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Statistical calculation for a model ferromagnetic liquid

I

Laura Feijoo* and Chia-Wei Woo'
Soliel State' Se'ie'rre'e' Di)'isiorr, Art', orrrre lVafiorral l.abor'ator's', Argorrrre'. Illirrois 60439

arr&I De'par trrrerrt o/ Phvsie's aruI Astr'or rorrrv', JVor this este'r'rr Urri l e'r sill', E l'arrstorr. Illirroi s' 6020I

V, T. Rajan'
De'par trrre'rrt o/' Phvsie'» arreI Astr orrorrri-', Nor thee'ster'rr Urri l'e'r »itl', El'arrstorr, Illirroi» 6020I

(Received 14 J january 1980)

A theoretical method is developed for treating model ferromagnetic liquids. In this method

the spins are treated in the mean-field approximation while spatial correl actions lre retained in a

manner simil lr to conventional theories of classical liquids. Coupled self-consistency equ actions

for the magnetization and an effective radial distribution function are derived and solved. The
method is applied to a primitive model char lcterized by a simple spin-dependent interparticle

potential. Conditions under which such & simple liquid can exhibit ferrom magnetic order &re

determined. Numerical examples show how the tr &nsition temper &ture and the temper lture

dependence of the magnetization can be calcul lted.

I. INTRODUCTION

Since 1968 there have been sporadic reports of ex-
perimental evidence that ferromagnetism can exist in

the liquid state. Busch and Guentherodt" reported
that such a phenomenon occurs in Au-Co alloys near
the eutectic at 27 at. % Co. Their finding was disput-
ed by Nakagawa, ' who believed that the observed
magnetization had probably originated from precipita-
tion of the solid phase. Kraeft and Alexander4 re-
ported a confirmation of the results obtained by
Busch and Guentherodt. However, there were cer-
tain discrepancies between the two sets of data.

Several theoretical analyses followed, by Handrich'
and Kalaf and Wu' using simple Heisenberg and Is-
ing models, and by Hemmer and Imbro' using a
hard-sphere model with weak long range forces. The
techniques employed by these authors were basic illy

the mean-field approximation and modified mean-
field theories. A different approach was used by

Hsye and Stell, ' who proposed a hard-sphere model
which is exactly solvable in an appropriate spherical
approximation for a variety of exchange interactions.

In studying the molecular theory of liquid crystals
we have developed a theoretical method which is

suitable for treating order-disorder transitions in

liquids. In particular, we are able to calculate the
change in free energy which arises from the ordering
of a nonspatial degree of freedom. As a first step in

developing a theory for liquid ferromagnetic alloys,
we apply the method to a primitive model, and deter-
mine the conditions under which a simple liquid can
exhibit ferromagnetic order. The model spin system
treated here does not bear any resemblance to reality.
On the other hand, we believe that our present liquid

theory has an edge over lattice model calculations.
Liquid ferromagnetism has at best a marginal ex-
istence. It results from critical competition between
spatial ordering and spin ordering. An unrealistic
description of the liquid phase would render conclu-
sions which are totally meaningless.

We begin with A' particles with a classical spin de-
gree of freedom. The interaction potential is chosen
to be of the form

m=(s Ii) (2)

We seek to calculate T, , the temperature at which the
system undergoes a transition from a magnetic phase
to a nonmagnetic phase, and the temperature depen-
dence of the magnetization just below T, .

In Sec. II we outline a statistical mechanical formal-
ism which, given an interaction potential, enables us
to calculate the magnetization as a function of the
temperature, the number density of the system, and
the strength of the coupling between two spins. We
define a generalized distribution function P~ for the
system and an appropriate free-energy functional 5.
An approximate form of P& which embodies a
mean-field treatment of the spins and an accurate
description of pair correlations in the liquid is intro-
duced. Minimizing 5 with respect to such an approx-
imate P& yields the equilibrium distribution function

&( "l ~ sl| "2 s2) UO(112) + Ul(I 12) sl s2

(l)
where r; and s; denote the position and spin of the
ith particle, respectively.

The order parameter for the spin system is defined
as the magnetization along an arbitrary direction, tr,

in space
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P~, and with it the magnetization.
Iri Sec. III we apply our formalism to a model sys-

tem ~hose pairwise potential takes the form of Eq.
(1) with

multiplier o

=u= X u(i, ,j) +kT[lnP&(1, . . . , N) +1] . (7)

and

uo(1) =4eo[(rrlr)' —(air) ]

u, (r) = —e, ((r/r)' .

