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Hypernetted-chain Euler-Lagrange equations and the electron fluid
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Le &st upper bounds to the ground-st &te energy of the electron fluid &re obt &ined by solving
Euler-Lagrange equations obtained within the framework of Fermi hypernetted-chain theory for
arbitrary density and spin polarization. It is shown that the so-obt tined approxim ate distribution
and structure functions satisfy known exact relations in the high- lnd low-density limits is well

ls in the tong-wavelength limit at any density. The numerical results lre in excellent agreement
with coupled-cluster perturbational and Monte Carlo type calculations. As a by-product i simple
analytic solution accurate in the high-density limit is obtained which is superior to the random-

phase approximation in the metallic density regime.

I. INTRODUCTION

The theory of the homogeneous electron fluid at
zero temperature has received renewed interest in re-
cent years since several new, powerful many-body
techniques have become available. Noticeably there
are variational Monte Carlo' results, variational
results obtained within the Fermi hypernetted-chain
approximation' as advocated by Fantoni and Rosati, '
and a calculation using the coupled-cluster formal-
ism. 4 Less recent theories and their results are dis-
cussed in Ref. 1. All of these works fall into either
of two categories, variational or partially summed
perturbational. The most advanced treatment falling
into the latter category may be found in Ref. 4. The
present paper continues investigations within the first
category.

Though admittedly the homogeneous fluid is a

rather crude approximation to real physical systems it

has received renewed interest recently since it pro-
vides the input necessary for the local-density' and
local-spin-density formalisms. It is one of the main

purposes of the present paper to obtain as accurately
as possible the required correlation energy as a func-
tion of both density and spin polarization. Further-
more, one may study some interesting phenomena,
e.g. , phase transitions' in this model. Moreover,
since virtually every many-body method has been ap-

plied to this model it serves as another benchmark
for many-body theories. Within the latter context it

is to be noted that theories' previously have been
applied mainly to problems involving shoIt-ra»j;e
forces. The electron fluid with its long-ra»ge
Coulomb force is therefore an interesting test case
useful to study the long-wavelength behavior of the
various many-body theories. This latter question is

of special importance since there is a long-standing
controversy' about the treatment of antisyrnmetry,
i.e., exchange effects in Jastrow variational calcula-

tions employing the hypernetted-chain approxima-
tion, which is specifically concerned with a long-
wavelength discrepancy.

In Sec. II I will derive expressions for the varia-
tional energy expectation value which upon function-
al variation will yield Euler-Lagrange equations for
the correlation factor describing the wave function.
Special care will be taken to preserve certain exact
properties in spite of the approximations necessary.

In Sec. III numerical results are presented for a

variety of densities and spin polarizations. Numerical
checks are made to validate the approximations intro-
duced in Sec. Il. My findings are summarized in

Sec. IV.

II. VARIATIONAL THEORY

A. Energy expectation value

Let us consider a variational wave function of the
Jastrow types

Q( ri, . . . , r~) =F@=g f(I~)$

where F is a symmetric correlation operator and $ a
determ'inant of plane waves rendering g antisym-
metric. This kind of wave function has been used
very successfully in a wide variety of many-body
problems though it has known disadvantages. Most
restrictive is the use of a state-independent correla-
tion factor f (r) not depending on the momenta of
the particles. This will give the same two-body corre-
lations for particles on the Fermi surface and in the
center of the Fermi sphere. Less important, three-
body correlations other than products of two-body
correlations are excluded. The latter point probably
is of very little importance for the electron fluid since
it has been found9 that three-body correlations of
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(2)

for a given wave function (I). In the next section
this energy will be functionally minimized within the
space given by the ansatz (I).

The Hamiltonian appropriate for the homogeneous
electron fluid is

2tH i i&jp~p Ok

other than product form are important only for very
hard interactions like Lennard- Jones. Furthermore,
the correlation factor is the same for spin-parallel and
spin-antiparallel pairs of electrons. This is not as im-

portant a shortcoming as one might fear on first
sight. Since the Hamiltonian is spin independent,
evaluation of the energy implies an average over spin
projections. Using a spin-independent correlation
factor may be interpreted as taking the average of the
spin-parallel and spin-antiparallel correlation factors
first and then evaluating the energy which should not
make much of a difference (see below also).

In this section I will derive approximate expres-
sions for the variational energy per particle

I (Ql& IIII)

~ (~l~)

~(fv I) Jfd r3. ., . , d fIvlp(rI, . . . , rIv) l'
2 „Id r ), . . . , d re l III( r I, . . . , r Iv) l

(4)

The potential energy therefore is given by'

(I )
2 J= —p d3r u(r) [g (r) —I ] (5)

where the subtraction of 1 comes from the back[-
ground subtraction. The structure function S(k) is
defined bytP

S(k) —l=p JI d'r[g(r) —1]e'"'"

Therefore an alternative form for the potential
energy is

(6)

will consider N particles in volume 0 and eventually
take the limit W, 0 ~ at constant density p=N/Q.
The exclusion of k =0 in the last term of Eq. (3)
serves to subtract the positive background, The
two-body radial distribution function is defined as'

= X r; + X4I(r;, )
i i&j

(3) JI d k 3— [S(k) —I] .
2(24r )3 k2 (7)

where»~ is the electron mass and 0 the volume. I The three-body radial distribution function is given by

g(Q I)(+ —2) d I 4, . . . , d Nlrb'(7 , . I. . , 7v)l
g3( rI2

P J d'r~, . . . , d'r, lIII(7, , . . . , r, ) l'

The expectation of the kinetic energy may then be written" "
(T)

N
= T@+T2+ T3

(8)

3 t'
kr + p J d Ig(I') [ 7lnf (r)] + p' J d I i2 Jl d rq3g3( r ~2, r 23) V2Inf(r~2) s7qlnf'(r23)5 2»i 2m

' " '
2»~-

(9)

after a partial integration. Note that no explicit refer-
ence is made to the determinantal part of the wave
function (I), except for the trivial term T&. In Eq.
(9), T& denotes the free Fermi-gas kinetic energy,
and kF is the Fermi momentum

p = skr3/6n'

where s denotes the degeneracy (s = 2 for the unpo-
larized Fermi fluid, s = 1 for the totally spin-polarized
fluid). It is to be noted that in order to obtain Eq.
(9) a specific choice was made in doing partial in-
tegrations. "' This version of the kinetic energy has
been termed the Clark-Westhaus (CW) form. There
are other equivalent forms to calculate the kinetic en-.

ergy expectatio. n value, the usefulness of which will
be discussed below. One good reason to use the C%
form for the kinetic energy is that in all previous
studies" ""it has always been found to overestimate
the energy and never underestimate it as some other
forms do if one invokes approximations to the energy
expectation value. Therefore, we are confident that
the upper-bound property of the variational energy,
Eq. (2), is still preserved in an approximate calcula-
tion if one uses the C% form. It is evident from
Eqs. (6) and (9) that in order to evaluate the energy
expectation value (2) exactly for given wave function
(I) it suffices to know the two- and three-body radial
distribution functions. Let me temporarily consider a
simpler wave function than Eq. (I), namely, a sym-
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where the "pseudopotential" u (r) is defined by

f (r) = exp [ —,
'

u (r) ]

[ ]r denotes Fourier transform

(12)

metric (Bose) wave function obtained by setting (t =1,
1/I ( r 1, . . . , r v ) = g f (r„)" (10)

i&j
For this wave function, invoking the hypernetted-
chain (HNC) expansion, we have rigorously'0

u (() = lng (r) ——— —E (r ), (11)[S(k) —1]'
p S(k)

and E(r) is the sum of all elementary diagrams. The
hypernetted-chain app~

oxide»atio»

consists simply of
setting E(r) =0. This approximation, originally in-
vented for problems in statistical mechanics, ' has
been shown to be accurate for quantum problems not
involving very strong repulsive potentials.

Within this approximation, the two-body radial dis-
tribution function may be obtained by inverting Eq.
(11). The three-body distribution function remains
to be evaluated. It has been shown' that it may be
expressed as a power series in the function

a (r) = [a (k)]r= d ka(k)e '"'"
(24r)3 "

a (k) = [a (( ) ] =
J d'ra (r)e' "

(13)

h(r) =g(() —
1

the first terms of which are

(14)

g 3 ( I 12, I l3, I'
23 ) '= 1 + h'( I'12 ) + h ( I'

23 ) + h ( ( 13 ) (isa)

+ h (I'12) h (r13) +h (r13)h (r23) + h ((12)h (r23)

+ h ((12)h (r23) h (r13)

+ p )~ d'I 4h ((,4) h ((„)h (r34) [ I

(15b)

(1sc)

(15d)

+ h (r„)+ h (r„)+h (r„) (15e)

+ h (r(2)h (r23) +h (r13)h (r23) +h (r12)h ((13) (1sf)

+ h (r12) h ((23)h (I'13) ] (1sg)

+ o ~ ~ (15}1)

(16)

where the terms (15h) not given have at least five
factors h and two integrations over coordinates I4, I.

