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%'e start with a Hamiltonian containing electron-hole Coulomb, electron (hole)-phonon, and

electron-hole photon interactions to derive effectively renormalized interactions appropriate to
recombination in the indirect-band-gap semiconductors with the use of canonical transforma-

tions. It is found that a phonon-induced Auger process and a radiative process involving

electron-hole-phonon-photon interaction leads to relaxation in the indirect-band-gap semicon-

ductors. The electron-hole pair self-energy for these processes is calculated. The imaginary part

of the self-energy which leads to the relaxation time is deduced for these processes for optical as

well as acoustic phonons. The theory is applied to the electron-hole drop recombination relaxa-

tion in Ge. The predicted relaxation times for the optical phonons which dominate in Ge for

both the radiative process and the phonon-induced Auger process are in reasonable agreement

with the experimental values,

I. INTRODUCTION

Extensive studies of the electron-hole drop (EHD)
luminescence have been carried out in the last de-
cade. ' 3 However, there has been no complete
theory of the relaxation times and mechanisms of
recombination. In indirect-band-gap semiconductors,
the electrons and holes are separated in the momen-
tum space by a wave vector too large to be supplied
by the photon. Therefore, the e-h recombination can
occur only through the participation of a phonon
which provides the correct momentum. The experi-
mentally measured relaxation rate is a sum of two

major contributions,

1/ro = 1/r„+1/rg

Although the nonradiative Auger lifetime v~ has
been a subject of several preliminary theoretical
and experimental' "studies, there are no micro-
scopic calculations of the radiative relaxation time v, .
The experimental measurements of Tp indicate that a

theory of the radiative relaxation time is much need-
ed.

A phenomenological description of the radiative
decay rate has been given by Rice' according to
which,

x 8[a,(k„j)+ eg(kl, ,j')
+ Eg —h v ltd)p(k, —kg+ K, )—]

where the energies and momenta are measured from

the band extrema; the label. j includes spin and orbi-
tal quantum numbers, f(e, ) andf(eq) are the , Fer-
mi functions, M(k,j,kl/ ) is the transition amplitude
for an electron of wave number k, and hole of wave
number kq to recombine yielding a phonon of a given
band (LA, TO, etc.) and polarization and a photon of
wave number 5. =0, e, (k,j) and eq(kqj') are the en-
ergies of an electron and a hole of wave k, and kq,
respectively, h v is the energy of the emitted photog,
and Ace~ is the energy of the emitted phonon.

The usefulness of the transition amplitude
M(kj, kqj') has been realized in a number of stud-
ies, ' ' but this coefficient has not been calculated to
date. Hammond and others' ' have suggested a
procedure to fit the line shape of the EHD lumines-
cence. However, Rostworowski and Bergersen" have
noted that the momentum dependence of the argu-
ment of the energy 8 function has not been properly
taken into account. They have suggested ' an ap-
proximate procedure to include this wave-vector
dependence. Under these circumstances it appears to
us that the process of the recombination through a
phonon and a photon is not well understood. We
therefore develop a microscopic theory of the recom-
bination mechanisms in electron-hole drops,

In this paper we calculate both the radiative and
nonradiative Auger relaxation times from the first
principles. We formulate the Hamiltonian in Sec. II
by performing a canonical transformation on the
electron-photon-hole, electron-phonon, hole-phonon,
and the electron-hole Coulomb interactions. We in-

terpret the various terms arising in the transformed
interaction and distinguish between the scattering and
the recombination mechanisms. In Sec. III, the con-
tribution of the recombination terms to the self-
energy of the e-h pair is calculated for all the per-
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tinent terms. Section IV contains a calculation of the
phonon-assisted Auger and the radiative relaxation
times, which are the dominant mechanisms of recom-
bination in the indirect-band-gap materials, as there
has been considerable interest in such systems. In
Sec. I/' we discuss the enhancement of the relaxation
rates by the correlations in the liquid state and in Sec.
VI we obtain numerical estimates for the relaxation
times in Ge in reasonable agreement with the experi-
mental measurements.

previous terms and the coupling constant Dp depends
on whether the acoustic or the optical phonons are
being considered as we shall see 1ater. The interac-
tion of photons is given by

eltr I + 6hckgLA-kAA H.c.
kk,

(2.4)

where the matrix element is given by Hanamura"