(3)

(4)

Thus,
r

O 1 m U(l J)P~ =—exp —~Z;&j kT

where

(8)

The forms of uo(r) and u~(r) are chosen arbitrarily.
In particular, vo(r) is chosen since a wealth of infor-
mation already exists for Lennard-Jones liquids.
Coupled self-consistency equations are derived, and
solved for various choices of the potential parameters

&p, E~, and a-. We then summarize our results,
present our tentative conclusions, and indicate the
direction of future work.

II. GENERAL FORMALISM

We define a generalized distribution function
P~(1, . . . , N) normalized such that

Py(1, . . . , i, . . . , N) dl dN =N! . (5)

Here i denotes both the position coordinate r; and
the spin coordinate s;, and d 1 dN denotes
d r

&
d s ~

d r& d s&. In terms of this probability
function, we define a free-energy functional:

&[Pe] =F;d..i

i&J N!

1

Z =, exp —X '~ dl dN
1 ~(I.j)

N! kT

Pw ( I, . . . , N) = N! Q S ( s, ) 4'tY ( r i, . . . , r tY )

under the constraints

(10)

This result, obtained without approximation, gives
the equilibrium distribution function for a classical
system as anticipated.

Equations (8) and (9) are formaHy exact, but are
intractable from the computational point of view. We
next proceed to construct a physically meaningful ap-
proximate form of Pq and use it to define S[Py]
with Eq. (6). The minimization procedure will pro-
duce an approximate equilibrium distribution func-
tion and a free energy for the system consistent with

the approximations introduced. In the approximation
we shall neglect the correlation between spatial and
spin variables. Furthermore, we shall neglect the
correlation between the spin variables themselves.
The form of P~ is thus given by

Pg(1, . . . , N)
+kT and

S(s)ds =1

PIY(1. . . , N)
x ln dl dN

(6)

where F;d, „. ] denotes the Helmholtz free energy of an
ideal gas.

The equilibrium distribution function P~ and the
free energy F for the system can be obtained by
minimizing $[PY] with respect to P~ under the con-
straint Eq. (5), the latter introduced via a Lagrange

CtY(r(. . . . . rg) d r( d rN =I (12)

What this means is that we shall treat the spins in

the fashion of a mean-field theory while retaining all

short-range spatial correlations in the distribution
function 4N. A careful treatment of 4& takes our
theory beyond what is usually known as the mean-
field approximation. To determine S and 4» we

need the free-energy functional F, Eq. (7). In the
present case it reduces to

5=Fd„~+ X J u(i j)S(s;)S(s,)4~(r~, . . . , r~) ds;ds&d r~ d r~

+kT X S(s;) InS(s;) d s;+kT C&~(r~, . . . , r~) In@tY(r~, . . . , r~) dr~ dr~
i 1

(13)

The minimization procedure can now be carried out under the constraints Eqs. (11) and (12). Minimization of P
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with respect to 4~ yields another Euler-Lagrange equation

=0@= v r;, rj
i (j
+kT[lnIpN( rI, . . . , rN) + 1 ], (14)

5$ =a, = X JI u(1',i)S(. sJ)IIIN(rI, . . . , rN)
gS( s;),(~;)

xd sjd r[ d rz

where

u( r, , r, ) —= u(i j)S(s;)S(s, ) d s; d s, . (15)

Hence the optimum 4& is given by

+kTin[S(s, )+1] .

Thus the optimum S is given by

S( s;) = exp[ Ir —( s;)/kT]1

S

where

(19)

I

u(r;, ri)
O' N(r1, . . . , rN) = exp —X (16) u(s;) =— X J u(ij)S(s, )@N(rI, . . . , rN)

j( &i)

where
1

~ u(r;, r, )
Z =—

l exp —+ dr] dr N
i &j

(17)

and
~dsjdr] dr~

,

I' —u ( s, )
Z, =—

&
exp

' ds;
kT

(20)

(21)

The expression for ItIN as defined in Eqs. (16) and
(17) corresponds to a distribution function for a clas-
sical fluid whose molecular constituents interact via
an effective potential Eq. (15). This result is a
consequence of our choice of P~ which separates the
spin and spatial variables.