&

with two powers of the density. For practical pur-

poses, the expansion (15) has to be truncated some-
where. Several versions of such truncations have
been used'0: (a) the Kirkwood superposition approx-
imation is obtained if one retains (15a), (15b), and

(15c) of Eq. (15)'„(b)the convolution approximation
is obtained if terms (15a), (15b), and (15d) are re-

tained. This approximation has the desirable feature
of being consistent in the sense that the sequential
relation

g((12) ' d (3g3( "12 "23)W-2 ~

g3( r]2 r23) =g3" ( r]2 r23)+p3"' ( r [» r (17)

where g,"" contains terms (15c) and (15e) to (15h)
of Eq. (15). Using this decomposition, the kinetic

energy expectation value may be written as

is satisifed„which is not true of a»y of the other ap-
proximations. (c) the HNC/4 approximation is ob-
tained if terms (15a) through (15g) are retained.

I wish to rearrange Eq. (15) in order to use the
convolution approximation as a first step, and evalu-

ate corrections to it,
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=T +T, +T +T3 = —— kr+p ' d rg(r) —['7u(r)]
N 5 2In " 2m4

h+p J d'r dr '7u(r, )'7 (r )
Sm

[1+A(rj2)+A(r23)+A(rl3)+A(r I2)A(r23)+A(r I3)A(I 23)'

+ A (r I2) A (r l3) + p J d r4A (r I4) A (I 24) A (I 34) ]

2

+ p Jtd rl2 Jl d'r23
8

V2u(l I2)' V2u(I'23)g3 ( f I2, f23) (18)

After taking Fourier transforms and performing a little straightforward algebra. the following expressions result:

T2= p, JI d'kk'u(k)'+ J d'l [S(k) —. 1] JI dp dqc~ktl (p)u(q)
Sm (2qr)3 8m (2qr)'

T "=
p I d kk'u(k)2[S(k) —1]l

8m (211) 3

e' I f f

+ d'k[S(k) —1] dP dqceqtl(P)u(q)[S(P)S(q) — ]
8II1 21r

T" = p I d k [S(k) —1]k'R (k)'
8m (2qr)' "

h+2 I d3k [S(k) —1] I dp Jr dqc" [S(p) —1]R (p) [S(q) —1]tl(q )
8m (2qr)3 "

h —Jl d3k [S(k) —1] Jl dp JI dqc~q[S(p) —1]R (p) [S(q) —1]R (q)
Sm (21r)3

{l9)

(20)

(2 la)

(21b)

{21c)

7 3 + 7 3 + T (2 id)

with

c" = (pq/Skqr'. )(p'+q' —k')

and integrations over p, q are over those regions
where

~p
—q~ ~k ~p+q

(23)

While Eqs. (20) to (23) still are exact, because of
the terms represented by ","we now have to
introduce an approximation in order to actually
evaluate T3. The various terms of Eq. (15) are di-

agrammatically represented in Fig. 1. As said above,
diagrams Figs. 1(a), 1(b), and 1(d) constitute Tf".
The analytical expression for Fig. 1(c) is given in Eq.
(21)„term (21a), diagrams Figs. 1(el) and 1(e2) in

term (21b) and Fig. 1(fl) in term (21c). All other
diagrams contained in T3 are distinguished from
those represented in Eq. (21) by being more highly

R(k) = —
J dp dqpq(k'+p' —q')

Spm k'

x II (p) [S(q ) —
1 1, (22)

connected Conside. r, for example, Fig. 1(e3). All

four points are tied together by either Vu or a corre-
lation line A. Opposedly in, e.g. , Fig. 1(e2) the left
and right points may be integrated over independent-
ly. In other words, the terms explicitly retained in

Eq. (21) are those involving convolution type integra-
tions only, and all other terms involve more highly
connected integrations. This argument is made possi-
ble by considering the special nature of the three-
body operator we are interested in here, last term of
Eq. (9). A differentiated correlation line exists
between points (1,2) and (2,3) but not between
(1,3). The decomposition of g3 specified in Eqs.
(20)—(23) takes account of this special nature in re-
taining just those terms which are of the
hypernetted-chain type omitting those of HNC/4 or
/5 type, i.e., having a structure like elementary di-
agrams. In this sense the approximation suggested
here for g3 is consistent with the hypernetted-chain
approximation used for the two-body radial distribu-
tion function, Eq. (11), with F. (r) =0. The argu-
ment why this should be a reasonable approximation
is just the same as in justifying the hypernetted-chain
approximation, In the more highly connected di-
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01 02 03

side the distribution functions g and p&, which
depend only on I@I', see Eqs. (4) and (8). This ob-
servation, together with the non-negativity of ~Jt ~,
enables us to expand rigorously

b1

=gJ/r'(r;, ) g 0'3(r;, r, , rk) gp4
i (j(k

(24)

e1 e2 e3

p

f3

As an approximation only the first term of this prod-
uct is retained while all others are neglected. At
first sight this might seem to be a very drastic m;mip-
ulation. However, on the two-body level this ap-
proxiation can be made to yield the exact result in
the sense that &P(r) can be chosen in such a way as to
reproduce the exact two-body radial distribution func-
tion pI;(I ) corresponding to the full determin ~nt.

Explicitly, denoting by pI; and SI.- the distribution
function and structure factor corresponding to a pure-
ly determinantal wave function, V'(I ) may be obtained
from

[Sr(k) —I j'
w (r) = I nor (I ) ——

p S,-(k)
(25)

h2

FIG. 1. Diagrammatic representation of the series expan-
sion for the three-body distribution function, Eq. (15), for
the special case of the three-body kinetic energy term. Solid
lines denote '7o (r ) ~nd dashed lines correl &tion factors
/~ (I ). Solid dots denote coordinates 1, 2, 3 to be integrated
over.

Then„by construction„cf. Eq. (11), if this 0'(I ) is
used in a hypernetted-chain evaluation of pl.-, the ex-
act result is obtained. Of course differences will arise
on the three-body level. Note that, since

—k/kI; ——(k/kr )', k ~ 2kl:
S (k)=

1 /;o2A

agrams of elementary type integration variables are
tied to each other making the total volume of integra-
tion smaller than for diagrams not being so highly
connected. Because of the smaller integration
volume, the numerical values for these diagrams
should be small and it is justified to neglect them.

Instead of stopping at the four-point level, i.e. , in-

cluding only diagrams Figs. 1(a)—1(d), 1(el), 1(e2),
and 1(fl) as done here, it should be possible to sum
all diagrams of HNC type including, e.g. , Fig. 1(hl)
by solving a modified HNC equation. In view of the
quantitative results (Sec. III A) this has not been
thought worthwhile.

Up to now we considered the simplified Bose wave
function Eq. (10). In order to evaluate the expecta-
tion value (2) we need to treat the determinantal part
of the wave function (I). It is now crucial to notice
that we ~rote the energy expectation value, Eqs. (7)
and (9) in such a way that there occurs no explicit
reference to this determinantal part except in the
trivial term T@, The determinant is wholly buried in-

w(k) —k ' for small k, i.e. , w(r) is a long-ranged
function.

The essence of this procedure to treat the deter-
minantal part of the wave function has been suggest-
ed by Lado' and was refined" ~nd used' by S&evens

/

and Pokrant in a calculation on the electron fluid.
One might ask why we prefer to use this method to
treat antisymmetry rather than one of the more wide-

ly used methods' "of expansion in permutations.
The latter method, which has been used by Lantto
and Siemens in their calculation on the electron
fluid, ' suffers from an inaccurate treatment of long-
range exchange effects as was pointed out by
Krotscheck. ' Since such long-range effects a Irliori

should be important in the case of the electron
fluid —while their importance is questionable for
short-range forces"" —a method circumventing this
problem is preferable.