G„=g„V ' ', g„=(te/pc)(kQ)/~)' ' (2 5)

II. HAMILTONIAN

We start with the unperturbed Hamiltonian

X0 =X+kck ck + X +k bk bk+ X~Q)pPp Pp + $~ t1 g&ko'k
k k p

where p. is the reduced mass of the e-h pair. The
Coulomb interaction between the electrons and the
holes is of the fprmz4, 25

X,= X [,(cl,'~qck', c,, ck i b„,qb„, b„,b„)
kk q

(2.1) —2 Vq ck~~ b, b hack] (2.6)

For electrons the creation and annihilation operators
are ck, ck, respectively, for holes bk, bk, the phonons

P~, P~, and the photons uq, uq. The electrons and
holes being in the conduction and the valence bands,
respectively, the single-particle energies are of the
form

e"=t k /2ml, ck=E +b k /2m (2.2)

where Eg is the gap energy in the condensed state.
This energy requires the knowledge of the modifica-
tion of the Fermi energies in the liquid state as com-
pared with the free excitonic state. The interaction of
the electrons and holes with the phonons is of the
form

Thus the Hamiltonain of our problem is given by

=Xo ++eltp +3.ehr +c (2.7)

+ [X,p~+X,p, +X„S]
+ —,

'
[Xo, [XO,S]]+ (2.8)

and find S by setting

We seek a transformed Hamiltonian which displays
the desired interactions explicitly through the canoni-
cal transformation on Eq. (2.7) such that

X 8 Xp Xo +Xpgp +Xppp +Xg + [XoiS]

Xp@ I XDp( cp+pckPp + bk+pbkPp) H ~ c.t
kp

(2.3)
X~ +Xg/gp +Xp/g~ + [Xp,S ] 0

where H.c. stands for the Hermitian conjugate of the so that 3C,I,p+, I„+3C, are eliminated through

S = ' XDp[(&k &k+p+tt~gr) cp+kckPp+ (&k &k+p+tr~p) bk+pbkPp]+ I X Gk(it f1' +k+k &—k) ck+8 k~L—
kp kA,

+ { V&[(ek +tkEk '+&e)kCk+&Ck C ck+ (ek + 6k 6t I", ) 'b b, b, bk]k k-q k-q k k k+q k'-q k+q k'-q k k
kk q

2 V&(t I 6 g + ek Eky&) y&cbkI b ick ) + H.C.
k k -q q q k -q k

(2.9)

The transformed Harniltonian now occurs in the form

X=e SXes =Xo+ —,
' [X,„~+X,„,+X„S] (2.10)

in which the terms can be grouped as follows:

where

0 +Gpss +Kpz +a+ Q +pQ +pps +DC' +Kpp +DC res +3CQ

X,= X ck'c„c„+$~k b„b„+gt",Pr P, + X& &&~&~~,
k k p

(2.11)

(2.12)
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I

in which the single-particle energies are slightly renormalized as

6k ck /DE (kk +k+p +fcvp) $Gk (E k+-6k+k trQk)
k

'ak =6k XDp(Ek ak+p+fKp) Q Gk(E k+Ek+k tQ k)

(2.13)

(2.14)

In these expressions the second term determines the change in the single-particle energy due to the electron-
phonon interaction whereas the third term is the change due to the electromagnetic wave. This change in the
electron wavelength due to the interaction with photons is called the Kapitza-Dirac effect' which is believed to
be small. These energy shifts need not be considered further. The various terms in the transformed Hamiltoni-
an are as follows'.

3('-,ks
= —X Dp'[(~kk'k+p+f~p) ckckt+ ckrckyp+ (tk, ak+p+f(op) 'bk b I b ibkpp] +H.c.