Mimimization of W with respect to S produces

The potential u( s;) given by Eq. (21) represents a
mean field in which each spin moves independently.
But it accounts for, as indicated earlier, short-range
spatial correlations through its dependence on
@N( "I

Substitution of Eqs. (16) and (19) into the free-
energy functional, Eq. (13), yields the free energy for
the system:

N

F FjdegI+ X J~d ( rI, . . . , rN)u( r;r, )dr, I d rN +kT X Jl S( s;)i(j i I

1

u ( s, )

kT
—lnZ, ds;

+kT ~l ITIN( rI, . . . , rN) —lnZ, drI drN
kT

or

=F~d„. I
—IVkT lnZ, —kT InZ„—g $ „u(ij)S(s,)S( s;)dIN( r I, . . . , r N) d s;d s, d rI d rN, (22)

i ]j( &i) '~

F Fd, ~= NkT lnZ, —kT InZ, —$ u( r;, r, )ITIN( r1, . . . , rN) d r1 d rN
I Wj

(23)

where 4~ and S are the equilibrium distribution
functions gi ven in Eqs. (16) and (19).

Equations (15)—(17) and (19)—(21) must now be
solved self-consistently to determine C» and S. For
our model potential Eq. (1), we obtain

1

u(r;, r, )=u(r;, )=up(r;, ) J S(s;)ds;

I

or

u ( I'II ) = uP ( I;J ) + u I ( III ) III (25)

s; s, =cos(t);, ) =cos8;cosH, +sinH&sint);cos(IjI; —@,)

with III defined in Eq. (2) and the use of the relation

1

+ uI (rIJ) ~ S;( s;) ( s; II ) d s;

(24)
where 0; is the orientation of s; as measured from 6.
Since u( r;, r, ) is in this case only a function of the
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distance I;,", the equation for 4~ becomes Hence we can obtain an expression for the magneti-
zation

u(r„)
4lv(rl, . . . , rlv) = expZ„,~) kT , (27)

which has the form of the distribution function for a
fluid of classical particles interacting through a central
potential u(r;, ). As is customary in dealing with clas-
sical fluids, we now introduce the radial distribution
function g (r):

m =—(s„)=, J~ exp
s

1 1—pr l Isn
SndS

kT

where

Pr1~sn

kT
ds

pro
Z,'=exp Z, =& exp

(37)

(38)

N(N —1) 1

p2
By choosing the z axis parallel to li, Eq. (37) can be

written as

u(r„)
exp —X " d r3 d rlvkT

m = f(m)

where

(39)

(28)

where p denotes the number density. On account of
the pairwise nature of the interactions only the radial
distribution function g (r) is needed in the following.
The spatial part of our calculation thus reduces to the
determination of g (r lz) from Eq. (28) for a given
temperature, density, and u(rlz). For this we can
use known techniques of classical liquids theory. De-
tails of this calculation will be given in Sec. III.

The spin mean-field potential u( s;) defined in Eq.
(20) can now be written as

f(m) =— 1

(py, m/kT)
(40)

tanh(py, m/kT)

These equations can be solved for given p, T, and

yl depends on g(r), which in turn depends on m

through Eqs. (28) and (25). Thus Eqs. (17), (25),
(28), (32), (39), and (40) must be solved self-
consistently. When this is done, using Eq. (23) we
can obtain the free energy for the system:

F = F p „.
~

NkT lnZ& kT lnZ„Np J u(r)g (r) d r

(41)
u(s~) = —p J~ u(1, 2)S(s)) g(r(2) dred rzds2

N

(29)
The term proportional to lnZ, can be easily calculat-
ed since, from Eq. (36),

and using Eqs. (1) and (11), it becomes

u ( s, ) =P yp+ y, „S(sz) ( s l s z) d s z, (30)

where

—pyp sinh(py~m/kT)

To calculate the term that contains Z, we need to
evaluate

(42)

and

yp=—JI up(r)g (r) d7 (31) u ( rlj
Z„= exp —g dry . . dr~

kT
(43)

y, —=
~ u, (r)g(r)dr (32) Note that for fixed values of T and p,

Using Eqs. (2) and (26), we finally get

u ( s ) =P(yp+y]l&1$„)

where

Sn S )1

(33)

(34)

(j lnZ,

Qol

u i(l )

Z„,(, kT

u(r„)
xexp X

'
dr( dry

kT

Then, from Eq. (19), the spin distribution function is = ——Np
kT g («z) d r (z

s( s ) = exp — (y +ypm )ls1 p
Zs kT

where

(35)
1 r1= ——Np

kT
(44)

l —pro
Z, =exp ' exp

l

ds . (36)
kT

Therefore,

m' y, (x)
lnZ, = ——Np dx

kT
(45)
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to within a constant of integration that does not
depend on m and can be included in F;d„, ~. Conse-
quently, the free energy per particle is given by

p —Fd„, sinh(py~in/kT)'" = —kTln4m
W (py, rn/kT)

t'm 2

+ —,
'

p ~l y)(x) dx py—)m', (46)

where F;d,„. ~
now contains additional in-independent

contributions. Equation (46) represents a definite
and consistent way of evaluating the free energy in

our context. Cluster expansion procedures, which
are not valid in the range of densities of interest to
us are not called upon to obtain the free energy.