The truncation of the product (24) may further be
justified using diagrammatic methods. " In the
language of the permutation expansion, in the long-
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The preceding equation follows immediately from Eq.
(11) if one writes the square of the wave function (I)
as

lp(ri, . . . . rtv)I'=g. f'( r),
i(j

f(r) =exp[
&
u(r)+

&
w(r)] =f (r)9'(r)'(27)

In other words, the Fermi-HNC equation is one non-
linear integral equation as in the Bose case, as op-
posed to several coupled equations obtained in the
permutation expansion approach. """Even more
significant, the representation of the three-body radi-
al distribution function g3 in terms of g (r) —I, Eq.
(15) and Fig. I, remains unaffected by Fermi statis-
tics as opposed to enormous complications in the
permutation-expansion scheme. ""

A further important observation is that for arbi-
trary, short-range correlation factors f'(r) where
r7 (k) is bounded for k 0 it follows immediately
from Eq. (26) that S(k) Sr(k) for k 0 since
w(k) —Sr(k) ' and all other terms are bounded.
This behavior is opposed to that of the Fermi-HNC
equations as derived by Fantoni and Rosati and used
by Lantto and Siemens' where S(k) does not neces-
sarily go to zero for small k for arbitrary correlation
factors. If the pseudopotentialCi (k) diverges like k
at the origin it is seen that the slope of S(k) at the
origin will be modified but S (k) will remain linear.
Only if ri (k) diverges like k ' at the origin will S(k)
become quadratic in k.

range (long-wavelength) limit certain elementary di-

agrams which are omitted in a HNC treatment be-
come as large as some of the diagrams included in

the HNC summation. In the present treatment,
these elementary diagrams are approximated con-
sistently through all orders. '

The present method has the additional advantage
that the fermion problem is completely reduced to
an equivalent Bose problem. For fermions, from
Eqs. (11) and (25) the connection between radial dis-
tribution function and wave function is given in HNC
approximation by

u (r) = lng (r) ——1 [S(k) —1]' —w (r) . (26)
p S(k)

To summarize the present section, an energy ex-
pression is obtained from Eqs. (7) and (18)—(23) in-
volving only the "pseudopotential" u and the struc-
ture factor S(k). One of these two functions is
determined by the other using the HNC equation (26)

ri(k) = ln —[S(k) —I]"+ I

, P

1' F

I [S(k) —1]' —w(k)s(k) (28)

where w is known from Eq. (25). A second equation
determining the second unknown function will be
derived in the next section.

B. Wave-function optimization

5 &el&le) 5

Su (Q if) Su

subject to the HNC equation as a constraint

S =S[u]

(29)

Since the HNC equation (28) is an explicit equation
for u, it is most convenient to eliminate the pseudo-
potential u everywhere by expressing it in terms of
the structure factor S(k). A single nonlinear integral
equation for the one unknown function S (k) is ob-
tained

6 E[u [S],s]=0
SS

(30)

Neglecting for the moment the term T3 ~ this equa-
tion is explicitly

I wish to determine the optimal wave function of
the form (1). The determinant is assumed to be
known, i.e., a filled Fermi sphere of appropriate ra-
dius kf, determined from density and polarization. I

wish to minimize the variational energy functionally,
Eq. (2), with respect to the correlation factor f'(r),
Eq. (1), or equivalently the pseudopotential u, Eq. (12)

h2 h h2
k fj(k) + pk u (k) + 2p Jl dll S(j)G (l)DIk+

z
k JI dp Jrdqcqqt((p)s(p)G(q)s(q)4n' 16(n m2 1 6I)( ~2 16I~(m2

h2+ 2 Jr l~dl [S(l) —1] Jrdp Jrdqc~l~rf (p)S(p)[D kS(q) +LI(q)gqk] =0, (31)
16@(m

2

where u is given in terms of S by Eq. (28),

~~

'F
5(k 1

'+'
/;q 1

dq - — —1 (q)ps'(k) 4p~' P ki l g (r)-
gu ( I) glk 2k' 1

D(k = =, + dn j p(lr )j p(kf ) —15S (k) pS'(k) p~ g (I).
(32)
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and g (r) is given in terms of S by Eq. (6). Since
everything is expressed in terms of the structure fac-
tor S(k) Eq. (31) may be solved to yieid the S(k)
corresponding to the optimal 3astrow wave function
(1). The wave function itself, i.e., the pseudopoten-
tial u may then be obtained from Eq. (28), and the
approximation to a least upper bound to the ground-
state energy from Eqs. (7) and (18) to (23).

It is to be noted that for zero potential, i.e, , in the
noninteracting case, Eq. (31) becomes homogeneous
in u and therefore has u =—0 as a solution. Consider-
ing Eqs. (25) and (26) it follows that the correct
result, S =5&, g =gq obtains. In other words, the
Euler-Lagrange equation (31) is correct for arbitrarily
weak interactions which is a necessary condition in
order to deal with the high-density limit for the elec-
tron fluid, and which is not true of certain other ap-
proaches. "

Before attempting to solve Eq. (31) numerically let
us study the properties of its solutions by considering
the small k, i.e. , long-wavelength, limit of this equa-
tion. %e are interested in solutions S(k) proportion-

al to k' for small k. 'In that case, from Eq. (28) we
have

(((k) = — +—1 1

pS(k) pSF(/ ).
since from Eq. (25)

w(k) --— 1

pS~-{/ )

(33)

(34)

Because p(i) will remain positive for sm ~ll i in the
second term of Eq. (32) we may approximate for the
long-range part p '(i) —1 =1 —p(i) and obtain

D(& = —
Ji (/(I—[S((I ) —1]

S2(k) 4p2qr2 . )( k ( /

which for small k becomes

D(q =-, —,, k [S(/) —1]
~u 1

pS'(/-) 2p'v '

Collecting all this together, Eq. (31) becomes, retain-
ing for all terms only the leading contribution,

1

1 kg4ne' h~ 1 k4 1 1

4rr k' 16(((qr' p SF(k) S(k)
l

(35a)

2k4 1 1 1

16mqr' p S(k) SF(k) S(k) (35b)

1

, k'- ', „(II/4S(I) [S(I)—1](((/)
16istm per~ " (35c)

h~
g 1 4+

p
k

p
(Ipp S (p) ll (/()

16@im 2n
(35d)

+
~

k —,J dll'(((/)S(/) [S(/) —1]
16(((qr' p SF(k) 4n' " (35e)

1k', , d/I~[S(I) —1] (/p tel(/c~q( ( )/((Sp) (S)([/S((/) —1] =0 . (35f)
16orsr p 7r

Here, the Coulomb potential has been inserted ex-
plicitly. ln the last two terms of Eq. (31) the expres-
sion (23) for the c coefficients has been used to find
the small-k behavior of the integrals. It is seen that
in this limit only the first three terms of Eq. (31)
need to be retained, Eqs. (35a) and (35b), since the
remaining two vanish. The resulting simple quadratic
equation for S(k) may easily be solved to yield

S (k) = k'(Ir'/16m qr pe') '/' = k'/2(((cuq

with au~ the plasma frequency which is known to be
the exact behavior. '9 The same behavior has been
found by Lantto and Siemens~ and is also found in

the case of charged bosons. A difference should ar-

ise in the next term of a power-series exp mansion of
S (k) where the fermion character of the wave func-
tion in form of S~; factors will first enter. Unfor-
tunately it seems to be hard to obtain the next term,
since nonleading contributions to some of the terms
of Eq. (31) are required.

In the above discussion„ the term Tq
" was

neglected. The approximation used so far for the
three-body distribution function has been the convo-
lution form, satisfying the sequential relation, Eq.
(16). TqR"' as given in Eq. (21) expresses the le ~ding

terms going beyond this approximation, However,
these terms do not integrate to zero as is necess ~ry to
preserve Eq. (16). In other words, in the volume in-

tegral these terms should not contribute ~t all.
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It is rather straightforward to include the terms given explicitly in Eq. (21) into the Euler equation (31). How-
ever doing so leads to a modification of the low-momenum behavior Eq. (36) since

5T RES (a) k4~k c + c2gS(k) ' S'(k) ' '

57 REs (b) k4

5S (k) S'(k)

87 RES (~) k4
/ 2Cs+

Ss (k) S'(k)

c (
———,J dqq4[S (q) —I ] R (q) tl (q)

16&n m

J dqq'[S (q) —I ]'R (q)
32 i' ll 'lT p

, Jr dpp'[S(p) —I]'i7(p)R
16ist m

(37)

(p )+ I'dl [S(l ) —I ) JtdpJtdqc~l, [S (p) —1]fi (p) [S(q ) —I ]47 (q )
16m7r p"

fO r
l'dl [S(l) —1] R (l)+ I'dl [S(l) —I] „dp„dqep4[s(p) —1]fi(p) [S(q) —I]'q '

32fkl vl' p 32t)1 7T p

dpp'[S (p) —1]'R'(p )+,
„

l'«l [S(l) —I] „«p„1dqc,', [S(p) —1]R (p ) [S (q) —I ]0 (q)
32i~r n' 16')~m'p "

f f
I I2«l[S(l) —I] dp Jl dqc~q[s(p) —1]R (p)[S(q) —I) q

32/pl 7T p

in the I. —"0 limit. There is significant cancellation
between c 2, c4, and c 6 but they do not cancel com-
pletely.