I
1 kk p

(2.1 5)

describes the scattering of electrons or holes within the same band. This gives rise to processes which do not
contribute to recombination in low orders. The interaction can be either attractive or repulsive depending on the
sign of the energy denominator. Thus Eq. (2.15) is of interest for the problem of electron-electron and hole-hole
pairing mediated by phonoris. This effect has been well studied in the theories of superconductivity and on such
possibilities in the EHD but is not of interest for the present problem. The terms

$2D, 1;[[(;+k k+ „',) ' —( „'+ k+ ' k+
kk qp

+ ( kk kk+p +it&tip) ( Ek+q kk+q+p +f~@) ]ck q++pckr ckickPpk —q k

+ [(6k + k i a r kk+&) (kk+p + k I k Ik kkk+q+p)
k —q k k —q

+ ( tk tky& +ha)~) ( kky& Eky&y~ +O'Q)~) ] bkyqy&b i b rbkp& ] + H.c.q~k-qk (2.16)

and

~pcs = X DpD ~( [(&k—p &k+trQJp) (t i k i+trQJp) ]c, ckppp

+[(ek ~
—ok+fee~) ' —(k„", —e„" ~+ha)~) ']b ibkp„p i]+H.c. (2.17)

give the intraband scattering of electrons or holes accompanied by the scattering of one [Eq. (2.16)] or two [Eq.
(2.17)] phonons. The scattering process accompanied by the emission of one photon and the absorption of
another photon is given by

[~„,= X GkG l[(tt Qk —&-k +k+k) k 'ck+ko'k'~x+(tQk —&k k
—&k) 'b, bk n kn k]+kH. . c

kA, X

.(2.18)

Since these terms describe scattering within the same band, these do not contribute to the recombination relaxa-

tion times and may hence forth be ignored for the present problem.
The terms which describe relaxation are

~q=i X2G„Vz[(6k+~+k t'k k+Eki . k k) —(tQk kk kk+k) ]ck+kb —kcxk —H.c.
kqk,

(2.19)

is interaction gives recombination in direct -band-gap semiconductors only. In indirect-band-gap semiconductors,

which we are considering, this term has no contribution because of momentum limitations on the Perm& surfaces

in the condensed state. In fact these processes give rise to fast relaxation in the direct-band-gap semiconductors.

It is for this reason that relaxation in the direct-band-gap semiconductors is several orders of magnitude faster

.than in the indirect-band-gap materials. This explains as to why the relaxation times in the direct-band-gap ma-

terials are of the order of nsec whereas in the indirect-band-gap materials these are of the order of p,sec. The
next term is given by
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Xz = —X Dp F&~(k, k', p)ckb ~ b ~ck+p —X GkF„2(k, k', A)c i b ~ck+zb k+H. c.
kk p kk X

(2.20a)

Fg ~ (k, k,P ) = (ck —6k+p +A(alp) + (k I —k i +AQJp)
k +p

F„(k.k', ) ) =(AQ„-."„-.„,„)-', (2.2Ob)

which are the phononless Auger recombination terms. These terms again are of importance in the direct-band-
gap semiconductors but because of limitations on the Fermi wave vectors in the indirect-band-gap materials,
these cannot give rise to a relaxation process with simultaneous conservation of momentum. This is not quite so
when the temperature is raised up. In the indirect-band-gap systems, the phonon-induced Auger process with the
simultaneous emission or absorption of one phonon dominates over the phononless process at low temperatures
only. At room temperature both the processes can be of comparative magnitude. Next we see that

3.'pq =i X 2Dp V&'Fpp (k,k, q, P ) ck+~+pbks bksckpp+ H.c.
kk qp

with

(2.21a)

Fpg (k, k, q, p) = (c t e k + 6k+& cky&+p) + (a I k t + tkE'k+p) + (ak ak+p+p + a I a t )k -q k k-q k+P k -q

+ ( pk + pki kkt 'akq +p+) + ( fk+q pk+q+p +l4)p) ( ak ak+p +A~p)k -q-p

(a i t i +ACtlp) (k i 6 i +AQJp)k -q-p k -q k k-p (2.21b)

(2.22a)

with

describes the phonon-assisted Auger recombination. This is the dominant mechanism in the indirect-band-gap
materials since the phonon can provide the required momentum. The phononless radiative term is given by

&,=i g 2GkVp'[F, t(k, k', q, X)ck~q~„c c„b kak+F, 2(k, k', q, A)b kb b ck+q+knkj+H. c.
kk qA.