The theory as described lends itself to systematic
improvements. For example, it is possible to intro-
duce into P& some form of coupling between the spin
and spatial variables. In the case of liquid crystals,
the spin variable is replaced by the molecular orienta-
tion 0;, and dependences of P~ on 0; r „", 0, r;, ,

and 0; & 0, . r„. can be brought into the theory. The
mathematics becomes much mor'e complicated and
the numerical work horrendous. But with the help of
high-capacity computers, the task is not insurmount-
able. The work is in fact in progress in our group,
and will be used to guide us in future calculations for
liquid ferromagnets.

with

and

ny= —— =—h(y)1 1

y tanhy

kT
0!=

p'Y i

oy =m

(47)

(48)

(49)

The slope of /t (y) goes to ——as y, or m, approaches
I

0. Since Eq. (47) indicates that the slope is given by

n, we find for every set of e~ and p

kT,

pyi(T„ei)
(50)

and yt" through Eqs. (31) and (32), and solves the
transcendental equations (39) and (40). The solu-
tion, m"', is then used to start a new round of calcu-
lations. This iterative procedure is carried on until it

converges to within a predetermined accuracy. The
same procedure is repeated for every set of (e~, p, T).

In practice it is more convenient to first determine
for each set of e~ and p the transition temperature
T, . This is possible if the ferromagnetic transition
here is of second order in nature. In that case, as
soon as a nontrivial solution of m appears, the transi-
tion to a magnetically ordered phase would take
place. One could set m to zero at T„resulting in an
effective potential v(r) =uo(r), an m-independent

g (r), and an m-independent y, . Let us rewrite the
transcendental equations (39) and (40) in the form

III. NUMERICAL EXAMPLES

The formalism described in Sec. II will now be ap-
plied to a model system characterized by the pairwise
potential of Eqs. (I), (3), and (4). We take eo and
er)0.

Reduced units will be used throughout: energies
will be expressed in units of eo, and lengths in units
of o-. The only free parameter in the potential will

thus be e~/eo.'the strength of the spin-aligning part
of the potential relative to the strength of the spatial
part. There will be two thermodynamic variables, p
and T. When we refer to the density p in the follow-
ing; we shall mean per', and when we refer to the
temperature T, we shall mean kT/eo.

We present in this section numerical results ob-
tained for the rather high density p =1.0. The transi-
tion temperature T, will be determined and m (T)
below T, calculated, for four values of e~/eo.'0.40,
0.50, 0.60, and 0.70. A typical calculation will begin
with some initial value of the magnetization m"',
placed in Eq. (25) for the effective potential u (r„"),

(r)

for which one calculates the effective radial distribu-
tion function g" '(r„"). The calculation of g can
proceed along one of many alternative paths. We
choose to use the hypernetted-chain approximation
described in the Appendix. With g"' one finds y]"

yi(x) =yio+yiix+
Thus,

~m2

Jo yi(x) dx =y, om'+ yi, m4+—
2

also,

(SI)

(52)

sinh(py)m/kT)
ln

(py, m/kT)
m'+ 0 (m4) . (53)

kT

Hence, at small m,

4

F —F;d,,)
p'Y io' " = —kT ln4m ——kT
kT

i

x — + I m'+ 0 (m4) . (54)
kT

From Eq. (50), we find

p'Pro = —3 —5
kT

(55)

which can be graphed to yield T, . We then apply the
iterative procedure described earlier to obtain m (T)
for a range of T & T, ,

That the transition is of second order can be seen
from the following derivation. In Eq. (46), expand

y, (x) at small x
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for T & T„where 8 is a small non-negative number.
Therefore

N

' " = —kTln47r —g kT—m +O(m ) .(56)
2

The difference in free energy between the ordered
state (m & 0) and the disordered state (m = 0),
—8—,kTm, is always nonpositive, which renders the

ordered state more stable as soon as it emerges as a
possible solution to the self-consistency equation.
The transition is thus second order.