Though this modification might be expected to be
small in most instances it does lead to a wrong coeffi-
cient in Eq. (36). Even more serious, the argument
of the square root in Eq. (36) cannot be guaranteed
to be positive any more. In other words there does
not necessarily exist a solution to the Euler-Lagrange
equation any more, or, the energy may become un-
bounded from belo~. Similar observations, using the
superposition form for the three-body distribution
function, have been made previously. " The nonex-
istence of solutions is related to a negative kinetic en-
ergy expectation value and correspondingly unphysi-
cal distribution functions g{i) for which the HNC
approximation is not valid. On the other hand, if
one computes the optimal wave function from Eq.
{31)as it stands and then evaluates T3 as a correc-
tion extremely small values are found (see Sec. III)
as is appropriate for a high-order correction term.
These findings underline the paramount importance
of the sequential relation [Eq. (16)] in optimizing the
wave function. I will therefore proceed using only
the convolution form for g3, and use the higher-
order contributions as perturbative corrections to the
energy only.

In order to sovle Eq. (31) numerically, the
Newton-Raphson iteration scheme is used. After
discretization of the integrals a system of nonlinear
coupled algebraic equations obtains

E[s(k )]1=0d
dS (k;)

(38)

Because of the triangular property of the c coeffi-
cients it has been found expedient to use equidistant
mesh points. Assuming a current iterate Sk'", Eq.
(38) is linearized at this vector, and the resulting
linear system of equations is solved to produce a new
iterate S ~"+]I

S f~+&) S tv)
k k

d'~ [SJ"l] d~ [S,'"I]

dS;dSk dS;
(39)

Since the analytically known matrix d'E/ds;ds„ is ob-
tained in this process anyway, it is easy to verify nu-
merically

6'E
SS,SS„

in the sense that all eigenvalues are positive. We are
therefore assured to have found a true minimum of
the energy functional (30).

All the equations in this section have carefully
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been written in momentum space such that the
singularities at the origin are clearly exhibited. In
this form these equations are immediately suitable
for numerical treatment. The only exception where a
coordinate-space quantity must be used is the second
term of Eq. (32). One could avoid coordinate space
at the expense of solving a linear system of equations
in momentum space (equivalent to the inversion in

coordinate space) but I prefer to evaluate g (r) by
Fourier transform, compute the integrand in Eq.
(32), and perform the integration, which does not
pose any particular difficulty. It is necessary, howev-
er, to restrict the first few steps of the iteration (39)
to such S(k) that S(k) and g(r) remain positive.

C. Mean spherical approximation

by its argument minus one to obtain

f(( k) = —[S(k) —I] —— —w(l. )1, 1 [S(k) —1]'
p p S(k)

= —I — —w(k}1 1

p s(k) (41)

This equation has been used previously in the theory
of classical liquids" and been given the name mean
spherical approximation (MSA). It is closely related
to Feenberg's uniform limit. 'o Equation (32) be-
comes

8(( (I) 8(k

gs(k) ps'(k)

For consistency, we also have to modify Eq. (25) in

the same way to obtain

p = (—', 7r r,'a 03 ) ', (40)

In order to study further the properties of Eq. (31)
let me consider the limit of high densities, i.e., small
values of the customary parameter I;

w(k) = —1—1 1

p S( (k)
(

and together with Eq. (41)

1 1
( (k)=-

p SF(k) S(k)

(42)

which is the average interparticle spacing in units of
the Bohr radius ao. In this case it is known' that
only long-range effects matter where g (r) is close to
one. The logarithm in Eq. (26) may then be replaced

Furthermore, since we did not find any contributions
from the last two terms of Eq. (31) in the long-
wavelength limit, these terms are neglected. The
Euler-Lagrange equation now reads

+ k4— — + 2 k'S(k)—
4m k 16(nn p SF(k) S(k) 16n(m' p Sr(k)P

with the immediate solution

=0 (43)
S(k) p S'(k)

hSMsA(k) k 2

16rnme p

' i/2 -]/2
A2

k4 1

16mme p Sr(k)
(44)

dq qp 12
9m

Sr (q) 4

From this result one easily obtains the pseudopotential u and the energy from Eqs. (7), (19), and (20) which

read after some algebraic manipulation

S/3 ' —4/3 ]/2 2

e, = — (
9n

r, sr(q) +q2 4 (45)

when q is in units k~ now and energies are measured
in Rydberg. In the limit i; 0 this integral may be
evaluated in closed form" to yield, for the spin unpo-
larized system

e, (9/16m') Inr, = 0.056991nr, Ry (46)

= T + d'k ' [S,(k) —I]
2(2m) " k' (47)

The correlation energy e, is defined as the difference
between the total energy per particle and the
Hartree-Pock value

&HF = Ty+ ~HF

The correlation energy [Eq. (46)] is to be compared
with the known exact result in the high-density lim-
it]9 23

e, (2/m2)(1 —ln2) lnr, =0.06218lnr, Ry . (48)

The 8.4'i(} difference between Eqs. (46) and (48) is

known to arise from the use of state-independent
correlation factors in the variational wave function
(1}." The behavior of Eq. (46) may also be obtained
from the random-phase approximation (RPA) if one
introduces the assumption of state independence
there. 4 It is a straightforward but lengthy calculation
to show that the result [Eq. (46)] also obtains directly
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from Eq. (31) in the high-density limit. The differ-
ence between Eqs. (46) and (48) is thought to be to-
tally irrelevant for r, ) 2 since the series expansion of
Ref. 19 requires r, && l.

D. Model energies

and S&(k) is defined by

1 &~lp-, p=, ~ ~)
&~IF I@)

«~l~~pvp v~-~ ld &

&y I~F~~ Id»
(51)

In nonvariational theories one frequently calculates
the energy from the unsymmetrical expression

(49)

which is called a "model energy" since for any )I) that
is not a solution of Schrodinger's equation its value
will depend on the "model" wave function P chosen,
which usually is a plane-wave determinant. The devi-
ation of Eq. (49) from the exact Schrodinger eigen-
value is proportional to the error in the wave func-
tion, whereas it is quadratic in the error in the wave
function for the variational energy [Eq. (2)]. There-
fore, the difference between variational and model
energy constitutes some measure of the "distance"
between the variational wave function and the true
ground-state wave function 12, 13, 25

The model energy has a kinetic and a potential en-
ergy contribution

i &~lTly)
(~l~&

= Ty+ 'td'k [Sp(k) —1], (50a)2(2~)' "

2 fa

e, 'd =
„

dk—[Sp(k) —SF(k)]=
„

dkep(k) , (SOb)

where we use the fact that )t) is an eigenfunction of T

are local and therefore commute. Another way to
express the usual structure factor is'

&)] I p-„p -„I)[))
(52)

The analogy to Eq. (51) is obvious. It is only neces-
sary to replace the correlation factor by its square
root in order to obtain the "model structure factor"
S&, in HNC approximation

1

—u(k) = ln —[S,(k)-1]"+ I
l

2
p

[S~(k) —1]' —)v (k)s,(k) (53)

Equation (53) is an implicit equation for S~(k) where
the pseudopotential u is known from the solution of
the Euler-Lagrange equation. This equation may
readily be solved by the same techniques used to
solve Eq. (31).

The model structure factor is a very useful quantity
for comparisons with other theories of the electron
fluid. The most advanced treatment in terms of par-
tially summed perturbation series is given by Bishop
and Luhrmann. 4" They focus on the two-particle
two-hole excitation amplitude

The last equality in Eq. (51) holds since the operators
I and

r )

)p )= Xe' ' Xe'

(k) + q)r)k, - q~, lS, I k )a ) k2o2) = (@la )) a
))

a
)) ))

a
)) +)) I)[ )/()t I)[ )

1 1 2 2 2 ~ 2 1
~

1

(54)

(55)

= N [S&(q ) —Se(q) ] =
2 e&(q) . (56)

Because of the operator identity

tp-= ~a- a-
q 4 ko k+qo

ko

we have'6

k~

( k) + q )T ) k, —q )T2 l S, l k ) )7 ) kq)72)
k[o1, k2o2

The last equality indicat-s the immediate connection
to the correlation energy, Eq. (50b). The average
over the Fermi sphere performed in Eq. (56) is just
the one necessary to obtain the correlation energy
from $2 [see Eq. (50b)]. It is therefore possible to
compare the integraads of Eq. (50b) obtained from
different theories. This comparison is much more
meaningful than the comparison of structure factors
or distribution functions since it may be seen how
different momentum transfers k contribute to the
correlation energy.
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From the RPA it is known" that the integrand

e4, (k) of Eq. (50b) behaves like

$~00 8
~RPA(q) ~ q

—4

37T2

from which we immediately have the Euler-Lagrange
equation

, a'v(a) +,a4u (a)
4m2 16)n m2

1/3$~0 3eRPA(q) ~
2m 9n )s

(57)
+ dpp [S(p) —1]Dpk=0

16m+2 "
(60)

u(k) = p-'[S (a) -S-'(a) l,
—,
'

u (k) = p '[Sr '(k) —S4,
' (k) ]

(58a)

(58b)

2SF(k )

I + [ (16m e'm p/t2) [SP2(k)/k ] + I }'~'

(58c)

&MsA(q)(9~)5/3/(64rI 2)SL(q)

&& (q' —[12(—9m) 'r S'(q ) +q ]' ' }'

where q again is dimensionless. and energies are in

Ry. Since the RPA is a high-density approximation,
it is appropriate to compare with the corresponding
limit of the variational theory, the MSA. Here we

have, from Eqs. (41) through (45)

1
~

4
4~2 . /2

e2 k' e2 I 4

16m'' pS(k) 16mvr pS (k)
A-.