F,t(k, k', q, X) =(6kyq+k+t„6k+k t„) (k„—a„—ak+aq —k)k -q k k k --q

+ (A Q k
—p" k

—tk+k) ' —(A Q k
—cq" kkk+—q+k)

F~2(k, k, q, A) = (a k
—

a& k + a i a i) —(kk+k —ak+q+k+ f i a i )k+q k k k-q

+ (A Q k a —k ak+k) (A Q k 'aq kak+q+X)—

(2.22b)

In this process an electron is created and annihilated to provide the momentum for the recombination of an elec-
tron and a hole with the emission of a photon. However, in the electron-hole liquid the Fermi wave vectors are
three orders of magnitude smaller than in metals. Therefore in EHD the expression (2.22) cannot meet the re-
quirements of the momentum 5 function. Next we write,

&p, = —X DpG„[Fp, t(k, P, h..)ck+p+„b knkpp —Fq, 2(k, P, X)ck+„pb kuzpp] +H.c.
kpX

(2.23a)

where

Fprl (k P~ ~) (AQ k &-k &k+k) + (A Qk &p —k &k+p+k) ( fkyk Ckypyk+AQ)p) ( 6p —k k k +Atop)

(2.23b)

Fpr2( k~P X) (A Q l ak 6k+k) (A Q k kp —k pk+p+k) ( 6k+k pck+k +A&p) — ( a kap k+ AMp)—-
In this process an electron and a hole recombine with emission of a photon and emission or absorption of a pho-
non. This gives rise to r, of Etl. (1.1) in indirect-band-gap materials. Finally there are terms in the transformed
Hamiltonian which contain products of six or more quasiparticle operators, the contribution of these higher-order
terms to the physical properties of the EHD is small. The interactions (2.21) and (2.23) are the only important
recombination mechanisms in the indirect-band-gap materials at low temperatures. At this time the effect of
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these terms on the ground state "" is not obvious
which has been studied either with the Coulomb in-

teractions alone or with the electron-phonon interac-
tion in polar materials. The electron-phonon interac-
tion in nonpolar materials such as Ge has not been
considered. ' We will consider the effect of radiative
interactions on the ground state in a later paper. It
may be noted that thermal nonradiative scattering as
well as radiative mechanisms have been recognized
by one of the present authors as experimentally ob-
servable mechanisms of magnon relaxation in mag-
netic materials. The present problem of nonradiative
Auger and radiative relaxation is thus some what
analogous to that of the magnon relaxation.

III. RECOM BIN ATION SELF-ENERGY

There are only four types of processes which con-
tribute to recombination, the phononless Auger,
one-phonon Auger, phononless radiative, and the
one-phonon radiative. The phononless processes
dominate in the direct-band-gap materials. The self-
energy of an electron-hole pair due to the recombina-
tion is now calculated for these four processes using
the standard rules. The contribution to the pair self-
energy due to the Auger recombination is obtained
from Eq. (2.20) as

X„(k) = XD,'F„', (e", +e» p»~p
——»„",) 'rt, (kk', p)+ $G,'F„')(~„' +»" —&»+» —&"-») 'q~(k k ~) +X~(k)

k p k (3.1)

w hei'e

gt(k, k', p) =f»~,f»+p(1 ,f„" ) + (1 —f„")(1 —,f»—+p, )f»~+, ,

rip(k, k', ).) = f"» „(1 f'i )(1 f"i—) +(1——f"»») f„'i „ f„"i

(3.2)

(3.3)

Here f» and f» denote the Fermi occupation-number density of electrons and holes, respectively, for example,

f» = (exp[(a, »
—ap)/ks T] +1 )

' (3.4)

The term X„(k) is obtained by interchanging the electrons and the holes in the preceding terms. The phonon-

assisted Auger process (2.21) has a contribution of

Xpg(k) = $ 4Dp~Vp'~Fp~~(e»+q+p+e» e» p» imp) tq(kk, q, p) +Xp~(k)
k qp

where

q'(k, k', q, p) = N fp", (1 f» ) (1 f»—+quip) + (N—p+1) (1 f" ),f"f'»+—ppp,

(3.5)

(3.6)

and Np is the occupation number of the phonons. There is an additional contribution to Eq. (3.5) from a di-

agram which is energetically unfavorable and hence ignored. The phononless radiative contribution to the pair

self-energy is calculated to be

X„(k)= —$ 4G»&q [F,t (k', k, q, it)(& + &» &»»+» f0») 'X~(k, k', q, )t)
k qk.

