derived from Eq. (19a)
with D/k =362 and 200 K, respectively.

for DySb at various temperatures into corresponding
values for the quadrupolar exchange coefficients, A. ~

and A. 2, respectively. The latter can then be related,
~espe~ti~ely, to K and L, the quadrupolar interaction
coefficients in Eq. (1), the quantum-mechanical
mean-field Hamiltonian of the problem. This Hamil-
tonian, in fact, was previously applied to paramagnet-
ic DySb with no further approximation, whereby ex-
act self-consistent calculations' were employed in fit-
ting the experimental A. ~pp and A. ~~~ values listed in
Table I and thus determining K and L. The values of

I

TABLE I. Quadrupolar coupling coefficients for DySb. (A. ~pp and A, ~~~ in units of Oe/p~, K/k and L/k in units of 10 K.)

r(K) I
"happ K/ke L/k' K/kb L/kb

12
14
18
22

0.0
+ 4.3

+ 14.7
+ 22.9

+ 15.2
+6.7
—5.0

—10.5

0.00
+0.82
+ 2.81
+ 4.34

+107.8
+ 49,2
—41.0
—79.7

0.00
+0.69
+ 2.47
+4.17

+488. 1

+ 158.1

—71.3
—100.3

' Values derived from exact mean-field calculations in Ref. 14. " Values derived from Eq. (19b) with D/k =280 K.
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the latter (divided by k) are also listed in Table 1, for
the same temperatures above the Neel point
(—9.5 K).

Starting with the same values for Xipp and A. iii and
using D/k = 280 K, we have calculated h. l and h. 2

from the simple expressions in Eq. (19b) and con-
verted these directly, through the same proportionali-
ty factor ( —g p, s, where g = —, ), into K and L, respec-

tively. Our results for K/k and L/k are also listed in
Table I, and in the case of the former there is re-
markably close agreement with the K/k values previ-
ously deduced from the more exact analysis. In the
case of L/k, the corresponding agreement is not
close, but our present results do show a similar con-
trast with the much smaller absolute values of K/k,
despite the lack of such a contrast between the exper-
imental values for A. happ and P iil. In this context, our
present analysis gives an explicit explanation for the
contrast between K and L Namely. , in Eq. (19b), we
note that h, 2 (which gives L) is related to XI|| through
the factor (D/kT)' which is of order 10' for DySb
over the temperature range of interest, whereas the
relationship between h.|(which gives K) and Xipo

contains no such enhancement factor. This
phenomenon is related to the fact that in the (111)
case the quadrupole moments have to be thermally
excited into existence against the strong crystal field,

as indicated by Eq. (15b), whereas this is not so in
the (100) case, as shown by Eq. (9a).

Thus, in summary, our classical analysis does cap-
ture, in simple explicit form, all the salient magneti-
zation properties o~' paramagnetic DySb related to its
quadrupolar interactions as interpreted on the basis
of a cubic crystal field. At this stage, magnetoelastic
distortions of the crystal and their effects on the quad-
rupolar coupling have been totally neglected. Such
effects are known to play an important role in DySb,
as we mention at the start, and they may well be the
physical origin of the peculiar behavior we have de-
duced for the effective quadrupolar coupling in DySb
just above the Neel point. Fortunately, the simplicity
of our model makes it relatively easy to incorporate
any magnetoelastic mechanisms and study their vari-
ous property effects in detail, and we are presently
carrying out an investigation of this kind.
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