2

dpp'[S(p) —I]'=0 .
16)n vr' 2p'm' "

(61)

The important feature of this form for bosons is that
the three-body distribution function g3 is not re-
quired. By comparing the results of Eqs. (60) and
(31) for bosons it is therefore possible to estimate
the convergence of the series expansion for g3 [Eq.
(15)] used in the present paper. Unfortunately for
fermions it is not possible to use the 9F form in the
present context since derivatives of the determinant
would be involved which cannot be accommodated
within the scheme of Eqs. (24) and (25).

The low momentum limit of Eq. (60) is

(58d)

First note that the integrand for the model energy,
Eq. (58d), is the same as for the variational energy,
Eq. (45). Therefore, modei and variational energies
are identical for the MSA for any density. Further-
more, taking the appropriate limits, Eq. (Sgd) repro-
duces Eq. (57). We conclude that the RPA is con-
tained in our variational theory as the high-density
limit with the reservation about state dependence
made above. A more detailed and quantitative com-
parison of perturbational and variational results will

be performed in Sec. III B.

E. Low-density limit

It is well known that in the limit of low density the
electron fluid may be considered to be a system of in-

teracting bosons, or Boltzmann particles, since statis-
tics do not matter at all in this limit. The Bose limit
of any equation in this paper is easily obtained by set-
ting Sr = I, corresponding to Lt =1. In this case vari-

ous partial integrations may be performed in the
kinetic energy expectation value. An especially use-
ful rigorous formula for the kinetic energy is the
Jackson-Feenberg (JF) form""""

It is trivial to see that the solution S(k) will have the
correct behavior for small k, Eq. (36), since the
second and the last term vanish. A similar result has
been obtained in Ref. 28.

F. Short-range limit

In the limit of small pair distances, );, 0, the
Euler-Lagrange equation (31) considerably simplifies
since only two-particle processes matter. Three- and
many-body contributions may be neglected. The en-
ergy expression used in this paper, Eqs. (5) and (18),
simplifies to

(H) = T4, + p d3rg (r) ['7u (r)]'
8m

+ —p d'r v(r) [g (r) —I ]
2 J

yielding upon functional variation with respect to
u (r) the short-range Euler-Lagrange equation

e' h' 1 LI'(I ) =0
r mr.

with the immediate solution

u'(0) = e2m/Ir'2= ao '

T,„=T4, +
~

dkk4[S (k) —1]u (k )jF ~ 16m~2

Tp=0

(59) This is the well-known cusp condition. ' Since all ap-
proximations involved in the solution of the full Eq.
(31) affect only three- and more-particle contribu-
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tions, the solutions obtained will in principle satisfy
the cusp condition exactly. However, since numeri-
cally I choose to solve Eq. (31) in momentum space
on a finite interval of momenta, at very small dis-
tances corresponding to infinite momentum contribu-
tioas the Euler-Lagrange equation will not be satis-
fied. In fact, for any function f(k) defined on a fin

ite interval, the slope of the Fourier transform at the
origin

pK
lim — J k2dkf(k)j p(kr )r-p dr (2~ )3

rK
k'dkf(k)lim ji(kr) =0

(2n )

In practice, the pseudopotential u(r) does attain the
correct slope I/ap at small but finite values of r but
eventually for distances less than E ' corresponding
to kfr ( 0.05 becomes flat.

III. RESULTS

A. Charged Bose fluid

In order to test first the convergence of the series
expansion Eq. (15) for the three-body distribution
function let me consider a system of charged bosons
having the electron mass immersed in a positive uni-
form background. The second column of Table I

gives the optimal energies per particle as a function

of mean interparticle spacing r, obtained by solving
Eq. (60) and calculating the energy from Eqs. (7) and
(59); i.e. , the Jackson-Feenberg form of the energy is

employed. Here, the three-body distribution function
does not enter at all. These results are identical to
those of Lee and Ree' obtained by applying a paired
phonon analysis, which is equivalent to an energy
minimization in the space of function (1). In the
high-density or uniform limit' it is easily verified
that Eqs. (7), (59), and (60) yield the known exact
result

E —0.803 1 r, Ry

Note that for charged bosons correlation energy and
total energy are identical since the Hartree term does
not exist.

The third column of Table I gives the energies ob-
tained from the Clark-%esthaus form for the kinetic
energy and using the convolution form for the
three-body distribution function, i.e., solving the
Bose version of Eq. (31) and calculating the energy
from Eqs. (7) and (18)—(20). The following three
columns give the terms of Eq. (21) and the resulting
total energy may be found in column 7. Again it is
rather easy to show that in the high-density limit the
exact result is obtained. At finite densities small
differences arise between the different kinetic energy
formulas due to the HNC approximation and approx-
imation of g3. Note first that the C% energies are al-

TABLE I. Energies for the charged Bose fluid. E&F, from minimizing the Jackson-Feenberg energy functional, Eq. (60);
Ecw cA, from minimizing the Clark-Westhaus energy functional, Eq. (31), and using the convolution approximation for the
three-body distribution function, Eq. (20); (21a), (21b), and (21c), terms of Eq. (21) corrections to the kinetic energy expecta-
tion value; E, sum of previous four columns; EjF, energy from Jackson-Feenberg functional but using the wave function ob-
tained from the Clark-%esthaus functional; Em«, model energy, Eq. (50), using the wave function obtained from the C% func-
tional; p(l =0), value of the radial distribution function at the origin; EMsA, energy obtained from the mean spherical approxi-
mation, Eq. (44). All energies in rydberg units.

ls E oPT
JF Ecw-cA

OPT (a) (b) (c) EJF Em« EMSA

1

2

3
4
5

8
10
14
16
20
24
28
32
36
40

—0.7756
—0.4508
—0.3263
—0.2585
—0.2154
—0.1456
—0.1205
—0.0902
—0.0804
—0.0661

—0.7749
—0.4499
—0.3252
—0.2574
—0.2142
—0.1445
—0.1195
—0.0893
—0.0794
—0.0652
—0.0555
—0.0483
—0.0428
—0.0385
—0.0350

—0.0017
—0.0024
—0.0027
—0.0029
—0.0029
—0.0029
—0.0028
—0.0026
—0.0025
—0.0023
—0.0021
—0.0020
—0.0019
—0.0018
—0.0017

0.0013
0.0019
0.0022
0.0024
0.0026
0.0027
0.0027
0.0026
0,0025
0.0024
0.0023
0,0022
0,0021
0.0021
0.0020

—0.0001
—0.0001
—0.0002
—0.0002
—0.0003
—0.0003
—0.0004
—0.0004
—0.0004
—0.0004
—0.0004
—0.0004
—0.0004
—0.0004
—o.ooo4

—0.7754
—0.4505
—0.3259
—0.2583
—0.2149
—0.1452
—0.1200
—0.0897
—0.0797
—0.0654
—0.0557
—0.0484
—0.0429
—0.0386
—0.0350

—0.7756
—0.4508
—0.3263
—0.2585
—0.2153
—0.1455
—0.1204
—0.0900
—0.0801
—0.0659
—0.0560
—0,0488
—0.0433
—0.0389
—O.0353

—0.7753
—0.4498
—0.3249
—0.2569
—0.2137
—0.1438
—0.1188
—0.0887
—0,0789
—0.0647
—0.0550
—0,0479
—0.0425
—0.0382
—0.0347

0.474
0.293
0.198
0.142
0.106
0.055
0.039
0.024
0.020
0.015
0.012
0.010
0.0085
0.0074
0.0065

—0.8025
—0.4769
—0.3517
—0.2833
—0.2396
—.0.1682
—0. 1422
—0.1103
—0.0998
—0.0843
—0.0734
—0,0654
—0.0591
—0.0540
—0.0499