+ F„', ( k, k, q, )()t" -»++„.+„', -",+.»-an„ ) 'x, (k, k, q, ~)]+X„(k) (3.7)

Xt(k, k', q, )t) =(1 —f', )(1 f» q)(1 f"—»)n„+ f', „—f», f"»(n»+1)

X&(k, k', q, )t) =(1 —f;+„»)(1—f', ) f', rl„+f;+, „f„', (1 —f', )(~„1+)

and the one-phonon radiative contribution to the pair selfenergy is found to be

Xp, (k) = QDp G» [Fp„~ (k —p ),P, x)(6»+6p+»» rr&p fQz)
pA.

+ Fpr2 ( p A. + k, p, h, )(6» p-» pk +—trap fQ») 42] + Xpr(k)

(3.g)

where

$& =2n&Np+fp+»»(1+n„+Np), $&=2nz(Np+1) +f& p »(~& Np)- (3.10)
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For the scattering processes, which are intraband
transitions, the matrix element of the Coulomb in-

teraction would have a factor of f;„„,. On the other
hand the factor in the case of the interband transi-
tions is f;„„,where in the lowest order,

= I + O(q')

f„„„= 2t'q'/( p, Eg)

as discussed by Pines" and utilized by Haug' and
Lochmann, " so that the effective potential is

IV. RELAXATION TIME IN INDIRECT-
BAND-GAP SEMICONDUCTORS

(4.1)1/r(k) = (2/lt) ImX(k)
Since we are interested in the indirect-band-gap ma-
terials it is necessary to separate the imaginary parts
only near the particular pole of interest which give
the phonon-assisted Auger v» and phonon-assisted
radiative relaxation vp, . For this purpose we use
Dirac's identity

The relaxation time is determined by the imaginary
part of the self-energy;

Vq =47re /( Vaq2)

V~'= [47re /( V~q ) ][25 q /(pE~)]' 2
(3.11)

lim — = —+i n 5(x)1 P
o X+16 X

A. Phonon-assisted Auger recombination

(4.2)

where q is the momentum transfer along the interac-
tion line.

The phonon-assisted Auger recombination time is
given by

Im g (2' Vq'Fpg ) (aky~+p + ekr a ek too@) P (k k q p ) + (4.3)

where r»(k) is obtained from the previous terms by interchanging the electrons and the holes. Separating the
imaginary part of the self-energy, we obtain,

J~( p dp (2' VqFp~) q'(k& q p)5(ek+q+~+e i e i ak hoop)+ (4.4)

As found by Hammond et al. ' the temperature-dependent part of the Fermi energies is very small, so that

ff, = fk ——
—, , &P =

8 (2N~ + I ). This is the reasonable approximation if we are interested in the relaxation time at
temperatures of the order of 2 K. For optical phonons in nonpolar materials such as Ge, the coupling constant of
the electron-phonon interaction is given by

D~ = Do~(lra&L/2ct V) 'i2 (4.5)

~here Dop is the nonpolar optical deformation potential, c2 is the longitudinal elastic constant, and coL is the opti-
cal phonon frequency at the zone boundary. The zeros of the argument of the 5 function in Eq. (4.4) occur for
values of p given by

pt, 2
= —(k +q) + ((k +q)' —[2kq + q'+ (m, /mi ) (q' —2k'q) —2&coLm, /g'l ]' '

For slow electron and holes, ek ((gcoL, 6k ((gcoL, Eq. (4.6) becomes,

pt g= —(k+q) +p„p, =(2m, cuL/5)' '

The expression (4.4) can then be written

1 1287TDopo)LP m~
1

0 ( ) X V 2 t( ) J~ P dp F~wp(k', k, qp)[5(p —pt) —5(P —p2)] +
Ypg k c2 Vx IJI., Egq P) —P2k q 7»

(4.6)

(4.7)

(4.g)

Evaluating the 5 functions we find

647r Do'p~Le4m, W

o
——$, , [F,'„t(k+q —p, )' —F'„2(k+q+p, )']+ ok „c2V ~'pEgp, q'

k q ~ ApA

(4.9)
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where

Fpg &

= 2' (26F)

T

Fp„2=2 (2er')

Pl~+ AQJL
mk

me+ &~L —1
t71g

+ hcug -- '- + l.