Table I displays T, and m (T) for the four values
of ~i. All these results appear in Fig. 1 plotted
against the reduced temperature IT —T, I/T, .

In conclusion we would like to offer the following
observations:

(i) The method discussed in this paper can be
used to analyze ferromagnetic transitions in liquids.
The method is not limited to any particular form of
the interaction potential. Potential functions other.
than those described by Eqs. (I), (3), and (4) are
also amenable to our analysis. We intend to use
more realistic forms in future work.

(ii) As indicated by Eq. (50) the ferromagnetic
transition temperature is determined mainly by the
magnetic interaction strength. In the range of tem-
perature under consideration g (r) does not vary ap-
preciably with temperature and thus yI depends only
weakly on the temperature. As a consequence,
m ( T) when plotted against i T —T, i/T„as shown in

Fig. 1, is almost universal.
(iii) We have not attempted here to determine the

melting temperature of the system. Work in this

0.22

0,20—

O. I 8—

O. I6

O. I 4—

O.I2—

0.10

0.08—
X

o.o6- ~+
X

0,04—

0.02—

0.00
0.00

X~O

I

O.OI

IT Tcl/Tc

I

0.02 0.05

direction is in progress. The advantage of our
present method is that the liquid-solid transition and
the ferromagnetic transition can be treated on the
same footing; so that once the melting problem is
solved it will be possible to determine accurately the
minimum magnetic interaction strength required for
the existence of a ferromagnetic liquid phase.

(iv) The method given in this paper can be ex-
tended to the treatment of binary alloys consisting of
both magnetic and nonmagnetic materials. The
results of such a study can then be compared with
experimental data on Au-Co alloys for which the fer-
rornagnetic liquid phase is purported to exist.

FIG. I. Magnetization as a function of reduced tempera-
ture. +: el=0.40; 0: 0.50; 5: 0.60; &: 0.70, all in units of
6p.

TABLE I. Transition temperature and temperature dependence of magnetization calculated at p=1.0 for (a) ~i =0.40, (b)
0.50, (c) 0.60, and (d) 0.70, all in units of ep.

(a) e, =0.40

TC

(b) &, =0.50 (c) ., =0.60

TC

(d) eI =0.70

TC

1.1047
1.1025
1.1000
1.0975

1.0950
1.0925
1.0900

0.000 00
0.001 99
0.004 25
0.006 52

0.008 78
0.011 04
0.013 31

0.000 1.4021
0.060 1.4000
0.093 1.3975
0.111 1.3950

0.126 1.3925
0.137 1.3900
0.153 1.3850

0.000 00
0.001 50
0.003 28
0.005 06

0.006 85
0.008 63
0.012 20

0.000 1.7046
0.064 1.7025
0.077 1 ~ 7000
0.095 1.6975

0.113 1.6950
0.125 1.6925
0.146 1.6875

0.000 00
0.001 26
0.002 72
0.004 19

0.005 66
0.007 12
0.010 05

0.000 2.0119
0.061 2.0100
0.079 2.0075
0.093 2.0050

0.105 2.0025
0.114 2.0000
0.133 1.9950

0.000 00
0.000 94
0.002 19
0.003 45

0.004 67
0.005 91
0.008 40

0.000
0.050
0.070
0.080

0.098
0.106
0.120

1.0850
1.0800
1.0750

0.017 83
0.011 36
0.026 89

0.174 1.3800
0.194 1.3750
0.212 1.3700

0.015 76
0.019 33
0.022 89

0.165 1.6825
0.180 1.6775
0.196 1.6725

0.012 99
0.015 92
0.018 85

0.152 1.9900
0.167 1.9850
0.179 1.9800

0.010 89
0.013 37
0.015 86

0.138
0.152
0.166
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densities it appears to be superior to other approxi-
mation schemes. '

The HNC approximation for g(r) is ':

g (r) = exp[ —u(r)/I. T + h (r) —c {r) j

where

h(r) —= g(r) —l (A2)

APPENDIX

We choose to use the hypernetted chain (HNC)
approximation to determine the pair-correlation func-
tion g (r) because for a Lennard-Jones fluid at high

and c (r) is defined by the relation"

c(r) =h (r) —p Jl d r c(r')h(lr —r ~) . (A3)

We solved the set of equations (A l)—(A3) itera-
tively by means of well-known numerical techniques. "
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