HYPERNETTED-CHAIN EULER-LAGRANGE EQUATIONS AND. . . 2365

Q8-

0.6-

Q4-

02-

ra=20

0
0

I

0.1
I

0.2
I

0.3 0.4 aak

FIG. 2. Structure factor S(1') for charged bosons at

r, = 20 from solution of Euler-Lagrange equation. Solid line,
Clark-Westhaus form for the kinetic energy used. Dashed
line, Jackson-Feenberg form used. Dot-dashed line, mean
spherical approximation.

ways above the JF energies so that we are reassured
that the CW form will tend to preserve the upper-
bound property of the variational energy. Moreover,
the corrections from the series expansion of the
three-body distribution function are rather small and
tend to cancel each other such that the total correc-
tion to the convolution approximation is always less
than a millirydberg, In this context it is amusing to
note that the contribution due to the Kirkwood su-
perposition form for g3„term (21a), is almost pre-
cisely canceled by term (21b) which in other ap-
proaches is part of a HNC/4-type contribution. This
clearly points out the inadequacy of the superposition
approximation, and illustrates the large positive con-
tributions. """ It is clear that using term (21a)
alone might easily lead to an energy estimate which is

»ot an upper bound to the ground-state energy.
The eighth column of Table I gives an energy

evaluated from the wave function obtained in the last
paragraph, but using the Jackson-Feenberg from Eq.
(59) for the kinetic energy. It is seen that this energy
is almost precisely equal to the one obtained by
minimizing the Jackson-Feenberg form itself (column
2). This comparison illustrates the similarity of the
wave functions obtained in either minimization pro-
cedure. Figure 2 shows the structure functions S(k)
obtained both ways for r, = 20 which are nearly indis-
tinguishable. For smaller values of r, the curves are
even more similar. Taking all this together we arrive
at the conclusion that it is indeed possible to use the
Clark-%esthaus form for the energy in a quantita-
tively accurate manner provided one uses a suffi-
ciently refined form for. the three-body distribution
function like Eqs. (20) and (21). It is well justified
to use the convolution form only in the minimization
and calculate perturbative corrections to the energy
from Eq. (21).

For completeness the last three columns of Table I

give the model energy, obtained from the Bose ver-
sion of Eqs. (50) to (53), the value of the radial dis-
tribution function at the origin, and the energy ob-
tained from the mean spherical approximation,

g MsA (g.)
h2

16in7re p

h1+
16&nne p

the Bose version of Eq. (44). This energy will be-
come exact in the high-density limit but obviously
the MSA cannot deal with strongly correlated systems
like Coulomb fluids in the low-density limit.

B. Fermion fluid

The fermion electron fluid is characterized by the
density and by the number of electrons in a given
plane-wave state of the model determinant. In this
section I will consider either two particles in a single
plane-wave state, i.e., a spin unpolarized system with

total spin zero, or a totally spin polarized system hav-

ing total spin iVh'/2 where only one electron is

present in each state all electrons having the same
spin projection. The only difference between these
two systems in this formalism is the connection
between. density and Fermi momentum, Eq. (13),
and the corresponding difference in the free Fermi-
gas structure factor SF. In Table II I present correla-
tion and total energies for both cases as functions of
I;. These results follow from numerical solutions of
Eq. (31) and evaluation of the energy from Eqs. (7)
and (18)—(20) for ecA and addition of Eq. (21) for

It is seen that the corrections arising from the
power-series expansion of the three-body distribution
function, Eq. (15), are even smaller than in the Bose
case never exceeding a millirydberg. In the case of
the polarized fluid the "uncorrelated" state $ already
incorporates quite strong statistical correlations due to
the Pauli exclusion principle. Therefore the correla-
tion energies due to dynamical correlations are almost
a factor of 2 smaller than for the unpolarized system.
From Eq. (45) it is easily calculated that this factor
will become exactly equal to two in the limit I; 0
which is also true for the RPA. The mean spherical
approximation which will have the same limit as the
other correlation energies for I; « 1 is not very ac-
curate even in the metallic density range 1 ~ I; ~ 8.
At high densities the polarized system has a Fermi
energy T& larger than the unpolarized system by a

factor of 2 ' = 1.S87, resulting in the total energy be-
ing larger by a comparable amount since the Fermi
energy becomes dominant in this limit.

The results in the upper half of Table II are in excel-
lent agreement with those obtained by Stevens and
Pokrant' using the same variational method in con-
junction with the convolution or superposition ap-
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TABLE II. Correlation and total energies for the spin polarized and unpolarized electron fluids, in rydberg units. Same
notation as Table I. e„correlation energies; E, total energy. Note that g(I =0) =0 for the spin polarized fluid.

rs ~ MSA CW-CA
Unpolarized

~ MOD p() =0)

1

2

3
4
5

8
10
14
16
20
24
28
32
36
40

—0.1465
—0.1156
—0.0990
—0.0881
—0.0801
—0.0648
—0.0583
—0.0493
—0.0460
—0.0409
—0.0370
—0.0340
—0.0315
—0.0295
—0.0277

—0.1135
—0.0852
—0.0703
—0.0605
—0.0535
—0.0404
—0.0350
—0.0279
—0.0254
—0.0216
—0.0189
—0.0168
—0.0152
—0.0138
—0.0127

—0.1141
—0.0859
—0.0710
—0.0612
—0.0541
—0.0409
—0.0355
—0.0282
—0.0257
—0.0218
—0.0191
—0.0169(
—0.0153
—0.0139
—0.0128

—0.1135
—0.0850
—0.0700
—0.0602
—0.0531
—0.0400
—0.0346
—0.0275
—0.0250
—0.0213
—0.0185
—0.0165
—0.0149
—0.0136
—0.0125

+ 1.1795
+ 0.0083
—0.1309
—0.1522
—0.1490
—0.1210
—0.1051
—0.0824
—0.0744
—0.0621
—0.0534
—0.0468
—0.0418
—0.0377
—0.0343

0.304
0.202
0.143
0.105
0.081
0.044
0.032
0.020
0.017
0.013
0.010
0.009
0.007
0.006
0.006

~ MSA CW-CA
Polarized

MOD

1

2

3

4
5

8

10
14
16
20
24
28
32
36
40

—0.0956
—0.0784
—0.0689
—0.0624
—0.0576
—0,0481
—0.0439
—0.0379
—0.0357
—0.0322
—0.0295
—0.0273
—0.0255
—0.0240
—0.0227

—0.0544
—0.0413
—0.0345
—0.0301
—0.0269
—0.0210
—0.0185
—0.0151
—0.0139
—0.0121
—0.0107
—0.0096
—0.0088
—0.0081
—0.0075

—0.0547
—0.0416
—0.0348
—0.0303
—0.0271
—0.0212
—0.0186
—0.0152
—0.0140
—0.0121
—0.0107
—0.0096
—0.0088
—0.0081
—0.0075

—0.0545
—0.0413
—0.0345
—0.0301
—0.0269
—0.0209

' —0.0184
—0.0151
—0.0139
—0.0120
—0.0106
—0.0096
—0.0087
—0.0080
—0.0074

+ 2.2986
+ 0.2581
—0.0299
—0.0997
—0.1178
—0.1107
—0.0990
—0.0798
—0.0725
—0.0610
—0.0527
—0.0464
—0.0415
—0.0375
—0.0342

proximation to g3 and a parametrized correlation fac-
tor f(r), Eq. (1). The solution of the Euler-
Lagrange equation (31) does not improve the energy
within the number of digits given. This is another
example of the astounding insensitivity' of variation-
al methods to the correlation factor used. In Fig. 3
the correlation factors, more precisely the pseudopo-
tentials are compared, The correct k 0 limit is

built into the pseudopotential used by Stevens and
Pokrant

K 0(k)

30-

20-

10-

u (r) = —e'(4vr pe't'jm ) ' 'r '(1 —e ")

6 =0.92kF at r, =5 (62)

so that both functions must agree for small k. But
even for rather large values of momentum the

FIG. 3. Fourier transforms of the optimal (solid line) and
parametrized (dashed line) pseudopotentials at i, = 5.
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analytical function is remarkably close to the optimal
one calculated from the Euler-Lagrange equation.
The only appreciable difference arises in the large-k
limit, but this difference is not large enough to affect
the first four digits of the energy in spite of this u (r)
violating the cusp condition (see Sec. II F) since
u'(0) W ao.

Stevens and Pokrant also performed calculations
using different pseudopotentials for spin-parallel and
spin-antiparallel electron pairs. ' They did not find
any decrease in the variational energy by allowing for
this additional flexibility. It was therefore not
thought worthwhile to incorporate such flexibility in
the present treatment. Moreover, their finding con-
firms the statement made in Sec. II A that spin-
dependent correlations are not important for the
present problem.