alit
t

+ AQJL +$
ffl g

(4ephfdL)
„t

+ (4eF'tru, ) '~'

(4.10)

The summations over k' and q in the expression (4.9) are evaluated by changing them into integration.
result of this calculation is given by,

I/rpg(k) = Bokr [( 3 + a + cr + o,')(Fppp —F~p, ) + o'~(1+2o)(Fpp) + F~p, )]+I/r~q(k) (4.11)

where o = k/kr, a., = p, /kr, and

2Do2ptro L m, e4(2 NL + 1)
8

3n hC2p, EgK Pc

For o. =l(k =kF) we have

(4.12)

for slow electrons and holes. In this case Eq. (4.4)
gives

I/rgb(k) =8 k'[4( —+rr+o')

+4(m, v/h kr) (2a. + o')

I/r&g (kp) = 8 ~kP + 82kr'+ 83kr + I /r pg (kp)y'
(4.13)

with
where

+4m, 'v'/(k'kr2) ] + I/. ,'„(k)-
(4.16)

78
&

=
3

Bo(F~g p
—Fph )

B~ =38op. (Fp'~ i + Fp~2 )

83 = Bop' ( Fp'~ 2
—Fp~ i )

(4.14)

In Ge, p, /kr is of the order of 3 and B~kr/82 —-0.1,
the term containing kF is smaller than that containing
kr'. Further Bqkr/8, —1, and kr= (3rr'n)' ', vari-

ous terms in the relaxation rate vary as n, n ', and

n . This result is to be compared with that of Haug
who has found only the n2 term. This difference
between our calculation that of Haug arises because
we have explicitly evaluated the momentum depen-

dence in the argument of the 5 function. It may be

noted that the relaxation time of the phonon does
vary as the square of the carrier concentration when

momentum dependence is correctly treated.
In the case of acoustic phonons, the electron-

phonon coupling is given by

D =di( p/ V)' di ——ci(0'/pv)'i' (4.1 5)

where p is the mass density, v is the phonon velocity,
and c~ is the elastic energy. In this case cl)p UJp so
that the 5 function in Eq. (4.4) has zeros at

p'= —2(k+q —m, u/f), p"=0

Sd) F p P1qe
p A8

3 7' A p, rgK

F, = I/3kr which at k = kF leads to
p A

I/rg„(kr) =8'kp-+8"kr'+8 kr +I/rpA(kr)

(4.17)

(4.18)

B. Radiative relaxation

We now proceed to calculate the imaginary part of
Eq. "(3.10), the phonon-assisted radiative contribution

to the recombination relaxation time. The photon
wave vector is very small compared to the other mo-
mer'lta which enter into the problem; i.e:, X = Qk/c
= 0. In the low-temperature limit we obtain,

8 =
3
B„B =12m, ~/&8=, 4 'm~'/k .2(4.19)

So that the dependence of the relaxation rate on the
carrier concentration in the case of acoustic phonons
is similar to that found for optical phonons as a result
of se1f-cancelling effects.

1 2m 4m V
p dp Dp Gk [Fp, ) (&8(tk —kp+k k irQ)p 80k)+Fp 2$)S(kk p k+ pk+kbip —tA„)]

rpk tr „2~ '"
I

r„(k)
(4.20)

~here I/rp„(k) is obtained from the previous terms by interchanging the electrons and holes. For optical pho-



2350 AKUNDI SUGUNA AND KESHAV N. SHRIVASTAVA 22

nons the zeros of the argument of the 8 functions are given by

pl 2=k + [k (I —mk/p) —(2mk/t )(Ek —tn„tr«—L)]'

p3 4 = —k + [k'(1 —mk/p) —(2mk/t ) (Ek —t nk+t«)L) ]'

(4.21)

(4.22)

respectively. Hammond et al. '9 have discussed that the lowest-energy photon which can be emitted in the recom-
bination process is of the frequency

(4.23)

and occurs when an electron and a hole, each at its band extrema recombine. However this condition when sub-
stituted in the expression for pt 2 in Eq. (4.21) gives complex momenta. In order to have real pi 2 the condition
(4.23) must be modified as

tn„=Ek t«P+—t k /2P,

The condition for the highest-energy photon as given in Ref. 19 is

log= Fg Act)&+ SF +IF

(4.24)

(4.25)

(4.26)

Our condition (4.24) is consistent with Eqs. (4.23) and (4.25) qualitatively, if we require k to go from zero to kr,
but k cannot be zero since its minimum value is fixed by Eq. (4.24) itself. Using Eq. (4.24), we find that, pt=0,
p2 =2k, p3= —2k, p4=0. Then in the low-temperature limit, WL « 1, Eq. (4.20) can be written

y [F„(0)(n +1)+ , F2 (0)n—„]+

where

F~,)(0) =2[(t«)L) ' —(tn« —Ek) '], FP,2(0) =2[(tr«L) '+(tn« —Ek) '] (4.27)

In the case of acoustic phonons, we have ~ = vp and Dr is given by Eq. (4.15). The zeros of the argument of the
8 function (4.24) lead to

X „I p2dp dttGk2 [F~~~ X~(k,p, X)8( p —2k)+ Fp~2 X2(k,p, h. )8( p +2k)]+
r;, (k) rrt' r;, (k)

(4.28)

Upon integration this result becomes

X [(rtk+ I) F~",~ (0) + —,F~",g (0)n„] + (4.29)

where

F,'„=2[(2tvk, )-' —(t n, —E,)-']

F,'„=—2[(2tvk, )-'+ (tn, E,)-']—(4.30)

This completes the calculation of the recombination
relaxation time owing to the dominant recombination
mechanisms in the indirect-band-gap materials in a
two band model. The generalization to multiple-band
systems is straightforward.

V. ENHANCEMENT

In our theory the Fourier transform of the pair
Green's function is of the form,

G(k E) = ((~kck I6kck))

= (t/2rr) [E —ek —ak. X(k) ] ', (5.1)

where the pair self-energy is given by X(k). In
present work we are interested only in the recombi-
nation relaxation contributions to the self-energy
which have been calculated in the previous sections.
The pair correlation functions are related to the pair
Green's function. " Extensive studies of the correla-
tion functions g„(r), g,k(r), and gkk(r) have been
reported by Vashishta et a/. ' ' These authors also
study the enhancement factor due to correlations,
g,k(0) for several models. It is found that the value
of g,k(0) depends considerably on the model, the ap-
proximation scheme, and the values of the parame-
ters chosen. In Ge, if one replaces the two-hole
bands of different masses by two bands each having
the same mass, g,k(0) is 1.8 in the Hubbard approxi-
mation and 2.2 with electron-hole multiple scattering.
If one takes the actual hole masses g,k(0) is found to
be 2.3 in absence of multiple scattering which
changes to 2.8 if multiple scattering is taken into ac-
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count. If the effect of anisotropy of the bands is in-

cluded in the fully self-consistent approximation

g,q(0) is calculated39 to be 2.3. The phonon scatter-
ing is not considered in these calculations while we
know that in the indirect-band-gap semiconductors
the phonons play an important role. In our prob-
lem, 4'

—= —I — Re X(k) Im X(k)1 2 Ej

dE
(5.2)

where X(k) is the pair self-energy. In the lowest-
order decoupling the effect of the interaction occurs
only in the shift of the single-particle frequencies and
hence in the real part of the self-energy. Accordingly
Hensel et al. suggest that

I/. =(I/r) g,„(0) (5.3)

Unfortunately, the experimental values of g,q(0) are
as uncertain as the theoretical ones, Benoit a la Guil-
laume et al. ' ' have suggested on the basis of quali-
tative arguments that the enhancement factor may be
obtained from,

VI. APPLICATION TO Ge

A. Experimental measurements

Using a variable-frequency technique, Pokrovskii
and Svistunova" deduced the lifetime of the drop in

Ge to be 20 psec at a temperature of 2. 1 K. Benoit a

la Guillaume et al. ' obtained ~0 —40 p,sec by

measuring the luminescence in a pulsed experiment
whereas a value of 70= (45 +5) @sec is deduced ' in

a transparent sample at low excitations, 0.5 W/mm'
and Westervelt et al. obtain ro= (41 + I) psec at

high powers indicating that this value is independent
of the power of excitation and hence most likely as-

sociated with nonradiative process. Recent measure-
ments by Katyrin et al. " lead to a lifetime of 30 p, sec
but Leheny et al. 4 give 80 p,sec for the nonradiative
lifetime and suggest a radiative efficiency of about
0.5. Therefore it appears that the experimental
values themselves have a large spread being of the
order of 40 + 20 p,sec have an error of the order of
50%. In Sec. VIB we make. an effort to predict this

value from a purely theoretical viewpoint.