Perturbational theories of the electron fluid, in par-
ticular, the RPA, are frequently plagued by negative
p (r) for small r and sufficiently large r, . The same
holds true for the mean spherical approximation as
the reader may easily convince himself by taking the
Fourier transform of Eq. (44) for not too small r, .
On the other hand any hypernetted-chain variational
theory necessarily results in strictly positive radial dis-
tribution functions. This may easily be seen from

Eq. (11) or Eq. (26) where a logarithm of p(r) oc-
curs which is not defined for nonpositive g (r). It is

also easy to see how the Euler-Lagrange equation
(31) manages to keep g (r) away from too small
(positive) values: The matrix Dlk, Eq. (32), contains
a term g (r) ' which will become infinitely large for
g (r) approaching zero. This term will then act in Eq.
(31) to drive g(r) away from this region.

In Fig. 4(a) radial distribution functions for the un-
polarized electron fluid are shown at various densi-
ties. Strong correlations in the low-density limit are
obvious. Therefore any perturbational treatment will

eventually become doubtful for sufficiently large
values of I;. For variational methods, however, this
limit is "easier" than the high-density limit since any
approximation done in the treatment of Fermi statis-
tics will become negligible.

Also shown in Fig. 4(a) are some results from
Ceperley's variational Monte Carlo calculation, ""
which amounts to a straight evaluation of the mul-
tidimensional integral Eq. (2) .. The present theory
agrees well with his values for the radial distribution
function. It is to be noted that the statistical error
bars inherent in the Monte Carlo results become
quite large with r approaching zero.

In Fig. 4(b) radial distribution functions are shown

g{r)
(a)

1.0

08- 0.8-

Q6- 0.6-

0.4- 0.4-

0.2- 0.2-

0
0 2

l

5 kF&

FIG. 4. (a) Radial distribution functions from the present calculation, unpolarized fluid, x, Monte Carlo variational calcula-
tion of Ref. l at I, = l. Q, Monte Carlo variational calculation of Ref. l at I, =S. (b) Same as F'ig. 4(a), spin polarized fluid.
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for the spin polarized fluid. At the origin, g(r) =0
exactly sine the Pauli principle forbids two identical
particles to be at the same point. In the present ap-
proach this property is maintained exactly since the
first term of the product [Eq. (24)) vanishes whenev-
er two particles come together, manifesting itself in a
logarithmic divergence of the function w(r), Eq.
(25), at the origin as a consequence of the free
Fermi-gas distribution function gi(r = 0) =0.

In the high-density or r, 0 limit perturbational
methods and, in particular, the RPA become exact.
The radial distribution function tends towards the
free one shown as the limit r, =0 in Fig. 4, It is this
limit which is rather difficult to treat for variational
methods. This is because these methods and the ap-
proximations involved have been designed for
strongly interacting systems as opposed to this weakly
interacting limit, and motivates the extensive discus-
sion of this limit in Sec. II where it was shown that
this limit is treated correctly by the present method
with the reservation made about state dependence.

The variational wave function (I) explicitly
neglects state dependence of the correlation factors.
It was sho~n in Sec. IIC that this choice of trial wave
function leads to an upper bound 8.4% above the ex-
act correlation energy as r, 0. It remains to be dis-
cussed how much the results in more interesting den-
sity regimes are affected. In Table III correlation en-
ergies from various theories of the electron fluid are
compared. The sixth column gives variational Monte
Carlo results' obtained with a wave function of the
form Eq. (I) but using parametrized correlation fac-
tors f(r). Therefore, this calculation should yield
the same 8.4% difference to the exact I; 0 limit as
the present treatment. Recently Ceperley has been
able to solve Schrodinger's equation for the ground
state of the electron fluid by means of the Green's-
function —Monte Carlo technique. ' " Corresponding
correlation energies are given in the seventh column

of Table III. To within a statistical error of one unit
, in the last digit given, the numbers represent the ex-
act eigenvalue of the Schrodinger equation. Unfor-
tunately such results are not available at present for
r, ( 1. At I; = 5 the exact Shrodinger eigenvalue is
two millirydberg below the upper bound obtained
from the Jastrow wave function (I). Also the agree-
ment with the nonvariational coupled-cluster theory, 4

column five, is of the same order. The results from
the present treatment, fourth column, are seen to be
upper bounds in all cases. The differences from the
variational Monte Carlo results are of the order of
one millirydberg for r, & 2. Since the present results
agree to within all digits given with those obtained by
Stevens and Pokrant' who use a parametrized corre-
lation factor it is fair to assume that the difference is
totally due to the HNC approximation used here.
The differences from the exact eigenvalues are of the
order of a few millirydberg. It is interesting to note
in this context that the present method needs only
about one hundredth of the computer time used in
the Monte Carlo method, specifically about 3
min/density on a CDC 7600. The last column
gives the results from Lantto and Siemens' using the
Fantoni-Rosati Fermi-HNC method. In spite of the
variational character of this calculation these results
do not seem to be upper bounds to the exact eigen-
value. At r, = 1 their result is significantly —more
than 10%—not only below the Monte Carlo variation-
al upper bound and similarly below most other recent
calculations, but also below the exact Schrodinger
eigenvalue obtained from the GFMC (Green's
function Monte Carlo) method. In face of the
long-range difficulty pointed out by Krotscheck' it
would be extremely interesting to find the I; 0
behavior of this theory, which has not been possible
so far.

Another, very promising approach leading to a still
different version of Fermi-hypernetted-chain Euler-

TABLE III. Comparison of correlation energies for the unpolarized fluid from various authors. LS-FR, variational FHNC,
from Ref. 2; GFMC, exact Schrodinger eigenvalue by Green's function Monte Carlo, Ref. 30; VMC exact upper bound by vari-
ational Monte Carlo, Ref. I; CC(2), nonvariational, partially summed perturbationally, coupled-cluster theory, Ref. 4; RPA,
Ref. 23; remaining columns, present work, same notation as Tables I and II. Energies in rydberg units.

rs ~ RPA ~ MSA
Eg 6cc(2)6g ~VMC FMC LS-FR

0
I

2

3
4
5

10
20

0.0622 lni,
—0.1576
—0.1236
—0.1055
—0.0936
—0.0849

. —0.0613
—0.0428

0.0570 I nrs
—0.1465
—0.1156
—0.0990
—0.0881
—0.0801
—0.0583
—0.0409

0.0570 1nis
—0.1141
—0.0859
—0.0710
—0.0612
—0.0541
—0.0355
—0.0218

0.0622 lnI,
—0.123
—0.0917
—0.0751
—0.0644
—0.0568

(0.0570 lnr, )
—0.122
—0.0874
—0.0722
—0.0624
—0.0550
—0.0363
—0.0225

(0.0622 ln/, )
—0.122
—0.0902

—0.0563
—0.0372
—0.0230

—0.138
—0.098
—0.079
—0.067
—0.058
—0.037
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TABLE IV. Same as Table III but for totally spin polar-
ized fluid.

VMC GFMC

~0
1

5

10
20

0.0285 Inr,
—0.0547
—0.0271
—0.0186
—0.0121

(0,0285 Ini, )
—0.0582
—0.0303
—0.0208
—0.0135

—0.0311
—0.0209
—0.0136

Lagrange equations is due to Owen. " Unfortunately
no results are available so far for the electron fluid.

The fifth column of Table III gives results from
Bishop and Luhrmann's coupled-cluster calculation4
representing the currently most advanced partially
summed perturbation-theory approach the lowest or-
der of which is the RPA. Their calculation is non-
variational, therefore, and extremely close to the ex-
act Schrodinger eigenvalue. '

Table IV shows a comparison of present'results
with Ceperley's variational Monte Carlo calculation, '

for the spin polarized (ferromagnetic) state. The
agreement is not as nice as it is for the unpolarized
case. However, the difference is never larger than
10%. The variational Monte Carlo results are even
closer to the corresponding exact Shrodinger eigen-
values from a Green's-function —Monte Carlo calcula-
tion' than in the unpolarized case. I conclude that
the present method yields correlation energies not
more than a few millirydberg above the exact value.
This could already have been inferred from the com-
parison of variational and model energies in Table II
which should be a measure of this difference, see
Sec. If D, and from the agreement with the nonvaria-
tional coupled-cluster energies in Table III for the

- unpolarized case.