B. Calculations

g,&(0) = r,'"/(r, n rra„) (5.4)

r,'"/T, —( N, „/N F Ho) (/s„o//, „)= 8 (5.5)

which leads to the value of g,q(0) —7. Westervelt
et al. "3 obtained a value of r,'"/r„—6.5 and hence

g,q(0) —5. As pointed out by Hensel er ai. the
results of g,„(0) in Ge are not known with desirable
accuracy. In the condensed phase the Fermi energies
are three orders of magnitudes smaller than in the

gas phase. Therefore the mechanisms of recombina-
tion in the EHD are not the same as in the exciton
gas. The approximation ek (& hcoL is valid for EHD
whereas reverse ~k &) fcoL is the case for free exci-
ton gas. Therefore it is not quite correct to compare
the relaxation times and intensities as in Eqs.
(5.3)—(5.5) which assume the same scheme of in-

tegration in the Fermi space for both the liquid and

the gas phase. In the Hartree-Fock approximation
relaxation occurs only due to the electron(hole)-
phonon and electron-hole photon interactions. How-

ever in the indirect-band-gap semiconductors these
approximations cannot lead to recombination.

0
where in Ge, using a„=114A, n =2.38 x 10"cm ',
they obtain (n 7ra3) =1.2. In order to find the ratio
of the free-exciton radiative relaxation time to that of
the radiative relaxation time in the electron-hole
drop, the authors of Ref. 41 make use of the ratio of
intensities of the luminescence of the free exciton to
that of the EHD and the ratio of the number densi-
ties of the excitons and the e-h pairs in the EHD as

In this section we make an effort to predict the
recombination relaxation times in Ge. In this materi-
al, the intraband transition from the conduction-band
minimum at point L in the Brillouin zone to the
point I is allowed only by the longitudinal-optical
phonon scattering. Accordingly we employ Eq.
(4.11) to calculate the phonon-assisted Auger relaxa-
tion time. We take the band structure into account
in the BRAC approximation scheme. '" Although
the scheme of Combescot and Nozieres" which takes
into account the shape of the bands, being more ac-
curate, is algebraically more involved and as admitted
by the authors themselves gives only a 3% correction
over the BRAC model. Bhattacharyya et al. while

calculating the correlation energy also replace the an-

isotropic structure of the conduction bands by isotro-
pic structure corresponding to optical masses in the
self-consistent particle-hole approximation and point
out that though the approach of Combescot and No-
zieres is more sophisticated, the approximation
scheme is quite reasonable. The parameters for Ge
are well known. The optically reduced masses are
mo, =0.12, moq =0.07, and p, =0.046 in the units of
electron rest mass. The remaining parameters are,
Eg =664 meV, Do~ = 25 meV, h coL = 3 1 meV,
r, =0.6, a„=177x 10 cm, K =15.4, c2=1.5 x 10'
dyn/cm, kF = (2peF/g)', and eF =6.2 meV. The
value deduced on the basis of Eq. (4.11) is found to
be v~~ =16 p,sec at lowest temperatures. This value
is of the correct order of magnitude, as seen by com-
paring with the experimental data.

We now calculate the relaxation rate due to the
phonon-induced radiative process for optical phonons
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on the basis of Eq. (4.26). This relaxation time
depends essentially on the radiative power through
the factor g~ n „/ V as the value of Q„I/ V is negligi-

ble. The value of g„n&/ V is of the order of 10'
corresponding to a power of 75 m%. All the other
quantities are assumed to have the same value as for
the phonon-assisted Auger process. Then following
the same scheme r„(kr) =360 psec is found.
Therefore it appears that the radiative process will

not lead to a dominant relaxation and the major con-
tribution is due to the phonon-assisted Auger process
in agreement with the experimental observation. that
the low- and high-excitation power lead to the same

lifetime since the experiment notices only the shorter
time if the other time is an order of magnitude too
long. In general ro of Eq. (1.1) ha's both the contri-

butions. However r, does not significantly alter the
value of 70.
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