C. Lour-density and Bose limits

At very low densities interacting electrons become
classical. Therefore it must become less and less im-
portant with decreasing density whether the electrons
are considered as Bose, Fermi, or Boltzmann parti-
cles. Moreover, since there is no spin-spin interac-
tion in the present Hamiltonian, spin polarization
must become negligible in this limit for the same rea-
son. In Table V present results are collected for
these three cases and compared to corresponding
variational Monte Carlo results. ' The energies shown
in Table V are total energies per particle, »ot correla-
tion energies since only total energies will become
equal in the low-density limit which is nicely exhibit-
ed. Since I start from a plane-wave determinant, all
results of the present treatment pertain to a fluid
phase. On the other hand it is very well known that
at low densities electrons will crystallize. The second
column of Table V therefore gives total energies per
electron from the anharmonic-crystal calculation of
Carr et a/. " It is seen that in this density regime
crystal and fluid energies are extremely close which
renders determination of the density where the phase
transition occurs very difficult.

It is seen from Table V that the two Fermi fluid
energies become equal to each other more rapidly
than they become equal to the Bose fluid energy, as
should be expected. Ceperley' even finds a crossover
point in his variational study, i.e. , lower energies for
the polarized than for the unpolarized phase for
r, & 26. This does not occur in the present calcula-
tion. However, the differences between polarized
and unpolarized ground-state energies are smaller
than the uncertainty due to the approximation to g3
for low densities so that these differences are not sig-
nificant.

The second and third columns of Table III give the
RPA and MSA correlation energies. While the RPA
becomes exact for r, 0 and the MSA becomes an
upper bound both analytical solutions yield energies
well below the exact value for interesting values of r;.
It is to be noted, however, that in spite of its simplic-

TABLE V. Comparison of present total energies per electron with low-density expansion of Ref.
33. Energies in rydberg units. EFHNc —present work, EvMc —from Ref. 1, E " —from Ref. 33.

ls ECRYST E FLUID ( p p) E FLUID ( p p) EFLUID (p 1) EFLUID (p 1) EFLUID
FHNC VMC . BOSE

20 —0.0618
32 —0.0421
36 —0.0381
40 —0.0348

—0.0621
—0.0418
—0.0377
—0.0343

—0.0628
—0.0422
—0.03&3
—0.0348

—0.0610
—0.0415
—0.0375
—0.0342

—0.0624
—0.0425
—0.0384
—0.0350

—0.0659
—0.0433
—0.0389
—0.0353
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ity and neglect of state dependence the MSA
nevertheless is always closer to the exact eigenvalue
except for r, (& 1.

In Fig, 5 I compare the integrands for the model
energies, Eq. (SO), from various theories for the case
r, = 1. It has been shown in Sec. II D that the low
momentum limits of these functions must agree. It
is interesting to note that it is pronouncedly in the
large momentum limit that the complete theories,
HNC and coupled cluster, yield similar behavior quite
different from the behavior found for the analytical
RPA and MSA. In spite of the rather similar
integral —the correlation energy —the integrands ob-
tained from HNC and coupled-cluster theories look
somewhat different. In the variational treatment,
contributions to the correlation energy come more
pronouncedly from large values of the momentum
transfer whereas in the coupled-cluster theory corre-
lation energy is gained more pronouncedly from
smaller values of the momentum transfer.

It is obvious that the analytical theories RPA and
MSA fail quite badly for large momenta and conse-
quently overbind. However, the MSA is more accu-
rate specifically for momenta above the Fermi
momentum.

As stated in Sec. II D the difference between model
and variational energy should be a measure of the
"distance" between the Jastrow-type wave function
(1) and the true ground-state wave function. This
difference is significantly smaller in the polarized
than in the unpolarized case, signalling that the Jas-
trow wave function is "better" in the polarized case.
If one finds lower variational energies for the polar-
ized phase this might merely reflect the better quality
of the wave function used and need not signal a
physical phase transition.

Comparing the crystalline, Fermi fluid, and Bose
fluid energies of Table V it is to be noted that though
numerically quite similar these energies are of quite
different origin. For all cases, kinetic energy is negli-
gible. The crystalline and Bose fluid energies almost
entirely consist of potential energy all of which comes
from correlations in the Bose fluid case whereas it is
a11 electrostatic for the crystalline case. The Fermi
fluid energies are made up from a larger exchange

Sg(k) -SF (k)
ii 0.5 1.0

I
2.0 "IkF

jFICi. 5. Integrands for the model energy, S&—SF, Eq.
{50). CC(2), from Ref. 4; RPA, from Ref. 23.

13. Variable polarization

For applications it is useful to know correlation en-
ergies not only as functions of density but also as
functions of spin polarization P. In Table II I

presented results for the unpolarized P = 0 electron
fluid and for the totally polarized fluid, P =1. An in-
terpolation formula widely in use has been given by
von Barth and Hedin

energy and a smaller correlation energy contribution
as may be seen by comparing with Table II. Of
course, this is nothing but an exemplification of the
triviality that "exchange" and "correlation" terms
are only defined with reference to an "unperturbed"
state.

It might look rather surprising that the fluid wave
function Eq. (1) is capable of describing a state very
close to a solid in energy. However, the Jastrow
correlation factor does build strong many-body corre-
lations into the system. On the two-body level this is'

exhibited by the distribution functions of Fig. 4. It
has even been argued'4 that an actual crystal could
accurately be described by a translationally invariant
wave 1'unction like Eq. (1)—the floating crystal
model.

&c(r,P) = &c(&&» =O) + [&c(l~ P = 1) &c(&s P =0) j ( [—(1+P) I + [—(1 —P) j"'—2 '"[l(1—2 '") . (63)

In order to check the above interpolation formula I performed several calculations using specific intermediate
values for the polarization. This is easily done within the present formalism since the only place where spin po-
larization enters is the uncorrelated state $. The correlation factor will be adjusted by solution of the Euler-
Lagrange equation (31). The only knowledge required to carry through this program is the noncorrelated distri-
bution function or structure function entering Eq, (31). For the present case this is, denoting spin up or down,



HYPERNETTED-CHAIN EULER-LAGRANGE EQUATIONS AND. . . 2371

TABLE VI. Correlation energy as function of spin polarization and density. e& (interpol. ), from

Eq. (63); ~&(P), from solution of Eq. (31). Energies in rydberg units.

is ~, (interpol. ) ~, (P =0.3228) ~, (P =0) e, (P=1)

1

5

10
20

—0.1088
—0.0517
—0.0340
—0,0209

—0.1084
—0.0516
—0.0339
—0.0210

—0.1141
—0.0541
—0.0355
—0.0218

—0.0547
—0.0271
—0.0186
—0.0121

Fermi momenta

k + = [3m'p(1+ P) j

Slater functions, with j~ a spherical Bessel function

I+(I.) = (3lkF+i )j i(kF+~)'
Radial distribution function

from which the structure function SF may be ob-
tained by Fourier transformation.

In Table VI the approximate interpolation formula
is compared to actual minimization of the variational

energy. It is seen that the error of the interpolation
formula is always less than a millirydberg. Similar
results obtain at other polarizations and densities,

IV. SUMMARY

The present paper continues investigations on the
Jastrow variational method as applied to the electron
fluid. Within the framework of the hypernetted-
chain approximation accurate variational upper
bounds to the ground-state energy are obtained.
After doing approximations the theory still behaves
correctly in the high- and low-density limits and in

the long-wavelength limit. The only exception to this
statement is the neglect of state dependence in the
correlation factor in the very ansatz for the wave

function, Eq. (1), which leads to an upper bound
8,4% above the exact correlation energy in the high-

density limit but not to serious underestimation of
the energy in the metallic density regime. By com-
parison with Monte Carlo results it is seen that the
hypernetted-chain variational upper bound is of the
order of one millirydberg above the exact expectation
value, and only a few millirydberg above the exact
ground-state energy in the metallic density range.
Furthermore, it is found that the Jastrow-type wave

function (1) is closer to the exact ground-state wave
function for the spin polarized fluid than for the spin
unpolarized fluid as evidenced by the comparison
with model energies. Variational least upper bounds
within the space of functions (1) have been comput-
ed for a variety of densities and polarizations.

In the high-density limit an analytical solution of
the Euler-Lagrange equation, the mean spherical ap-
proximation, has been obtained. The analytical form
is much simpler than the one obtained from the
RPA" and the derivation is much less demanding.
Nevertheless, the correlation energies obtained from
this approximation are always closer to the exact ones
than the ones obtained from the RPA with the ex-
ception of r, && 1 where the neglect of state depen-
dence becomes important.

The present variational treatment of fermion fluids
immediately extends to other than Coulombic forces.
Nowhere but in the evaluation of asymptotic proper-
ties was made use of the special case of the Coulomb
interaction. The central equations (5), (9),
(18)—(21), and (31) apply to any other central in-

teraction u(r) without alteration. The asymptotic
properties of S (k) may be obtained from Eq. (35) by

just replacing the potential function v(k) in the first
term. Numerical calculation bears out that the
present treatment gives results for superpositions of
Yukawa potentials in very good agreement with other
treatments. "
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